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In peach orchards, birds severely damage flowers during blossom season, decreasing the fruit yield potential. However, the wild
peach species Prunus mira shows intraspecific variations of bird damage, indicating that some of the wild trees have developed
strategies to avert bird foraging. Motivated by this observation, we formulated the present study to identify the potential flower
metabolites mediating the bird’s selective feeding behavior in P. mira flowers. The birds’ preferred (FG) and avoided (BFT) flowers
were collected from wild P. mira trees at three different locations, and their metabolite contents were detected, quantified, and
compared. The widely-targeted metabolomics approach was employed to detect a diverse set of 603 compounds, predominantly,
organic acids, amino acid derivatives, nucleotide and its derivatives, and flavones. By quantitatively comparing the metabolite
contents between FG and BFT, three candidate metabolites, including Eriodictiol 6-C-hexoside 8-C-hexoside-O-hexoside, Luteolin
O-hexosyl-O-hexosyl-O-hexoside, and Salvianolic acid A, were differentially accumulated and showed the same pattern across the
three sampling locations. Distinctly, Salvianolic acid A was abundantly accumulated in FG but absent in BFT, implying that it may
be the potential metabolite attracting birds in some P. mira flowers. Overall, this study sheds light on the diversity of the floral
metabolome in P. mira and suggests that the bird’s selective feeding behavior may be mediated by variations in floral metabolite

contents.

1. Introduction

Bird damage is a persistent concern faced by fruit-growers,
inflicting significant economic losses. Birds cause losses to
horticulture by damaging or removing shoots, stems, foliage,
flowers, and buds or fruits. In Australia, total bird damage
to horticultural production was estimated at nearly $300
million annually [1]. Aggregate bird damage in five crops
and states in the United States was estimated at $189 million
[2]. More recently, Elser et al. [3] demonstrated that sweet
cherry production of the United States decreased by about
$185 to $238 million without the use of bird management.
Unfortunately, the available techniques for bird damage
management are mostly ineffective [2, 4].

Peach (Prunus persica (L.) Batsch) is the third most
important of deciduous fruit trees worldwide and represents a

model plant of Rosaceae family [5]. Despite its high economic
value, peach like other fruit trees is significantly damaged by
birds, particularly during the blossom season. Various types
of birds feed on the flower’s petals, which systematically drop
off the tree together with the ovary, decreasing the fruit yield
potential [1]. Unfortunately, a specific study has not yet been
designed to evaluate the cost of this long-standing problem
in peach orchards [6]. During our field visits, we observed
that, unlike the cultivated peach, the wild peach trees (Prunus
mira Koehne) display intraspecific variations of bird’s visits
and in the damage levels. Turdus ruficollis is the main bird
species which damages Prunus mira flowers. P. mira is widely
distributed along the Yarlung Zangbo Grand Canyon and
its tributary basins in the Tibet plateau [7]. In fact, in very
closely located wild trees, birds show preferences to some
trees and only feed on flowers of these trees although there
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TaBLE I: Classification of the 603 detected metabolites into major classes.
Class Number of compounds Class Number of compounds
Organic acids 68 Anthocyanins 13
Amino acid derivatives 53 Lipids_Glycerolipids 13
Nucleotide and its derivates 52 Vitamins 12
Flavone 42 Catechin derivatives 1
Flavonol 35 Phenolamides 10
Lipids_Glycerophospholipids 32 Isoflavone 10
Hydroxycinnamoyl derivatives 28 Indole derivatives 7
Others 27 Alcohols and polyols 7
Amino acids 26 Cholines 5
Flavone C-glycosides 24 Tryptamine derivatives 5
Quinate and its derivatives 22 Proanthocyanidins 5
Coumarins 18 Nicotinic acid derivatives 3
Carbohydrates 18 Alkaloids 3
Lipids_Fatty acids 17 Pyridine derivatives 2
Flavanone 17 Terpenoids 1
Benzoic acid derivatives 16 Flavonolignan 1

are no apparent differences in the flowers’ phenotypes. This
phenomenon, which we called “selective feeding behavior,”
was observed in several locations. We inferred that the
composition of the bird-preferred flowers may differ from
the avoided ones. P. mira is itself an important economic
fruit tree with medicinal values and has been proposed as
an ancestral species of many cultivated peach species [8].
During domestication, crops typically experience population
bottlenecks mainly due to an extensive artificial selection
for improved quality and local adaptation [9]. Therefore,
it is possible that wild peach species such as P. mira may
have developed strategies to discourage bird’s foraging, a
mechanism absent in the cultivated peach due to the decline
in diversity [10]. Similar observations were reported by
Fonceka et al. [11] who demonstrated that large portions of
useful alleles controlling important agronomic traits in wild
species were left behind during peanut domestication.

Plants synthesize a staggering array of chemically diverse
secondary metabolites, which have distinct biological func-
tions, including immunity, pollinator attraction, defense
against herbivory, etc. [12]. The inter- and intraspecific varia-
tions in the production of specialized metabolites have been
widely observed and found to be largely genetically controlled
[13]. In this study, we investigated the major discrepancies in
the metabolic profiles of the preferred and avoided flowers
from wild P. mira trees at three different locations in order
to identify the potential metabolites mediating the bird’s
selective feeding behavior.

2. Results

2.1. Overview of the Metabolite Profiling in Prunus mira
Flowers. Two types of Prunus mira flower samples, including
the preferred (FG) and avoided (BFT) flowers, were collected
at three different locations (“J,” “N,” and “Y”) (Figure 1).
With three biological replicates, a total of 18 samples
were used to portray the metabolic profiles employing the

widely-targeted metabolomics approach. We successfully
detected for the first time 603 compounds in P. mira flowers
(Table S1). The metabolites detected in this work were diverse
and rich and could be classified into 32 classes, predomi-
nantly, organic acids, amino acid derivatives, nucleotide and
its derivatives, and flavone (Table 1). Very few compounds
from the classes of pyridine derivatives, terpenoids, and
flavonolignan were present in P. mira flowers. Based on the
metabolite quantification, the samples were clustered using
a heatmap hierarchical clustering approach. As shown in
Figure 2, all the biological replicates were grouped together,
indicating a good correlation between replicates and the high
reliability of our data. The heatmap also showed that, while
some metabolites were strongly accumulated in the flowers,
others exist only in traces. In addition, contrasting patterns
of metabolite content could be observed among FG and
BFT, implying that the bird’s selective feeding on flowers
may be underpinned by the differential metabolite contents.
Finally, the heatmap failed to group BFT and FG samples
into two separate clades (Figure 2), suggesting that very few
metabolites will likely distinguish the preferred and avoided
flowers in P. mira.

2.2. Identifying the Differentially Accumulated Metabolites
between FG and BFT. We suspected that the variations in
the metabolite contents of BFT and FG might be the leading
reason of the bird’s selective feeding on P mira flowers.
Therefore, we compared the flower metabolite profiles among
FG and BFT samples. Metabolites with variable importance
in projection (VIP) > 1 and fold change > 2 or fold change <
0.5 were considered as differentially accumulated metabolites
(DAM). At “J” location, 75 DAMs were identified for J-
FG_vs_]-BFT, including 30 downaccumulated and 45 upac-
cumulated compounds in FG (Figure 3(a)). At “N” location, a
similar number of DAMs (85) were detected for N-FG_vs_N-
BFT, with 48 downaccumulated and 37 upaccumulated
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FIGURE 1: Photos of the Prunus mira flowers. (a) The bird-preferred flowers (FG) on the tree, (b) Turdus ruficollis feeding on P. mira flowers,
(c) a high number of FG fed by birds dropped off the tree, (d) the avoided flowers (BFT) by birds on the tree, (e) wind which causes BFT
flowers to drop off the tree but the ovary is intact, and (f) FG flowers with destroyed ovary.
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FIGURE 2: Heatmap clustering showing correlation among Prunus mira flower samples based on global metabolic profiles. Samples represent
the preferred (FG) and avoided (BFT) flowers by birds collected at the J, N, and Y locations. Data represent the log2 fold change of the

metabolite content.
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F1GURE 3: Identification of the potential metabolites associated with the bird’s selective feeding behavior in Prunus mira flowers. (a) Volcano-
plot showing the differentially accumulated metabolites (DAMs) between the preferred (FG) and avoided (BFT) flowers by birds at the ]
location (J-FG_vs_]J-BFT), (b) volcano-plot showing the DAMs between the preferred (FG) and avoided (BFT) flowers by birds at the N
location (N-FG_vs_N-BFT), (c) volcano-plot showing the DAMs between the preferred (FG) and avoided (BFT) flowers by birds at the
Y location (Y-FG_vs_Y-BFT), (d) Venn diagram depicting the shared and unique DAMs between the three sampling locations, and (e)
Salvianolic acid A content (pme2444) in FG and BFT samples collected at the three locations. DAMs were identified based on the variable

importance in projection > 1 and fold change > 2 or fold change < 0.5.

compounds in FG (Figure 3(b)). A conspicuously higher
number of DAMs (121) were found at “Y” location for Y-
FG_vs_Y-BFT, including 54 downaccumulated and 67 upac-
cumulated metabolites in FG (Figure 3(c)). Next, we com-
pared the DAMs from the three locations and, interestingly,
we found that seven metabolites were constitutively and

differentially accumulated between FG and BFT, inde-
pendently of the locations (Figure 3(d)). Of these seven
metabolites, only three metabolites (pmb2954, pme2444,
and pmb0619) conserved the same accumulation patterns
between FG and BFT across the three locations and, there-
fore, fit in with our conceptual framework (see Materials
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TABLE 2: List of the seven metabolites differentially expressed between FG and BFT and conserved across the three sampling locations (J, N,

and Y).
D Name Class Log2 Fold Change
JEG-JBFT YFG-YBFT NFG-NBFT
pmb0848 LysoPC 16:1 (2n isomer) Lipids_Glycerophospholipids L1 2.79 -1.39
pmb0863 LysoPC 16:2 (2n isomer) Lipids_Glycerophospholipids 1.58 2.87 -1.53
pmb0865 LysoPC 18:3 (2n isomer) Lipids_Glycerophospholipids 1.32 1.76 -1.02
pmb2228 LysoPC 19:0 Lipids_Glycerophospholipids 1.23 1.95 -1.60
pmb2954 Luteolin O-hexosyl-O-hexosyl-O-hexoside Flavone 2.30 115 1.24
pme2444 Salvianolic acid A Other -Infx -Infx -Infx
pmb0619  Eriodictiol 6-C-hexoside 8-C-hexoside-O-hexoside Flavone C-glycosides 2.41 1.03 1.29
* The metabolite was not detected in the BFT samples.
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FIGURE 4: Schematic representation of the conceptual framework used in this study. Two scenarios were analyzed, in which the potential
metabolites could be either present or absent in the preferred (FG) and avoided (BFT) flowers by birds. In either scenario, the same pattern
for the metabolite differential accumulation between FG and BFT should be conserved across the three sampling locations (N, J, and Y).

and Methods, Figure 4, Table 2). These metabolites could be
potentially associated with the bird’s selective feeding on P.
mira flowers. Distinctly, the metabolite pme2444 strongly fits
in well with our conceptual framework. Pme2444 (Salvianolic
acid A) was highly accumulated in FG but absent in BFT in all
the three locations, corresponding to scenario 1 (Figure 3(e)).

3. Discussion

The destruction of flowers and buds by birds on fruit trees is a
long-standing source of complaint by fruit-growers [14]. This
leads to severe yield loss and economic damage for producers
across the globe [2]. Observations by Bray et al. [15] denoted
that birds concentrate their feeding activity in a particular
area and ignore others. Further studies have also observed
the selective feeding behavior of birds in agricultural crops

(16, 17], suggesting the existence of some underlying bio-
logical factors. In fact, plants have developed different
mechanisms to reduce or avoid enemies, including specific
responses that activate different metabolic pathways, which
considerably alter their chemical and physical aspects [18].
Long-term interactions with their enemies have sculpted
plant metabolism, resulting in a natural variation in metabo-
lites that control important ecological and agronomic traits
such as resistance to pests [19].

In the particular case of peach orchards, birds signifi-
cantly damage the flowers by feeding on the petals. In contrast
to the cultivated peach, we observed that wild peach (Prunus
mira) exhibited an intraspecific variation of bird’s visit,
showing that some of the wild trees have developed strategies
to discourage bird forage. Bao et al. [8] reported a high genetic
differentiation among wild Prunus mira populations, which



could be translated into a high metabolic diversity. This was
confirmed by the great variation in the metabolite contents
of the sampled flowers from different wild trees in our
study. By comparing the metabolite profiles of the preferred
and avoided flowers, we pinpointed three candidate com-
pounds (Eriodictiol 6-C-hexoside 8-C-hexoside-O-hexoside,
Luteolin O-hexosyl-O-hexosyl-O-hexoside, and Salvianolic
acid A), which were differentially accumulated in the two
types of flowers, independently of the sampling locations.
We speculate that the variation of flower metabolites among
P. mira trees could be an adaptation mechanism to avoid
bird’s damage. Both Eriodictiol and Luteolin are flavonoid
related compounds and were found significantly accumulated
in the avoided flower samples. These compounds have been
established as antioxidant and anti-inflammatory agents [20-
22]. Although flavonoid metabolites are known to be involved
in plant defense [23], whether Eriodictiol and Luteolin act
as deterrent agents in P. mira flowers against birds is still
unknown and will require further investigations. Conversely,
Salvianolic acid A was strongly accumulated in the preferred
flowers but absent in the avoided ones, implying that birds
might be principally attracted to P. mira flower-containing
Salvianolic acid A. Hence, it is tempting to speculate that the
impaired production of Salvianolic acid A in BFT could be a
defense strategy to avoid bird’s visits. Recent lines of evidence
indicated that Salvianolic acid A is connected with the MAPK
pathways and attenuates oxidative stress in human [24, 25],
but how and why this molecule may attract birds is still
unclear. The present study is the first attempt to clarify the
bird’s selective feeding behavior in P. mira flowers. Given the
importance of the subject and the potential of our findings,
future investigations are needed. To consolidate our results,
we plan to extend the sampling area and compare the iden-
tified candidate metabolites between more P. mira trees and
also in various cultivated peach genotypes. Moreover, other
wild Prunus species will be investigated to assess whether
the phenomenon is common in the wild related species. A
deep understanding of the biological activity of these metab-
olites will help formulate sustainable strategies for a better
protection of peach orchards against bird’s flower damage.

4. Materials and Methods

4.1. Study Area and Flower Sampling. The study was conduct-
ed in the Milin County, Nyingchi City, Tibet Autonomous
Region, China (29°38'12"N latitude, 94°21'40"E longitude).
Samples were collected in March during blossom season at
three different locations, namely, “J,” “N,” and “Y”, each
separated by 15km in average. At each location, we targeted
two close wild Prunus mira trees, which have contrasting
bird’s visits. The highly visited trees by birds can be clearly
distinguished by the significant numbers of fallen flowers
containing the ovary (FG) underneath (Figures 1(a) and
1(b)). We named as BFT the flowers from the avoided
trees (Figure 1(c)). FG and BFT samples were collected
on the respective trees at the same period. The samples
were composed of the entire corolla, including the ovary.
Approximately, 10-15 flowers from three random parts of the
same tree were considered as biological replicates. In total, 18
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samples were collected, frozen immediately in liquid nitrogen
in the field, transported to the laboratory, and then stored at
—80°C until further use.

4.2. Metabolic Profiling. The sample preparation, extract
analysis, metabolite identification, and quantification were
performed at Wuhan MetWare Biotechnology Co., Ltd.
(www.metware.cn), following their standard procedures and
previously described by Yuan et al. [26].

4.3. Sample Preparation and Extraction. The frozen samples
were crushed using a mixer mill (MM 400, Retsch) with
a zirconia bead for 1.5 min at 30 Hz. About 100 mg powder
was weighted and extracted overnight at 4°C with 1ml 70%
aqueous methanol. Following centrifugation at 10,000g for
10 min, the extracts were absorbed (CNWBOND Carbon-
GCB SPE Cartridge, 250 mg, 3 ml; ANPEL, Shanghai, China,
www.anpel.com.cn/cnw) and filtrated (SCAA-104, 0.22 um
pore size; ANPEL, Shanghai, China, http://www.anpel.com
.cn/) before LC-MS analysis [27].

4.4. HPLC Conditions. The sample extracts were analyzed
using an LC-ESI-MS/MS system (HPLC, Shim-pack UFLC
SHIMADZU CBM30A system, www.shimadzu.com.cn/; MS,
Applied Biosystems 6500 Q TRAP, www.appliedbiosystems
.com.cn/). The analytical conditions were as follows: HPLC:
column, Waters ACQUITY UPLC HSS T3 CI8 (1.8 um,
2.1mm=100 mm); solvent system, water (0.04% acetic acid):
acetonitrile (0.04% acetic acid); gradient program, 100:0V/V
at 0 min, 5:95V/V at 11 min, 5:95V/V at 12 min, 95:5V/V at
12.1min, 95:5V/V at 15min; flow rate, 0.40 ml/min; tem-
perature, 40°C; injection volume: 2ul. The effluent was
alternatively connected to an ESI-triple quadrupole-linear
ion trap (Q TRAP)-MS.

4.5. ESI-Q TRAP-MS/MS. Linear ion trap (LIT) and
triple quadrupole (QQQ) scans were acquired on a triple
quadrupole-linear ion trap mass spectrometer (Q TRAP),
API 6500 Q TRAP LC/MS/MS System, equipped with an
ESI Turbo Ion-Spray interface, operating in a positive ion
mode and controlled by Analyst 1.6 software (AB Sciex).
The ESI source operation parameters were as follows: ion
source, turbo spray; source temperature 500°C; ion spray
voltage (IS) 5500 V; ion source gas I (GSI), gas II (GSII), and
curtain gas (CUR) were set at 55, 60, and 25 psi, respectively;
the collision gas (CAD) was high. Instrument tuning and
mass calibration were performed with 10 and 100 gmol/L
polypropylene glycol solutions in QQQ and LIT modes,
respectively. Based on the self-built database MetWare Data-
base (http://www.metware.cn/) and metabolite information
in public database, the materials were qualitatively analyzed
according to the secondary spectrum information and the
isotope signal was removed during the analysis. QQQ scans
were acquired as multiple reaction monitoring (MRM)
experiments with collision gas (nitrogen) set to 5psi [28].
Declustering potential (DP) and collision energy (CE) for
individual MRM transitions were done with further DP and
CE optimization [27]. A specific set of MRM transitions
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were monitored for each period according to the metabolites
eluted within this period.

4.6. Metabolite Data Analysis. Before the data analysis, qual-
ity control (QC) analysis was conducted to confirm the
reliability of the data. The QC sample was prepared by
the mixture of sample extracts and inserted into every two
samples to monitor the changes in repeated analyses. Data
matrices with the intensity of the metabolite features from the
18 samples were uploaded to the Analyst 1.6.1 software (AB
SCIEX, Ontario, Canada) for statistical analyses. The super-
vised multivariate method, partial least squares-discriminant
analysis (PLS-DA), was used to maximize the metabolome
differences between the two flower samples. The relative
importance of each metabolite to the PLS-DA model was
checked using the parameter called variable importance in
projection (VIP). Metabolites with VIP > 1 and fold change
> 2 or fold change < 0.5 were considered as differential
metabolites for group discrimination [26]. Heatmap based on
the hierarchical cluster analysis method was performed in the
R software (www.r-project.org).

4.7 Conceptual Framework. Two different types of flower
samples (BFT and FG) were collected from different trees at
three locations. Given that birds mainly prefer FG over BFT,
we postulated that the main difference between these two
samples might be related to the presence/absence pattern or at
least a large discrepancy in the quantity of one or several key
metabolites. Two scenarios are therefore possible: (1) birds
are attracted by some key flower metabolites, and, then, these
molecules should be highly accumulated in FG but absent or
only present in trace in BFT; (2) birds are repelled by some
key flower metabolites, and, then, these molecules should
be highly accumulated in BFT but absent or only present
in trace in FG (Figure 4). The flower metabolites, whose
accumulation patterns fit in with either of these two scenarios
and consistently across the three locations, were regarded as
the candidate molecules governing bird’s selective feeding on
Prunus mira flowers (Figure 4).
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