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ABSTRACT
Topological photonics is an emerging research area that focuses on the topological states of classical light.
Here we reveal the topological phases that are intrinsic to the quantum nature of light, i.e. solely related to
the quantized Fock states and the inhomogeneous coupling strengths between them.TheHamiltonian of
two cavities coupled with a two-level atom is an intrinsic one-dimensional Su-Schriefer-Heeger model of
Fock states. By adding another cavity, the Fock-state lattice is extended to two dimensions with a
honeycomb structure, where the strain due to the inhomogeneous coupling strengths of the annihilation
operator induces a Lifshitz topological phase transition between a semimetal and three band insulators
within the lattice. In the semimetallic phase, the strain is equivalent to a pseudomagnetic field, which results
in the quantization of the Landau levels and the valley Hall effect. We further construct an inhomogeneous
Fock-state Haldane model where the topological phases can be characterized by the topological markers.
With d cavities being coupled to the atom, the lattice is extended to d− 1 dimensions without an upper
limit. In this study we demonstrate a fundamental distinction between the topological phases in quantum
and classical optics and provide a novel platform for studying topological physics in dimensions higher than
three.

Keywords: topological phases, Su-Schriefer-Heeger model, Jaynes-Cummings model, strain-induced
magnetic field, Haldane model

INTRODUCTION
Topological phases of matter have been extensively
investigated not only for electrons [1–5], but also
for neutral atoms [6,7], photons [8,9] and phonons
[10,11]. However, regarding whether the topologi-
cal phases are quantum or classical, there is a fun-
damental difference between electrons and pho-
tons (and similarly phonons). While the topolog-
ical phases of electrons are intrinsically quantum,
i.e. basedon theSchrödinger equation and fermionic
statistics of electrons, the topological phases of light
originating from the analogy between the Maxwell
and Schrödinger equations can be explained in the
framework of classical optics [8,9,12]. Although in
lattices of resonators [13] a quantized field formula-
tion of light is used to facilitate the calculation of the
chiral edgemodes in parallel with those of electrons,
the topological phases have no quantum signature
and can be demonstrated with classical light. A nat-
ural question is whether the second quantization of
light embeds new topological phases that are fun-
damentally distinct from those classical ones. Such

topological phases of quantized light can bring to-
gether two relatively unrelated areas, quantum elec-
trodynamics and topological matter, and provide a
new perspective on the relations between different
topological phases in condensed matter physics.

Early discoveries that require field quantization
include black-body radiation, the Lamb shift [14]
and theCasimir effect [15]. Black-body radiation re-
veals the quantized eigenstates of light, i.e. the Fock
states denoted by |m〉 with m being the number
of photons in the states. The latter two result from
quantum fluctuations of the vacuum state |0〉. The
quantized Fock states have profound consequences
in atom-photon interactions, such as the collapse
and revival of Rabi oscillations [16–18] when a two-
level atom is resonantly coupled to a coherent field,
i.e., in the Jaynes-Cummings (JC) model [19]. This
phenomenon is due to the quantum interference be-
tween the Rabi oscillations of the atom coupled to
different Fock states |m〉, which have discrete Rabi
frequencies proportional to

√
m .This is reminiscent

of theLandau levels of electronsnear theDirac cones
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of graphene in a magnetic field [20,21], which also
follows the same scaling. In this paper, among other
interesting connections between the JC model and
the topological phases in condensed matter physics,
we reveal the surprising relation between the

√
m

scaling of the Rabi frequencies and the Landau lev-
els through a lattice composedbyFock states, coined
the Fock-state lattice (FSL) [22].

Before we sketch the basic structure of the FSL,
we emphasize that the quantization of the light field
allows arbitrarily large lattices to be synthesized by
only a few light modes. The Fock states of d modes
of photons are |n1, n2, . . . , nd〉, where nj = 0, 1, 2, . . .
is the photonnumber in the jthmode. Eachmodeof-
fers an independent degree of freedom.Our strategy
is to use this many-body Fock space of a few bosonic
modes to simulate the single-particle Hilbert space
of either bosons or fermions. We introduce the FSL
with the Hamiltonian of a multimode JC model
(� = 1),

H =
d∑
j=1

ν j a
†
j a j + ωσz

2

+ g√
d

d∑
j=1

(
a †j + a j

)
(σ− + σ+), (1)

where σ− = |↓〉〈↑| and σ+ = |↑〉〈↓| are the lower-
ing and raising operators of the two atomic states |↑〉
and |↓〉with transition frequencyω, aj anda

†
j are the

annihilation and creation operators of the jth mode
with frequencyν j and g /

√
d is the coupling strength

between the photons and the atom. Assuming that
ν j = ω, we make the rotating-wave approximation
and obtain the followingHamiltonian in the interac-
tion picture:

H = g√
d

d∑
j=1

(
a †jσ

− + σ+a j

)
. (2)

This Hamiltonian conserves the total number of
excitation N = ∑

j a
†
j a j + (σz + 1)/2, where

σ z = |↑〉〈↑| − |↓〉〈↓| is the z component of the
Pauli matrices of the atom. We have two ways
to look into the Hamiltonian in Equation (2).
Each state |↑, n1, n2, . . . , nd〉 is coupled to d neigh-
bors |↓, n1, n2, . . . , nj + 1, . . . , nd〉 (where j = 1,
2, . . . , d) with coupling strengths proportional
to

√
n j + 1, forming a bipartite (correspond-

ing to the two states of the atom) FSL with
site-dependent coupling strengths in synthetic
d − 1 dimensions [23] (see Fig. 1). From another
perspective, by combining the a modes to form a
collective mode b = ∑

j a j /
√
d , the Hamiltonian

Figure 1. Fock-state lattices in d − 1 dimensions of the
Hamiltonian in Equation (2) with total excitation number
N. The squares/circles denote the states |↑/↓, n1, n2, . . . ,
nd〉 in the sublattices characterized by the |↑〉/|↓〉 atomic
states. The numbers labeling the lattice sites are the photon
numbers n1n2. . .nd in the corresponding states. For clarity,
we only label the photon numbers in the |↓〉 sublattice for
d = 3 and hide all photon numbers for d = 4. The widths
of the lines connecting neighboring sites are proportional to
the magnitudes of the coupling strengths between them.

becomes the single-mode JC model, which is
analytically solvable. Combination of these two
pictures enables us to study the topological phases
of the FSL.

Before laying out the details, we first highlight a
couple of distinctive features of the FSL. They are
lattices of quantum states instead ofmodes and have
natural edges based on the fact that the photon num-
bers in Fock states have a lower limit zero, i.e. the ex-
istence of the vacuum state. An advantage of the FSL
is that their dimensions have no upper limit, pro-
viding a unique platform to investigate topological
phases in dimensions higher than three. However,
we must take special care of the coupling strengths,
which vary locally depending on the photon num-
bers in the Fock states. Here we show that, for the
one-dimensional (1D) FSL with d = 2, the varia-
tion of the coupling strengths results in the topologi-
cal zero-energy state between two different topolog-
ical phases of the Su-Schriefer-Heeger (SSH)model
[24,25]. In two dimensions with d = 3, the vari-
ation of the coupling strengths is equivalent to a
strain field in the honeycomb lattice, which leads
to a Lifshitz topological phase transition between a
semimetal and three band insulators within the FSL
[21], as well as a strain-induced pseudomagnetic
field [26,27] in the semimetallic phase.The pseudo-
magnetic field results in quantizedLandau levels and
provides the basis to observe the valley Hall effect
[28–30] and construct a Fock-state Haldane model
[2], where the topological phases are characterized
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Figure 2. The probability distribution of the topological zero-energy state |ψ s〉 in the
1D Fock-state SSH model. The lattices are plotted in the same way as in Fig. 1 with
N = 15. The probability distribution of |ψ s〉 is plotted above the corresponding lat-
tice sites. The ratio u1/u2 = 1 (a), 2 (b) and 4 (c). The neighboring probabilities are
connected by straight lines as a visual guide. The vertical dashed lines denote the
boundary between two topological phases of the SSH model.

by topological markers [31,32]. The FSL can be ex-
tended to higher dimensions to study the topolog-
ical phases unachievable in real space [33–37]. It
also provides a solution to design finite lattices with
exactly quantized energy levels [38,39].

RESULTS
1D Fock-state SSH model
We first show the relation between the SSH model
and the 1D FSL with the Hamiltonian

H1 = gσ+(u1a1 + u2a2) + H.c., (3)

where u1 and u2 are real positive numbers satisfy-
ing u21 + u22 = 1. In Fig. 2(a)–(c), we illustrate the
FSL with N = 15 in the basis of |↓/↑, n1, n2〉 for
different values of u1/u2. The connection between
this lattice and the topological SSH model is en-
dorsed by the variation of the coupling strengths
due to the property of the annihilation operator,
a |n〉 = √

n|n − 1〉. For u1 = u2 = 1/
√
2, the lat-

tice is equally divided into two parts. On the left
side, the coupling strengths of a1 are larger than
those of a2, contrary to their relation on the right
side. Accordingly, these two parts are in two differ-
ent topological phases of the SSH model, which is
evident from the topological zero-energy state at the
boundary, as shown in Fig. 2(a)–(c). We can tune
u1 and u2 to move the zero-energy state, which is
always located at the boundary satisfying u1

√
n1 =

u2
√
n2 (see the online supplementary material).

When u1 >
√
Nu2 (or u2 >

√
Nu1), there is only

one topological phase and the zero-energy state is on
one of the ends of the lattice.

The eigenenergies and eigenstates of Equa-
tion (3) are analytically obtained by recombining
a1 and a2 to form a bright mode b1 = u1a1 + u2a2
and a dark mode b2 = u2a1 − u1a2. Only the bright
mode is coupled with the atom. The corresponding
eigenstates are |ψ±

m 〉 = (|↓,m, N − m〉b ± |↑,

m − 1, N − m〉b)/
√
2, where m = 1, 2, . . . , N in

| . . . 〉b is the photon number in the b1 mode. The
eigenstate withm= 0 is the topological zero-energy
state |ψ s〉 = |↓, 0, N〉b, which has zero energy and
only occupies the |↓〉 sublattice. It is interesting to
note that this bimodal JC model has also been re-
lated to the topological properties of the Jahn-Teller
system [40].

Effective strain, pseudomagnetic field
and Landau levels in the 2D FSL
The lattice is extended to two dimensions by adding
a third cavity mode in the Hamiltonian

H2 = g√
3

σ+(a1 + a2 + a3) + H.c. (4)

The Fock states |↑/↓, n1, n2, n3〉 form a honey-
comb lattice with triangular boundaries on which
one of the cavity modes is in the vacuum state, as
shown in Fig. 3(a). All photons are in one cavity at
the three vertices, which are labeled with the corre-
sponding cavity numbers.The inhomogeneous cou-
pling strengths introduce an effective strain in the
lattice. We first note that in the center of the lattice
the strain is relatively small, while approaching the
vertices the strain becomes drastic. When the strain
is small such that [27]

|t1 − t2| < t3 < |t1 + t2| (5)

with t j = g√n j /
√
3 being the coupling strength of

mode aj, the strain field is equivalent to a pseudo-
magnetic field leading to quantized Landau levels
[26,27,38], which have been experimentally imple-
mented in graphene [41].The lattice sites that satisfy
Equation (5) are in the incircle of the FSL, i.e. where
(see Fig. 3(b) and theMethods section)

n21 + n22 + n23 <
N2

2
. (6)

Beyond the incircle the strain is so large that a band
gapopens andwecannot regard the strain as a simple
pseudomagnetic field. A Lifshitz topological phase
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Figure 3. Two-dimensional Fock-state lattice with an effective pseudomagnetic field and Landau levels. (a) The Fock-state
lattice of the Hamiltonian H2 in Equation (4) for N = 20. The three numbers 1, 2, 3 denote the states at the vertices with
all N photons in modes a1, a2 and a3. The coupling strengths t1, t2 and t3 are drawn with red, blue and green lines with
widths proportional to the strengths. (b) The distribution of the effective pseudomagnetic field due to the variation of the
coupling strengths within the incircle, evaluated from Equation (15). Outside of the incircle the strain induces a band gap. (c)
The band structure of the generalized Landau levels with eigenenergies E ±

m ,C = ±√
mg for the eigenstates |ψ±

m ,C 〉. (d) The
wavefunctions of the eigenstates in the zeroth Landau level |ψ 0, C〉 for C= −20, −18, −16 and 0, labeled with a diamond,
pentagon, hexagon and star in (c).

transition between a strained semimetal and a band
insulator [21] occurs on the incircle of the 2D FSL.

We first evaluate the strength of the pseudo-
magnetic field near the center of the FSL. This can
be done by comparing the eigenenergies of Equa-
tion (4) and those of the Landau levels in real
graphene. The Landau levels are characterized by
±√

mB scaling near the Dirac cone, with B being
the strength of the magnetic field, m being the in-
dex of the Landau levels and ± for the conduc-
tion and valence bands [21]. The eigenenergies of
the Hamiltonian H2 are obtained by recombining
the cavity modes to form a collective bright mode,
b0 = (a1 + a2 + a3)/

√
3. The JC model of the b0

mode coupling with the atom has eigenenergies
±√

mg with m = 〈b†0b0〉, i.e. in accord with the
scaling of the Landau levels in graphene, with ef-
fective cyclotron frequency g. By recalling the ex-
plicit energies of Landau levels in graphene [21] and
comparing them with the eigenenergies of H2, we
obtain

± √
mg = ±√

2m
3thq
2l B

, (7)

where th is the hopping coefficient and q is the lat-
tice constant, and themagnetic length l B = √

�/e B
with e being the electric charge.

At the center of the honeycomb FSL where
〈a †j a j 〉 ≈ N/3 for j = 1, 2, 3, the coupling
strengths are t1 = t2 = t3 = th ≡ √

Ng /3,
which can be regarded as the unstrained back-
ground hopping coefficient. The pseudomagnetic
field is built upon the deviation of the coupling

strengths from th due to the variation of the pho-
ton numbers. Substituting th into Equation (7),
we obtain

l B
q

=
√

N
2

, (8)

which is the only relevant quantity to measure the
strength of the pseudomagnetic field since both q
and lB are fictitious in the FSL. The strength of the
corresponding pseudomagnetic field is

B0 = 2�
Neq 2 . (9)

The fictitious electric charge e in B0 is only an anal-
ogous quantity for the convenience of comparison
with electrons. All observables in the lattice are in-
dependent of e. However, to have a general idea
of the strength of B0, we take the lattice constant
q = 0.14 nm of graphene and obtain B0 = 6.5 ×
104/N tesla. For N = 20, B0 is 10 times larger than
those demonstrated in graphene [41].

Thepseudomagnetic field canonlybe regarded as
approximately uniform near the center of the lattice.
The explicit distribution of the pseudomagnetic field
is obtained through the valley Hall response (see
Equation (15)), or directly from the strain-induced
motion of the Dirac cones (see the Methods sec-
tion). Interestingly, despite the complications of the
nonuniform pseudomagnetic field and the topolog-
ical phase transition on the incircle, all the eigen-
states in the 2D FSL are grouped in quantized en-
ergy levels with the ±√

m scaling. In the following,
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we regard these levels as generalizedLandau levels of
the FSL.

The degeneracy of the eigenstates in the mth
Landau level is N − m + 1. To distinguish these
states, we introduce the bosonic chirality operator

C = b†+b+ − b†−b−, (10)

where b± = ∑3
j=1 a j exp (∓i2 jπ/3)/

√
3 are the

annihilation operators of the two dark modes. Here
C is a good quantum number that plays the role of
the lattice momentum in an infinite lattice. It also
characterizes the angular momentum carried by the
photons in the eigenstates of the FSL. This quan-
tity is an extension of the spin chirality [42] (see the
online supplementary material). In graphene, the
K and K′ points correspond to the two maximum
momenta in theBrillouin zone [20]. In thefiniteFSL
the points withC=N andC= −N are the counter-
parts of the K and K′ points. The band structure of
the 2D FSL is shown in Fig. 3(c).

The eigenstates in the mth Landau level are
|ψ±

m,C 〉 = (| ↓,m,m+,m−〉b ± | ↑,m − 1,m+,

m−〉b)/
√
2, wherem+ andm− are the photon num-

bers in the two dark modes. The N + 1 eigenstates
in the zeroth Landau level are solely composed of
|↓〉-sublattice states, |ψ0, C〉 = |↓, 0, m+, m−〉b,
which are the counterparts of the topological
zero-energy state in the 1D FSL. We recall that in
graphene the electrons in the zeroth Landau level
of a real magnetic field occupy only one sublattice
at point K and the other sublattice at point K′ [21].
When the direction of the magnetic field is reversed,
the zeroth-Landau-level occupations of the two
sublattices at the K and K′ points are exchanged.
Since the strain-induced pseudomagnetic field has
opposite signs at the K and K′ points, the states in
the zeroth Landau level of the FSL occupy only the
|↓〉 sublattice at both the K and K′ points [43,44].
Because of the opposite signs of the pseudomagnetic
field at the K′ and K points, C can only increase at
the K′ point and decrease at the K point, such that
the angular momenta of the eigenstates at these
two points can only take positive or negative values
when they are countedwith respect to their extrema,
which is analogous to electrons in magnetic fields
with opposite signs [45].

The wavefunctions of the eigenstates can be ana-
lytically obtained through an expansion in the Fock
states ofamodes. InFig. 3(d),wedrawseveral eigen-
states in the zeroth Landau level. Near the K′ point
forC=−20,−18 and−16, the eigenwavefunctions
resemble those in the zeroth Landau level of a real
magnetic field with the symmetric gauge, but with
a smaller localization length (see the distribution
and phase of the wavefunctions in the online supple-

mentary material). From this point we can also un-
derstand the angular momenta C of the eigenstates,
since they are well defined in the symmetric gauge
[45].When |C|decreases, the eigenstate approaches
the incircle of the triangular boundary, as shown by
|ψ0, 0〉 in Fig. 3(d) (see more wavefunctions in the
online supplementary material).

The valley Hall effect
To demonstrate the transport due to the pseudo-
magnetic field, we can introduce an effective electric
field in the lattice and calculate the Hall response of
states at points K and K′. A static electric field in-
duces a linear potential energy of electrons in real
space. In the FSL, such a linear potential energy can
be introduced by the frequency difference between
the cavity modes, e.g.

H3 = H2 + δ
(
a †1a1 − a †2a2

)
, (11)

where δ is the detuning between the a1 and a2
modes.Thedirectionof the effective forcedue to this
potential is along the blue arrow in Fig. 4(b).

In Fig. 4, we prepare an initial state in the ze-
rothLandau level at theK′ valley, |ψ(0)〉=|ψ0,−N〉,
and show its dynamical evolution with Hamiltonian
H3 by taking snapshots of the wavefunction at dif-
ferent times. The distributions of the states in both
the energy bands and FSL are plotted. The electric
field is small, δ  g, such that Landau-Zener tun-
neling is negligible and the state stays in the zeroth
Landau level. Driven by the effective electric field,
the state moves from K′ to K (at time τ = T/2,
where T = √

3π/δ) and then returns to point K′,
as shown in Fig. 4(a), independent of the direction
of the force.This is theBloch oscillation in the zeroth
Landau level. During this process, the most interest-
ing feature of the valley Hall effect is demonstrated
by the propagation of the wavefunction perpendic-
ular to the direction of the force [28]. In Fig. 4(b)
for a rightward force, the wavefunction moves up-
ward at the K′ point (when τ = 0) and downward
at the K point (when τ = T/2), which is unam-
biguous evidence that the pseudomagnetic fields at
points K and K′ have opposite signs. This effect can
also be demonstrated with forces in any other direc-
tions, e.g. upward as shown inFig. 4(c)with the force
term δ(a †1a1 + a †2a2 − 2a †3a3)/

√
3 in the Hamilto-

nian. Landau-Zener tunneling appears when the po-
tential difference between neighboring lattice sites δ
is comparable or larger than the band gap g (see the
online supplementary material).

We can calculate the drift velocity in the limit
of small electric field when δ  g at the K′ point
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Figure 4. The Bloch oscillation and the valley Hall effect in the zeroth Landau level.
(a) The evolution of the wavefunctions in the Landau levels for a small force with
δ = 0.01g (independent of the direction of the force). The total excitation number
N = 20. In (b) and (c) we show the dynamics of the wavefunctions in the FSL with
forces in the directions of the blue arrows. The red arrows show the directions of the
velocities at τ = 0, T/2. The U-turn arrows show the velocity change before and after
τ = T/4, 3T/4. The radii of the purple solid circles are proportional to the probabilities
in the corresponding states.

through the standard formula [45], e.g. for a hori-
zontal force as shown in Fig. 4(b),

vD = E

B0
= Nqδ√

3
, (12)

where E = 2�δ/
√
3q e is the strength of the

effective electric field. On the other hand, from an
independent approach (see the online supplemen-
tary material), the drifted center of the wavepacket
follows a sinusoidal oscillation with amplitude
R=Nq/2 (the radius of the incircle of the triangular
boundary),

y(τ) = R sin
2πτ

T
, (13)

where we have set the center of the lattice as the
zero point and the coordinates x and y are defined
in Equation (22) in theMethods section.We obtain
the velocity

vy (τ) ≡ d y(τ)
dτ

= vD cos
2πτ

T
. (14)

Obviously, at τ = 0 it coincides with the drift ve-
locity obtained from Equation (12), vy(0)= vD. At
τ = T/2, the wavepacket arrives at the K point and
vy(T/2)= −vD.

Equations (13) and (14) also enable us to
evaluate the strength of the pseudomagnetic field
B away from the center of the lattice through
B(y) = E /vy (y). Because of the rotational sym-

metry of the Hall response in this lattice, from
Equations (13) and (14) we obtain

B±(r ) = ∓ B0√
1 − r 2/R2

, (15)

where r = √
x2 + y 2 is the distance to the center of

the lattice, and B+(r) and B−(r) are for the K and
K′ valleys, respectively. The distribution of B−(r)
is plotted in Fig. 2(b) and the result is also consis-
tent with a calculation based on the strain-induced
shift of the Dirac cones (see the Methods section).
In the K′ valley, the total number of magnetic flux
quanta (	0 = 2π�/e) in the incircle of the FSL
is

∫ R
0 2πr B−(r )dr /	0 = N/2, which means that

N/2 states can be hosted in the K′ valley [21]. On
the other hand, there areN+ 1 eigenstates in the ze-
roth Landau level and half of them belong to the K′

valley, which is consistent with the above result from
the total magnetic flux.

The Haldane model in the 2D FSL
Although the 1D FSL is a topological SSH model,
the 2D FSL has a topologically trivial Chern num-
ber, evident from the absence of gapless edge states.
However, by introducing additional terms in the
Hamiltonian, we can construct a Haldane model

H4 = H2 + κσzC/2, (16)

where κ is a coupling constant and the bosonic chi-
rality operatorC provides the next-nearest-neighbor
coupling attached with a π/2 phase. The σ zC term
can be synthesized by periodically modulating the
frequencies of the cavities [22].

We plot the band structure of Equation (16) in
Fig. 5(b). The bulk states in the conduction and
valence bands are generated from the eigenstates
|ψ±

m,C 〉 in the Landau levels with m �= 0, and their
eigenenergies are E±

m,C = ±√
mg 2 + κ2C 2/4.

The eigenstates in the zeroth Landau level turn
into the chiral edge states with eigenenergies
E0, C = −κC/2 connecting the K and K′ points of
the two bands. The nontrivial topological property
is demonstrated by the unidirectional propaga-
tion of a wave packet of the edge states [46,47],∣∣ψ(0)

〉 = (b†+ − b†−)N |↓, 0, 0, 0〉b/
√
2NN! =

i N(a †1 − a †2)N |↓, 0, 0, 0〉/
√
2NN!, which has zero

mean energy.With theweight located on the incircle
(the boundary between the band insulator and the
semimetal), the wave packet rotates clockwise (as
shown in Fig. 5(c)), which indicates the negative
dispersion of the edge states in Fig. 5(b).
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Figure 5. The Haldane model in the Fock-state lattice. (a) The coupling strengths of the Hamiltonian H4 in Equation (16) with
N= 5. The nearest-neighbor couplings are denoted with red lines. The next-nearest-neighbor couplings are denoted by blue
lines with arrows denoting the transition attached with a phase factor i. The linewidths are proportional to the coupling
strengths. (b) The band structure of the Haldane model with N= 20, g= 1 and κ = 0.3 in H4. The color denotes the polariza-
tion of the eigenstates in |↑〉 (red) and |↓〉 (blue) components. (c) The dynamic evolution of a wavepacket of the edge states
for N= 20, starting from the bottom frame. The dashed incircle denotes the trace of the weight (expectation value of the po-
sition) of this wavepacket during the evolution. The red arrows show the direction of time, sequentially at τ = nTw/6, where
Tw = 2π/κ and n= 0, 1, 2, 3, 4, 5.

In the original Haldane model [2], the phase φ

attached to the next-nearest-neighbor hopping can
have values different fromπ/2 and there is an energy
offset � between the two sublattices. A topological
phase diagram can be plotted with respect to φ and
�. The corresponding Hamiltonian in the FSL is

H5 = H2 + N�

2
σz

+
⎡
⎣ κ

2
√
3
e iφσz

3∑
j=1

a †j+1a j+H.c.

⎤
⎦, (17)

where� is the detuning between the frequencies of
the cavities and that of the atom. The Chern num-
bers are traditionally obtained in the reciprocal space
of lattices via a Bloch wavefunction in a closed Bril-
louin zone [48]. Since the FSL is finite with bound-
aries and nonuniform coupling strengths, the stan-
dard way to obtain the Chern number is not applica-
ble. Instead, the Chern numbers ofH5 are obtained
through the local topological marker [31,32] in the
center of the FSL (see the online supplementaryma-
terial). They are plotted as a function of � and φ

in Fig. 6, which demonstrates the same topological
phase diagram as the original Haldane model [2].

Topological quantum responses
with coherent light field
The physics of topological quantum optics in the
previous parts of the paper is based on the calcula-
tion with quantized Fock states. A natural question
is whether some of these phenomena have classical
correspondence and whether the topological prop-

Figure 6. The topological marker of H5 in Equation (17)
evaluated in the center of the Fock-state lattice. g = 0.05,
κ = 2

√
3 and N= 30.

erties can be observed with classical light. In par-
ticular, well-known classical phenomena of atom-
light interactions shall be explained with the FSL.
The quantum approach shall also give predictions
that cannot be explained by classical optics. In the
following we give an example to show the connec-
tion and difference between the semiclassical and
quantum treatments.

In the semiclassical approach, the Hamiltonian
of three classical light fields interacting with a single
atom is (in the rotating framewith the rotating-wave
approximation)

Hc =
3∑
j=1

 j e−i� j t−iφ j σ+ + H.c., (18)

where the j are Rabi frequencies, and �j = ν j −
ω and φj are the detunings and phases of the light
modes. If j ≡ , �j = 0 for all modes and φj =
2jπ/3, we obtain Hc = 0 since the three light fields
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Figure 7. Evolution of the coherent cavity fields and atomwith full quantum (blue lines)
versus semiclassical (red lines) approaches. (a) The evolution of the average photon
number n̄ 1 = 〈a †1a1〉 (the same as that of mode a2). (b) The evolution of n̄ 3 = 〈a †3a3〉.
(c) The evolution of the photon number in the bright mode n̄ 0 = 〈b†0b0〉, which is cou-
pled with the atom. (d) The evolution of the ground-state population of the atom. The
blue shaded areas in (a) and (b) show the uncertainties of the cavity photon numbers
�n1 and�n3 in the quantum approach. Here g= 1, δ = 0.1 and |α|2 = 10. In addition
to the quantum fluctuations, the quantum approach demonstrates nontrivial dynamic
evolution of the cavity fields with the atom remaining in the ground state, while the
semiclassical approach suggests Rabi oscillations of the atom and the photon numbers
in the three cavities remain constant.

cancel. The atom shall be decoupled with the cavi-
ties. The atom initially prepared in the ground state
will remain there.We then introducenonzerodetun-
ings �1 = δ and �2 = −δ, such that the atom in-
teracts with a total light field (t) = [2cos (δt+
2π/3) + 1]. The semiclassical treatment predicts
that the atom shall be excited. The evolution of the
total field and the atom is shown by the red lines in
Fig. 7(c) and (d).

In the following we show that, when δ = 0,
the semiclassical prediction of the decoupling be-
tween the atom and photons is consistent with the
quantum prediction, i.e. it can be explained by the
eigenstates in the zeroth Landau level of the FSL.
However, when δ �= 0, in stark contrast to the semi-
classical prediction, the quantum approach predicts
that the atom stays in the ground state and the fields
evolve in such away that their amplitudes cancel out,
as shown by the blue lines in Fig. 7(c) and (d).Then
we make a transition to intrinsic topological quan-
tum phenomena that can be demonstrated by a clas-
sical light field but without interpretation in classical
optics.

The quantum state of the atom interacting with
three classical light fields can bewritten as |↓,α1,α2,
α3〉, where |α j 〉 = exp(−|α j |2/2)

∑
n j

α
n j
j |n j 〉/√

n j ! with the αj being complex numbers are the
coherent states of the cavity modes aj. The relative

phases between the fields are taken into account by
assuming that αj = α exp (−i2jπ/3) such that the
three fields cancel, i.e. b0|↓, α1, α2, α3〉 = 0. This is
consistent with the semiclassical prediction, i.e. the
atom isdecoupled fromthefields since it experiences
zerofield strength.Tounderstand this in theFSL,we
find that the state canbe expanded as a superposition
of the eigenstates in the zeroth Landau levels of dif-
ferent subspaces (for |α|2 � 1),

|↓, α1, α2, α3〉 =
∑
N

e (N−N0)/2

(2πN)1/4

×
(
N0

N

)N/2 ∣∣∣ψ (N)
0,−N

〉
, (19)

where N0 = 3|α|2 is the total average photon num-
ber in the three modes and the |ψ (N)

0,C 〉 are the eigen-
states in the zeroth Landau level of the subspace
with total excitation numberN. Here only the states
at the K′ point appear and C = −N. Since these
states are in the zeroth Landau levels, they are de-
coupled with the atom. In a more familiar form, the
probability of obtaining |ψ (N)

0,−N〉 in Equation (19) is
approximately

∣∣∣〈ψ (N)
0,−N |↓, α1, α2, α3〉

∣∣∣2
≈ 1√

2πN
e [−(N−N0)2/2N], (20)

i.e. following a Gaussian distribution centered atN0.
The result in Equation (19) is remarkable since it
indicates that even with coherent fields in the three
cavities we can prepare a state in the zeroth Landau
level at the K′ point, although in a superposition of
states from different subspaces. Since the Hamilto-
nian conserves N, the evolution of state |↓, α1, α2,
α3〉 can be treated separately in each subspace.

Starting from the state inEquation (19),we show
the difference between the predictions of semiclas-
sical and full quantum approaches with the valley
Hall effect in Fig. 7. In the semiclassical approach,
a detuning δ (see Equation (11)) between the fre-
quencies of modes a1 and a2 removes the canceling
out of the three fields during the dynamical evolu-
tion, which predicts that the atom experiences a fi-
nite field strength andwill be excited (see Fig. 7(d)).
However, the excitation of the atom is absent in the
quantum treatment for δ  g. Instead, the state re-
mains in the zeroth Landau level and the atom stays
in the ground state (see the online supplementary
material). This intraband evolution is protected by
the band gap g, which is also the vacuum Rabi split-
ting and the cyclotron frequency in the pseudomag-
netic field.
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On the other hand, the cavity modes undergo
a nontrivial evolution. Without the atom, the three
fields do not interact with each other. With the pres-
ence of the atom, the valley Hall effect induces ex-
change of photons between the three cavity modes
such that the zero value of their superposition is
maintained, as shown in Fig. 7(a)–(c). The bright
mode b0 is a dynamical constant (i.e. it commutes
with the effective Hamiltonian equation (S7) in the
online supplementary material). Note also that in
order to keep b0 zero, a classical version of the re-
lation in Equation (5), ||α1| − |α2|| ≤ |α3| ≤
|α1| + |α2|, must be satisfied, which is also con-
sistent with the fact that the wavepacket is trapped
within the incircle of the FSL (see Fig. 4). For in-
stance, at time τ = 3T/4, the state in Equation (19)
evolves to | ↓,−i

√
6α/2, i

√
6α/2, 0〉, i.e. the cav-

ity mode a3 is in the vacuum state and the photons
are equally distributed in modes a1 and a2. There-
fore, the topological quantumphenomena discussed
in this paper can be observed with the classical (co-
herent) field, but they cannot be explained with
classical optics. Similarly, the dynamics of the edge
states of the Haldane model in Fig. 5(c) can also be
demonstrated with coherent light fields.

CONCLUSION
In striking contrast to the photonic and acoustic
topological insulators [8,9,12,49], where the topo-
logical properties do not require a quantization of
the light field, all the topological properties dis-
cussed in this paper are basedon thequantumnature
of the bosonic operator, i.e. a |n〉 = √

n |n − 1〉 for
n≥ 1 and a|0〉= 0 (which ensures finite latticeswith
edges). Another difference from the photonic and
acoustic topological insulators is that the FSL needs
only a few modes to generate high-dimensional lat-
tices. We can use d bosonic modes to construct an
FSL in d − 1 dimensions, which offers a platform
to simulate high-dimensional topological physics
[33–37].

This study can also help to design novel artificial
lattices for photons and phonons. A special type of
lattice named the Glauber-Fock lattice [50,51] has
been fabricated with waveguides, with the coupling
strengths between neighboring waveguides mimick-
ing the coupling between Fock states. These lattices
can host collective modes that inherit the properties
of the coherent state. In the same spirit, by replacing
each state in the FSLwith a cavitymode, we can con-
struct a finite lattice of cavities that has a band struc-
ture similar to that in Fig. 3(c), with each eigenstate
being replacedby aneigenmode.Comparedwith the
lattices designed with the strain-induced gauge field

[38,39,43,44], the latticewith coupling strengths be-
tween neighboring sites mimicking the 2D FSL has√
m-scaling quantized energy levels everywhere, not

limited near the K and K′ points.
The experimental realization of the physics dis-

cussed in the paper can be implemented in super-
conducting circuits with several resonators being
coupled to a single qubit. In order to observe the
dynamical process of the valley Hall effect and the
chiral edge states of the Haldane model, we need
the lifetime of the resonator TR to satisfy TR/N ≥
T, Tw . Since only the zeroth Landau level with the
qubit in the ground state is involved with these two
phenomena, the decoherence from the qubit has no
effect. For Landau-Zener tunneling, the atom can
be in the excited state and thus it also requires Ta1,
Ta2 ≥ T, Tw , where Ta1 and Ta2 are the lifetime and
decoherence time of the qubit. The state-of-the-art
parameters areTR ≈ 20μs,Ta1 ≈ 20μs,Ta2 ≈ 2μs,
g≈ 2π × 50MHz [52] andTw ≈ 450 ns [53]. If we
adopt a reasonableT= 200 ns for δ = 2π × 5MHz,
the above conditions can be satisfied with excitation
number N = 10, which is sufficient to observe the
topological phenomena.

METHODS
The Lifshitz topological phase transition
in the FSL
It has been shown that the strain can shift the Dirac
cones of graphene, which has the effect of a vector
potential until the anisotropy of the strain is large
enough to merge two Dirac cones into one, beyond
which a band gap opens [27]. Here we show that
the Lifshitz topological phase transition happens at
the incircle of the triangular boundary of the FSL.
Considering the lattice site |↓, n1, n2, n3〉, the cou-
pling strengths are t j = √n j g /

√
3. The condition

for the semimetallic phase in Equation (5) can be
rewritten as

n1 + n2 − 2
√
n1n2 < n3 < n1 + n2 + 2

√
n1n2.
(21)

The x and y coordinates in the Fock-state lattice are

y = q
2

(
2a †3a3 − a †1a1 − a †2a2

)
,

x =
√
3q
2

(
a †2a2 − a †1a1

)
. (22)

From Equation (22) and the constraint
∑

jnj = N,
we obtain

n1 = Nq − y
3q

− x√
3q

, (23a)
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n2 = Nq − y
3q

+ x√
3q

, (23b)

n3 = N
3

+ 2y
3q

. (23c)

Substituting Equation (23) into Equation (21), we
obtain

x2 + y 2 < R2, (24)

i.e. the sites are in the incircle of the triangular
boundary. Substituting Equation (22) into Equa-
tion (24), we obtain the relation of the photon
numbers in Equation (6).

Pseudomagnetic field obtained from the
shift of Dirac points
At the Dirac points of a tight-binding honeycomb
lattice, the Bloch wavevectors k satisfy the relation

|t3 + t1e−ik·v1 + t2e−ik·v2 | = 0, (25)

where v1 = (−√
3q/2,−3q/2) and

v2 = (
√
3q/2,−3q/2). Accordingly, the posi-

tions of the Dirac points are explicitly obtained
through the equations

cos k · v1 = t22 − t21 − t23
2t1t3

≡ s1,

cos k · v2 = t21 − t22 − t23
2t2t3

≡ s2. (26)

In theFSL the coupling strengths vary locally and the
Dirac points shift at different locations. At the site
|↓, n1, n2, n3〉, we obtain

s1 = n2 − n1 − n3
2
√
n1n3

,

s2 = n1 − n2 − n3
2
√
n2n3

. (27)

From Equation (26) we obtain

k±
x = ± 1√

3q
(arccos s1 + arccos s2),

k±
y = ± 1

3q
(arccos s1 − arccos s2), (28)

where k± = (k±
x , k±

y ) with + and − denoting the
two Dirac points K and K′. The Hamiltonian near
the Dirac points can be written as H± = vF (p −
�k±) · σ , wherevF = g q

√
N/2 is analogous to the

Fermi velocity in graphene [21] and p is the canon-
ical momentum. Comparing H± with the minimal
coupling Hamiltonian vF (p − eA±) · σ , we obtain
the pseudovector potential

A± = (
A±
x , A±

y
) = �

e
(k±

x , k±
y ), (29)

which results in the following pseudomagnetic field
forN� 1:

B± = ∂ A±
y

∂x
− ∂ A±

x

∂y

= �

e

(
∂k±

y

∂x
− ∂k±

x

∂y

)
. (30)

Substituting Equations (23), (27) and (28) into
Equation (30) and after a cumbersome algebraic
calculation, we obtain

B± = ∓ 2�
Neq 2

1√
1 − 4r 2/q 2N2

= ∓ B0√
1 − r 2/R2

, (31)

which is consistent with that obtained from the
valley Hall effect in Equation (15).
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