
Ren et al. Infectious Diseases of Poverty           (2022) 11:44  
https://doi.org/10.1186/s40249-022-00967-z

RESEARCH ARTICLE

Specific urban units identified 
in tuberculosis epidemic using a geographical 
detector in Guangzhou, China
Hongyan Ren1*, Weili Lu1,2, Xueqiu Li3 and Hongcheng Shen3 

Abstract 

Background:  A remarkable drop in tuberculosis (TB) incidence has been achieved in China, although in 2019 it was 
still considered the second most communicable disease. However, TB’s spatial features and risk factors in urban areas 
remain poorly understood. This study aims to identify the spatial differentiations and potential influencing factors of 
TB in highly urbanized regions on a fine scale.

Methods:  This study included 18 socioeconomic and environmental variables in the four central districts of Guang-
zhou, China. TB case data obtained from the Guangzhou Institute of Tuberculosis Control and Prevention. Before using 
Pearson correlation and a geographical detector (GD) to identify potential influencing factors, we conducted a global 
spatial autocorrelation analysis to select an appropriate spatial scales.

Results:  Owing to its strong spatial autocorrelation (Moran’s I = 0.33, Z = 4.71), the 2 km × 2 km grid was selected as 
the spatial scale. At this level, TB incidence was closely associated with most socioeconomic variables (0.31 < r < 0.76, 
P < 0.01). Of five environmental factors, only the concentration of fine particulate matter displayed significant cor-
relation (r = 0.21, P < 0.05). Similarly, in terms of q values derived from the GD, socioeconomic variables had stronger 
explanatory abilities (0.08 < q < 0.57) for the spatial differentiation of the 2017 incidence of TB than environmental vari-
ables (0.06 < q < 0.27). Moreover, a much larger proportion (0.16 < q < 0.89) of the spatial differentiation was interpreted 
by pairwise interactions, especially those (0.60 < q < 0.89) related to the 2016 incidence of TB, officially appointed 
medical institutions, bus stops, and road density.

Conclusions:  The spatial heterogeneity of the 2017 incidence of TB in the study area was considerably influenced 
by several socioeconomic and environmental factors and their pairwise interactions on a fine scale. We suggest that 
more attention should be paid to the units with pairwise interacting factors in Guangzhou. Our study provides help-
ful clues for local authorities implementing more effective intervention measures to reduce TB incidence in China’s 
municipal areas, which are featured by both a high degree of urbanization and a high incidence of TB.
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Background
Tuberculosis (TB) is a communicable disease that was 
the leading cause of death from a single infectious 
agent worldwide until the coronavirus disease 2019 
pandemic [1]. TB is caused by the bacillus Mycobac-
terium tuberculosis, which is spread when people who 
are sick expel bacteria into the air (e.g., by coughing or 
talking), and typically attacks the lungs (pulmonary TB) 
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[1–3]. Owing to the progress made in providing essen-
tial TB services by health authorities in different coun-
tries worldwide, a large global drop in the number of 
newly diagnosed TB cases has been achieved [1]. Over 
the last 15  years, the incidence of TB has declined to 
55.55 per 100,000 inhabitants in China; nevertheless, 
it was still the second most communicable disease in 
China in 2019 [4]. Among China’s southeast coastal 
provinces, which have a relatively low TB incidence and 
better socioeconomic development than China’s central 
and western regions, Guangdong presented the highest 
incidence, which is somewhat surprising based on its 
socioeconomic situation. This puzzle has increasingly 
attracted the attention of researchers [5].

Scholars from around the world have conducted con-
siderable research into TB epidemics, including the risk 
factors affecting its transmission and the corresponding 
prevention and control measures [6–12]. These studies 
have shown that the survival, suspension, and spread of 
M. tuberculosis expelled by infected people were often 
prolonged and promoted by environmental factors (e.g., 
high temperature, appropriate humidity, and a certain 
concentration of airborne particulate matter), while the 
dispersal of its carriers (e.g., saliva and particulate mat-
ter) was inhibited by frequent precipitation and favorable 
vegetation coverage [13–15]. Meanwhile, the exposure 
and infection probability of susceptible populations, as 
well as the diagnosis and treatment of TB cases, are heav-
ily influenced by a series of social and economic factors 
(e.g., higher population density, more frequent popu-
lation flow, uneven household income, scarce medical 
resources, and a well-developed public transportation 
system) [9, 16, 17]. However, possible interactions or 
combinations among these potential influencing factors, 
the spaces where they tend to happen, and their relation-
ships with the incidence of TB remain underexplored.

Moreover, many epidemiological studies have been 
conducted to identify the dominant influencing factors 
in some endemic areas at various spatial scales, including 
the country, province, city, county or district, township 
or street, village, and even regular grid, which was mean-
ingful for health authorities designing and implementing 
targeted interventions to reduce the incidence of TB [6, 7, 
9, 12, 16–20]. However, the key factors identified as influ-
encing TB epidemics in the above investigations were dif-
ferent due to the different spatial scales used. There have 
been a number of studies on the optimal choice of scale, 
especially for regular grids [21–23]. To some extent, 
small spatial scales are often the final units where preven-
tion and control measures can produce practical effects, 
and more research into the factors influencing the inci-
dence and prevention of TB is required on a fine spatial 
scale, especially within a city or its internal areas [24, 25].

Therefore, this study was conducted to characterize 
the spatial patterns of the 2017 incidence of TB across 
the central areas of Guangzhou through spatial autocor-
relation analysis, and a geographical detector (GD) was 
used to further identify specific urban units with poten-
tial socioeconomic and environmental factors affecting 
this disease’s spread on a fine scale. The aim here was 
to provide effective guidance for relevant government 
departments designing and implementing targeted pre-
vention and control measures to reduce the incidence of 
this disease in highly urbanized regions with severe TB 
epidemics.

Methods
Study area
Guangzhou City is a typical representative of China’s 
megacities with more frequent population flows, more 
efficient and complex functional zones, more plentiful 
and fragmentized types of land uses, and more places or 
sites featured by variable microclimates [26]. The charac-
teristics of its subtropical monsoon climate are obvious: 
warm and rainy, enough light and heat, an annual aver-
age temperature of 21–23 ℃, and an average annual pre-
cipitation of 1800  mm. As the most important districts 
in Guangzhou City, the four central districts (i.e., Yuexiu, 
Haizhu, Tianhe, and Liwan) are featured by their higher 
population density, vigorous economic activities, more 
frequent population flows, comprehensive public facili-
ties, and convenient public transportation [27], by which 
we consider them as the study area (Fig. 1).

Data collection
The TB epidemic data were obtained from Guang-
zhou Institute of Tuberculosis Control and Prevention, 
and included TB cases data from 2016 and 2017 (tak-
ing the newly diagnosed TB cases reported in 2017 as 
the dependent variable and existing cases reported in 
2016 as a potential influencing factor). Relevant infor-
mation included age, sex, permanent residence address, 
and occupation, as well as time of disease onset and 
diagnosis. Permanent residence address data was used 
in conjunction with geocoding (restapi.amap.com/v3/
geocode) and coordinate deviation correction to produce 
cases data for a spatial point layer (Fig. 1) using ArcGIS 
10.3 (ESRI, Redlands, CA, USA) software, in which the 
ratio of the number of TB cases to the total population 
in 2015 was calculated on a fine scale to indicate the TB 
incidence rates across the central districts. In 2017, the 
incidence of TB in Guangzhou was relatively high, with 
a total of 14,100 newly diagnosed cases, of which 4,313 
were from the study area, accounting for 30.6% of the 
total, while this area only accounts for 4.5% of the entire 
area of Guangzhou.
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According to previous studies [2, 7, 9, 12, 15–17, 28, 
29], we gathered 18 potential factors from various data 
sources and then categorized them into two groups, 
listed in Table  1. Among 11 socioeconomic factors, the 
population-related factors included the incidence of TB 
in the previous year and the 1  km × 1  km gridded pop-
ulation density. The economic situation was analyzed 
based on the 1 km × 1 km gridded gross domestic prod-
uct (GDP) per capita, and information with respect to 
officially appointed medical institutions included the 
medical resources that have been officially certified by 
local health departments to supply local residents with 
professional health services and to facilitate reimburse-
ment of health service expenses to the patients. The road 
network, bus stops, and subway stations were selected to 
represent the condition of the public transportation sys-
tem. With regard to potential influences of land use, the 
percentages of four typical kinds of land use in the cen-
tral area—residential, commercial service, public service, 
and urban villages—were also calculated in this study. In 
addition to the above socioeconomic variables, five envi-
ronmental conditions in 2017, including monthly mean 
values of the normalized difference vegetation index and 
the fine particulate matter concentration, as well as the 
average climatic conditions (temperature, precipitation, 
and humidity) from March to June, were simultaneously 

considered as potential variables influencing the preva-
lence of TB.

For the data of officially appointed medical institu-
tions, medical points that do not serve the community 
(only designated personnel) were removed according to 
their service recipients. The officially appointed medical 
institutions were then divided into outpatient (Hosp11), 
inpatient and outpatient (Hosp12) types according to the 
range of medical institution services.

To facilitate statistical and spatial analysis, the depend-
ent variable (2017 incidence of TB) and 18 independent 
variables, with different data types (vectors) or diverse 
resolutions (raster) as given in Fig. S1 (Additional file 1), 
were summarized and aggregated into a uniform spatial 
scale by using the spatial join, zonal statistics, and field 
calculation tools in ArcGIS 10.3 software.

Spatial scale
Owing to the constant changes of administrative divi-
sions in China—in particular the districts, towns, 
streets, and villages—research units assigned by these 
divisions in relevant studies were likely to cause diffi-
culties in conducting spatiotemporal analysis. To avoid 
this issue, replacing them with some regular grids is an 
appropriate solution [21]. In particular, these spatial 
grids are gradually considered as the final units where 

Fig. 1  Illustration of study area with the spatial distribution of tuberculosis cases in 2017



Page 4 of 12Ren et al. Infectious Diseases of Poverty           (2022) 11:44 

prevention and control measures can produce practical 
effects in urban regions [24, 25].

In this study, a series of regular grids 
(1 km × 1 km–5 km × 5 km) were constructed, by which 
the optimal grid scale characterizing the spatial pattern 
of TB epidemic was selected based on Moran ’s I and 
Z-scores [32]. Moran ’s I was calculated as follows.

where n is the number of grids in the study area, xi 
and xj represent the TB incidence rates in grids i and j, 
respectively. ωij is the spatial weight. Global Moran ’s I 
is generally tested by the Z-score/P-value, and the value 
varies from − 1 to 1. A higher Moran’s I (larger Z-score 
and proper P-value) indicates greater similarity among 
attributes between adjacent spatial grids, which reveals 
that the TB epidemic is clustered in the region, whereas 
a low negative value indicates dissimilarity between 
adjacent grids and shows that the TB epidemic is dis-
cretely distributed in the region. In this study, Moran ’s 
I and Z-scores of the TB incidence rates with different 
grid sizes were used to assess the optimal grid scales of 
the regional TB epidemic. Global Moran ’s I was calcu-
lated using ArcGIS 10.3.

(1)I =
n
∑n

i=i

∑n
j=1 ωij(xi−x)(xj−x)

∑n
i=i

∑n
j=1 ωij

∑n
i=1 (xi−x)2

Statistical analysis
The geographical detector is a statistical tool (http://​
geode​tector.​cn/) for detecting spatial heterogeneity and 
its determinants [33]. In this study, the GD was used to 
detect the influence of the socioeconomic and eco-envi-
ronmental factors on the incidence of TB on an appro-
priate grid scale. The method assumes that if the selected 
factors are associated with the 2017 incidence of TB, they 
have a similar spatial distribution. This coupling is calcu-
lated as follows:

where N and σ2 are the total counts of grid units and the 
variance of the incidence of TB in 2017, respectively, and 
h = 1, 2, …, L, where L is the number of sub-areas of the 
study area divided by the detection factor X. The num-
ber of strata L might be 2–10 or more, according to prior 
knowledge or a classification algorithm. Here, q measures 
the association between the 2017 incidence of TB and the 
detection factor X, both linearly and nonlinearly, mean-
ing that the explanatory power or ability of the detec-
tion factor X for the spatial heterogeneity of the gridded 
incidence of TB in 2017 is 100% × q, where q ∈ [0,1]. Note 
that q = 0 indicates that there is no coupling between the 

(2)q = 1−
1

Nσ 2

∑L
h=1Nhσ

2
h

Table 1  Data collection and resources in this study

Data group Selected variables by previous studies Data type Source

Socioeconomic factor TB incidence rates in 2016 (Incid-2016) [9, 16] Vector Guangzhou Center for Disease Control and Prevention

Population density (Pop) in 2015 [9, 12, 15, 16] Raster (1 km) Resource and Environment Science and data center
(https://​www.​resdc.​cn/)Gross domestic product per capita (GDP) in 2015 [7, 

15]
Raster (1 km)

Officially appointed medical institutions (Hosp) [2, 
28]

Vector Guangzhou Municipal People’s Government (http://​
www.​gz.​gov.​cn/)

Density of road network (Road_net) [17] Vector Open Street Map
(http://​downl​oad.​geofa​brik.​de/)Numbers of subway stations (Subway)[17] Vector

Counts of bus stops (Bus) [17] Vector

Percentage of residential land (Residential) [16] Vector Tsinghua University
(http://​data.​ess.​tsing​hua.​edu.​cn) [30]Percentage of commercial service land (Commercial) 

[16]
Vector

Percentage of land for public services (Pub-serv) [16] Vector

Percentage of urban village area (UV) [29] Vector Our earlier study [31]

Environmental condition Monthly average of the normalized difference veg-
etation index (NDVI) [15]

Raster (1 km) MODIS (https://​modis.​gsfc.​nasa.​gov/)

Monthly average of the fine particulate matter con-
centration (PM2.5) [15]

Raster (1 km) Socioeconomic Data and Applications Center
(https://​sedac.​ciesin.​colum​bia.​edu/​data/​sets/​browse)

Average temperature from March to June (Temp) 
[13, 15]

Raster (1 km) China Meteorological Data Service Center
(http://​data.​cma.​cn/)

Average precipitation from March to June (Prec) [13, 
15]

Raster (1 km)

Average humidity from March to June (Humi) [13, 15] Raster (1 km)

http://geodetector.cn/
http://geodetector.cn/
https://www.resdc.cn/
http://www.gz.gov.cn/
http://www.gz.gov.cn/
http://download.geofabrik.de/
http://data.ess.tsinghua.edu.cn
https://modis.gsfc.nasa.gov/
https://sedac.ciesin.columbia.edu/data/sets/browse
http://data.cma.cn/
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2017 incidence of TB and X, while q = 1 indicates that 
this incidence is completely determined by X.

The interaction detection of the GD is also used to 
determine the explanatory ability of the interaction 
between any two factors for the spatial heterogeneity 
of the gridded incidence of TB in 2017. The interaction 
effects are judged by the following rules.

The enhancement effect of the interaction of variables 
is evaluated using the indicator sq with the following 
equation.

where X3 = X1 ∩ X2 indicates the interaction 
of the detection factors X1 and X2.q(X1),q(X2) , 
q(X1 ∩ X2 = X3) are the calculated q values of factorsX1

,X2 , andX3 . Minq(X1),q(X2) ), Max ( q(X1),q(X2) ) denote 
the minimum and maximum values of q corresponding 
to X1 andX2 . The larger sq indicates that the greater the 
enhancement in the ability to explain the spatial heter-
ogeneity of TB incidence when the two factors interact.

Results
Epidemiological characteristics
In 2017, 4,313 newly diagnosed TB cases were reported 
in Yuexiu, Tianhe, Haizhu, and Liwan, where the case 
density was 13.29 cases/km2, compared to only 1.95 
cases/km2 in the whole city of Guangzhou. According 
to the proportion of TB patients’ occupation, age, and 
gender in the study area (Table 2), more than 72% of the 
total TB cases were reported among those with occupa-
tions of household/unemployed (33.1%), retired (23.9%), 
and commercial services (15.1%). Among the four age 
groups, the 19–45-year-old population accounted for the 
highest proportion, and the 0–18-year-old population 
had the lowest. The ratio of the number of male to female 
cases was about 7:3, which was consistent with the entire 
city of Guangzhou. These results show that the distribu-
tion of the TB epidemic in the four central districts was 
impacted by age, gender, and occupation.

Enhance, nonlinear− : q(X1 ∩ X2 = X3) > q(X1)+ q(X2)

Independent : q(X1 ∩ X2 = X3) = q(X1)+ q(X2)

Enhance, bi− : q(X1 ∩ X2 = X3) > Max(q(X1), q(X2))

Weaken,uni− : Min(q(X1), q(X2)) < q(X1 ∩ X2 = X3) < Max(q(X1), q(X2))

Weaken, nonlinear : q(X1 ∩ X2 = X3) < Min(q(X1), q(X2))

(3)sq =
q(X3)−Max(q(X1),q(X2))

Max(q(X1),q(X2))
∗ 100%

In addition to the above epidemiological character-
istics, which were similar to those of the whole city of 
Guangzhou, several unique characteristics were also 
observed. The number of TB patients over 60  years old 
and the number of patients with the occupation of house-
hold/unemployed accounted for almost one-third of 
cases in the whole city. Meanwhile, about 40% of either 
the student or the cadre (and office clerk) TB cases in 
this city were reported within the four districts. Among 
the TB cases in the business and catering service (1,286 
cases) of Guangzhou, more than half were located in the 
central districts (714 cases). In addition, the proportion 
of female cases in the central districts (31.0%) was slightly 

higher than the level of the whole city of Guangzhou 
(29.3%), while the proportion of male cases was slightly 
lower (69.0%). These analyses indicated that the incident 
of TB in the study area shared some features of the inci-
dence of TB in the whole city, but also possessed its own 
characteristics.

According to the Moran’s I values derived from our 
global spatial autocorrelation analysis (Table  3), the 
2017 incidence of TB in the central area was clearly 
spatially differentiated at various grid scales ranging 
from 1  km × 1  km to 5  km × 5  km. Among these, the 
2 km × 2 km grid possessed the best ability to character-
ize the spatial distribution of the 2017 incidence of TB in 
the study area. Thus, the analyses that follow were con-
ducted at this level.

Individual effects of selected variables
The spatial distributions of 18 variables included in this 
study were clearly featured on the 2 km × 2 km grid scale 
(Fig. 2). Meanwhile, the grids with a high incidence of TB 
in 2017 were surrounded by several grids that had expe-
rienced a relatively high incidence of TB in 2016, had 
more bus stops or subway stations, had more officially 
appointed medical institutions, had a higher population 
density, had a higher PM2.5 concentration, and had lower 
NDVIs (Fig. 2). These results indicate that the spatial pat-
terns of the gridded 2017 incidence of TB are likely asso-
ciated with those of the 18 selected factors.

Meanwhile, the gridded incidence of TB in 2017 was 
closely associated with the majority of independent vari-
ables (Table 4). Among them, most of the socioeconomic 
factors presented significant positive relationships with 
this epidemic (0.37 < r < 0.76, P < 0.001), except for UV, 
GDP, and Pub-serv. In comparison with these socioeco-
nomic factors, only one environmental variable (PM2.5 
concentration) was closely correlated with the gridded 
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incidence of TB in 2017 (r < 0.21, P < 0.001). As a whole, 
the 2017 incidence of TB in the four districts of Guang-
zhou tended to be more heavily affected by socioeco-
nomic factors than by environmental conditions.

In addition, the explanatory ability of each influenc-
ing factor, in terms of q-values as given in Table  4, was 
acquired using the GD. Among them, the majority of 
socioeconomic variables, excluding UV (q1 = 0.08, 
P > 0.10) and Pub-serv (q1 = 0.02, P > 0.10), possessed 

powerful explanatory abilities (0.11 < q < 0.57, P < 0.10) 
for the spatial differentiation of the gridded incidence of 
TB in 2017. In particular, three socioeconomic factors 
(i.e., the 2016 incidence of TB, the counts of officially 
appointed medical institutions, and the number of bus 
stops) accounted for about 44% of the spatial heteroge-
neity of the 2017 incidence of TB across the four central 
districts. In comparison, the environmental factors (e.g., 
the monthly averages of temperature, precipitation, and 
humidity) presented relatively lower explanatory abili-
ties (0.10 < q < 0.27, P < 0.10), even though they were not 
closely associated with the 2017 incidence of TB. These 
results further illustrate that socioeconomic factors had 
greater impacts than environmental factors on the spatial 
heterogeneity of the gridded incidence of TB in 2017 in 
the central regions.

Influences of pairwise interactions
According to the q3 values varying from 0.16 to 0.89 
(the lower left half in Fig.  3), the 153 pairwise interac-
tions between the 18 individual variables presented 

Table 2  The age, and occupation distributions of tuberculosis cases in the four central districts

Among the occupations, other occupations include teachers, fishermen, herders, etc., with less than 100 cases in the whole Guangzhou city. † Means the number of 
cases with this attribute as a percentage of the total number of cases in the study area. ‡ Represents the proportion of cases in the study area to the number of cases 
in the corresponding occupation or age group in Guangzhou. 30.6* Means the number of cases in the study area as a percentage of the total number of cases in the 
Guangzhou city

Occupation Guangzhou City Four central region

No. of cases Proportion, %† No. of cases Proportion, %† Proportion, %‡

Household and unem-
ployment

4,176 29.6 1,428 33.1 34.2

Farmer 2,322 16.5 98 2.3 4.2

Retired 1,675 11.9 1,030 23.9 61.5

Worker 1,333 9.5 276 6.4 20.7

Business service 1,155 8.2 652 15.1 56.5

Unknown 1,122 8.0 182 4.2 16.2

Labor 627 4.4 26 0.6 4.2

Others 822 5.8 242 5.6 29.4

Student 491 3.5 212 4.9 43.2

Cadre 246 1.7 105 2.4 42.7

Catering service 131 0.9 62 1.4 47.3

14,100 100.0 4,313 100.0 30.6*
Age, years

0–18 380 2.7 125 2.9 32.9

19–45 6,751 47.9 1,933 44.8 28.6

46–60 3,519 25.0 1,066 24.7 30.3

 > 60 3,450 24.4 1,189 27.6 34.5

14,100 100.0 4,313 100.0 30.6*
Gender

Male 9,967 70.7 2,976 69.0 29.9

Female 4,133 29.3 1,337 31.0 32.4

1,4100 100.0 4,313 100.0 30.6*

Table 3  Global Moran’s I value of tuberculosis incidence at 
various grids in the study area

P-value < 0.01 or |Z-value > 2.58, P-value < 0.05 or |Z-value| >1.96 and 
P-value < 0.1 or |Z-value| > 1.65 indicates this value is significant at the level of 
0.01, 0.05, and 0.10

Grid scale 1 km 2 km 3 km 4 km 5 km

Moran’ I 0.25 0.33 0.26 0.00 0.31

Z-score 6.70 4.71 2.90 0.30 2.31

P-value 0.00 0.00 0.00 0.77 0.02
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much stronger abilities of interpreting the spatial differ-
entiations of the gridded incidence of TB in 2017 than 
those of the 18 individuals alone (the diagonal grids 
from the left top to the right bottom in Fig. 3), resulting 
in obvious improvements termed by the sq values rang-
ing from 7.3% to 311.6% (the upper right half in Fig. 3). 
Then, the 153 pairwise interactions could be accordingly 
divided into three groups: 68 pairs (sq < 50%), 49 pairs 
(50% < sq < 100%), and 36 pairs (sq > 100%), among which 
about 55.6% of the total pairs showed notable enhance-
ments (sq > 50%). These results displayed that the pair-
wise interactions between selected potential influencing 
factors possessed much stronger explanatory abilities for 
the spatial differentiation of the gridded incidence of TB 
in 2017.

Furthermore, 153 pairwise interactions, in terms 
of the values of q3 and Maximum (q1, q2), were fur-
ther classified into five groups (by q3 values) and three 
grades (by maximum values), yielding nine subgroups 
as given in Table 5. Among the 45 pairs within the first 
grade of Maximum (q1, q2), the majority (40 pairs, about 
88.9%) presented moderately increased explanatory 
abilities from the level of below 0.2 to a slightly higher 
one (0.2 < q3 < 0.4). Meanwhile, there were also larger 

proportions within Grade 1 (29 pairs, 63.0%) and Grade 
2 (31 pairs, 50.0%) observed for their moderate enhance-
ments of explanatory abilities from 0.2–0.4 and 0.4–0.6 
to 0.4–0.6 and 0.6–0.8, respectively. In other words, the 
explanatory abilities of potential factors were more likely 
to be moderately enhanced to higher levels during the 
pairwise interaction.

Discussion
Using the GD and other spatial analysis tools, a series 
of potential influencing factors—and in particular their 
pairwise interactions—were clearly identified for the spa-
tial differentiation of the gridded incidence of TB in 2017 
in the four central districts of Guangzhou, from which 
several notable findings were obtained. This study pro-
vides useful clues for local authorities designing targeted 
intervention measures to control this disease in Guang-
zhou and similar municipal regions of China.

Occupational difference of the cases was an obvious 
characteristic of the 2017 incidence of TB. It has been 
reported that farmers and workers accounted for the 
largest proportion of TB cases in some regions of China 
(e.g., north-east Yunnan Province and Xi’an City) [34–
36]. On the contrary, these occupations did not rank first 

Fig. 2  Spatial distribution of dependent variable (a) and included 18 independent variables (b–q) in this study. Due to the variable Hosp is equal 
to Hosp11 + Hosp12, it is not repeatedly shown here. The Map Content Approval Number: GS(2019)1822. ~ means greater than or equal to the 
previous number and less than or equal to the next number. Incid-2017 TB incidence in 2017, Incid-2016 TB incidence in 2016, Pop population 
density, GDP Gross National Product per capita, Hosp counts of officially appointed medical institutions, Hosp11 outpatient hospitals of the officially 
appointed medical institutions, Hosp12 inpatient and outpatient hospitals of the officially appointed medical institutions, Road_net road network 
density, Subway counts of subway stations, Bus counts of bus stops, Residential percentage of residential land area, Commercial percentage of 
commercial service land, Pub-serv percentage of land for public services, UV percentage of urban village area, NDVI annual monthly average 
normalized differential vegetation index, PM2.5 annual monthly average PM2.5 concentration, Temp average temperature from March to June, Prec 
average precipitation from March to June, Humi average humidity from March to June
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in some highly urbanized regions (e.g., Guangzhou and 
Foshan), while other occupations (i.e., household and 
unemployed) were relatively common [37, 38], which 
was also observed in the central districts of Guangzhou 
for patients occupied with the household or unemployed 
(33.1%), the retired population (23.9%), and patients 
working in the business service (15.1%). However, the 
TB cases in the study area were distinguishingly featured 
by their higher percentages of retired patients (61.5%), 
patients working in business (56.5%) or the catering ser-
vice (47.3%), students (43.2%), and people working for 
the cadre (42.7%) in the corresponding occupations of 
the entire city, which may be attributed to their regional 
functions (e.g., residential, commercial, educational, and 
service) [8, 27]. Meanwhile, the study area was also char-
acterized by its slightly higher percentages of TB cases 
in the > 60-year-old group (34.5%) across the entire city, 
due to the increasingly aging population [39, 40]. It can 
thus be seen that the TB cases in the study area possessed 

their own unique epidemiological characteristics in addi-
tion to those shared with cases across the entire city. 
Accordingly, these TB epidemic features should be con-
sidered to design regional appropriate intervention meas-
ures (e.g., adequate propaganda and education for these 
specific populations) to control this disease across the 
four central districts.

Previous studies have already pointed out that the 
dominant influencing factors on the distribution of infec-
tious diseases tend to be different due to the varying 
research units [41, 42]. In our study, the 2 km × 2 km grid 
was chosen as the appropriate spatial scale on which the 
gridded TB incidence was spatially clustered, especially 
in the western part of Tianhe District and the junction 
area between the Haizhu, Liwan, and Yuexiu districts, 
owing to their grids having higher incidence. Moreover, 
the spatial relationship between the gridded TB inci-
dence and most of the selected factors was also easily 
observed, so that the potential influences on the spatial 
distribution of the 2017 incidence of TB were sufficiently 
detected to identify the specific relevant urban units in 
this study area. The choice of an appropriate spatial scale 
is essential for identifying the spatial distribution of the 
incidence of TB and its influencing factors in the target 
region.

Local TB incidence is often determined by socioeco-
nomic factors, such as the population at risk of spreading 
this disease, the density and mobility of the population, 
the transportation system, economic status of the region, 
and the medical service level on fine scales [7, 12, 16, 17]. 
Similar findings were obtained in our study: three socio-
economic variables (the 2016 incidence of TB, the counts 
of officially appointed medical institutions, and the num-
ber of bus stops) posed relatively large impacts on the 
spatial differentiation of the 2017 incidence of TB across 
the central region of Guangzhou. There was a four-fold 
increase in transmission risk from some TB patients to 
their close contacts, causing there to be a high exposure 
of the susceptible population [9], which may be a reason-
able explanation for the strong effects of the 2016 inci-
dence of TB. Another possible interpretation is that the 
recurrence of previous TB cases after treatment due to 
the increasing drug resistance of M. tuberculosis was very 
likely to increase the risk of transmission of TB in the 
regions with high incidence rates in the previous year [43, 
44]. As far as the count of officially appointed medical 
institutions is concerned, its heavy influence on the TB 
epidemic was probably correlated with medical institu-
tions being representative places where various patients 
aggregate to ask for health services, including potential 
TB patients and susceptible people with low immunity 
[28]. In addition, the number of bus stops was another 
non-negligible influencing factor for the TB epidemic 

Table 4  Correlation coefficients between tuberculosis incidence 
and variables and the q-values derived from geographical 
detector analysis

r is the Pearson correlation coefficient. ***, **, and * indicates this value is 
significant at the level of 0.01, 0.05, and 0.10. Incid-2016 TB incidence in 2016, 
Pop population density, GDP gross national product per capita, Hosp counts 
of officially appointed medical institutions, Hosp11 outpatient hospitals of 
the officially appointed medical institutions; Hosp12 inpatient and outpatient 
hospitals of the officially appointed medical institutions, Road_net road network 
density, Subway counts of subway stations, Bus counts of bus stops, Residential 
percentage of residential land area, Commercial percentage of commercial 
service land, Pub-serv percentage of land for public services, UV percentage 
of urban village area, NDVI annual monthly average normalized differential 
vegetation index, PM2.5 annual monthly average PM2.5 concentration, Temp 
average temperature from March to June, Prec average precipitation from March 
to June, Humi average humidity from March to June

Variable type Variable name r q values

Socioeconomic variables Incid-2016 0.76*** 0.57***

Hosp 0.67*** 0.45***

Hosp11 0.65*** 0.49***

Hosp12 0.54*** 0.38***

Bus 0.69*** 0.44***

Road-net 0.47*** 0.26**

Pop 0.31*** 0.23***

Subway 0.42*** 0.19**

Commercial 0.37*** 0.16*

Residential 0.37*** 0.14**

GDP 0.16 0.11*

UV 0.17* 0.08

Pub-serv − 0.01 0.02

Environmental variables Temp 0.01 0.27***

Prec 0.06 0.15***

Humi − 0.07 0.10*

PM2.5 0.21** 0.08

NDVI − 0.11 0.06
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Fig. 3  Illustration of the q3 (the lower left half ) and sq (the higher right half ) values for the pairwise interactions among the selected factors. 
Incid-2016 TB incidence in 2016, Pop population density, GDP Gross National Product per capita, Hosp Counts of officially appointed medical 
institutions, Hosp11 outpatient hospitals of the officially appointed medical institutions, Hosp12 inpatient and outpatient hospitals of the officially 
appointed medical institutions, Road_net Road network density, Subway Counts of subway stations, Bus Counts of bus stops, Residential Percentage 
of residential land area, Commercial Percentage of commercial service land, Pub-serv Percentage of land for public services, UV Percentage of urban 
village area, NDVI Annual monthly average normalized differential vegetation index, PM2.5 Annual monthly average PM2.5 concentration, Temp 
Average temperature from March to June, Prec Average precipitation from March to June, Humi Average humidity from March to June

Table 5  The numbers and sq values of 153 pairwise interactions in the nine subgroups

The q3 groups: below 0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8, and beyond 0.8. The Maximum (q1, q2) grades: below 0.2, 0.2–0.4, and 0.4–0.6. \means that the group has no data

Group 1 Group 2 Group 3 Group 4 Group 5

Grade 1 Counts of pairs 1 40 4 \ \ 45

sq (%) 159.7 49.3–283.9 159.1–311.6 \ \ 49.3–311.6

Grade 2 Counts of pairs \ 15 29 2 \ 46

sq(%) \ 21.4–66.1 17.3–121.2 67.0—145.0 \ 21.4–145.0

Grade 3 Counts of pairs \ \ 21 31 10 62

sq(%) \ \ 9.5–31.7 7.3–65.1 42.9–57.7 7.3–65.1

1 55 54 33 10 153
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because both the contact probability among individuals 
and the population mobility tended to be increased by 
a convenient public transportation system [17]. In gen-
eral, the potential variables included in this study could 
reasonably be the dominant factors influencing the TB 
epidemic in the study area. Therefore, we cautiously sug-
gest that: (i) the treatment of current TB cases, together 
with more effective methods dealing with the drug resist-
ance, needs to be considered first to reduce their poten-
tial impacts on the incidence of TB during the next year; 
and (ii) more resources should be rationally allocated to 
reduce hospital infections and reinforce the propaganda 
and education for the individuals who often visit the hos-
pital or take the bus.

In comparison to the individual variables, their explan-
atory abilities were strongly enhanced by their pairwise 
interactions [45, 46]. Rasam et al. and Ge et al. demon-
strated that the interactions between public transporta-
tion condition, population density, and urban functional 
zones had much higher explanatory abilities for the TB 
epidemic’s spatial differentiations than each individual 
factor [16, 17]. Our study obtained similar findings; the 
individual explanatory abilities for the spatial differen-
tiation of the incidence of TB in 2017 across the central 
region of Guangzhou were remarkably enhanced because 
of the pairwise interactions. In particular, the contribu-
tions of relatively weaker variables (q < 0.2) had been 
significantly enhanced while interacting with bus stops, 
officially appointed hospitals (i.e., Hosp, Hosp11, and 
Hosp12), and the 2016 incidence of TB. Among these 
individual factors, UV, termed for the widely distributed 
units with crowded population in the low buildings clus-
tered in the study area [29], is a typical urban unit impact-
ing the transmission of M. tuberculosis and TB infection 
[3, 47]. In general, the pairwise interactions made great 
contributions for interpreting the spatial differentia-
tion of the 2017 incidence of TB across the four central 
districts. We strongly recommend that the regions with 
relatively weaker factors should be considered as targets 
in the prevention and control system, and that compre-
hensive intervention measures ought to be meticulously 
implemented in the regions with these paired factors in 
order to control TB in Guangzhou.

A few limitations should be mentioned here. First, 
although public transportation defined by bus stops and 
subway stations was included in this study, population 
mobility was not adequately considered due to the dif-
ficulty of collecting information about population flows, 
which might be addressed in the future through obtain-
ing and processing either cell phone data or public trans-
portation smart cards. Second, owing to the difficulty of 
collecting detailed population data with age structure, 
age-standardized incidence data were not calculated 

at the gridded scales, which could be possibly resolved 
through collecting detailed enough population data from 
the community- and building-based census data. Third, 
some potential variables related to health services (e.g., 
constant TB screening for community residents, house-
hold surveys, supervision and direction of anti-TB drugs, 
and follow-up visits for TB patients) supplied by multi-
level medical institutions (i.e., township, street, village, 
and even community level) were not included because 
of the difficulty of directly calculating the gridded health 
services’ disparities in this study, which may be resolved 
in the future through quantifying health service sup-
plies from the perspective of TB patients at various grid-
ded levels because these variables have important effects 
on this disease. Finally, the TB case data over 10-year 
or longer periods should be obtained in the future so as 
to further consolidate and extend the current findings, 
which are only based on one year’s data.

Conclusions
A series of socioeconomic and environmental factors, 
together with their pairwise interactions, were identi-
fied as specific urban elements posing important impacts 
on the spatial differentiations of the gridded TB inci-
dence across the four central districts of Guangzhou. We 
accordingly suggest that more attention should be paid to 
the zones with pairwise interactions of these influencing 
factors in Guangzhou. This study provides meaningful 
clues for local health authorities designing and imple-
menting effective targeted intervention measures to con-
trol this disease in China’s municipal areas, defined by 
both high urbanization and severe TB epidemics.
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