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Abstract: We studied the relationship between fiber digestion and the composition of the bacterial
community in the rumen of muskoxen at the start and the end of the annual window of plant growth
from spring to fall. Eight ruminally cannulated castrated males were fed brome hay or triticale straw
(69.6% vs. 84.6% neutral detergent fiber, respectively) that were similar in fiber content to the sedges
consumed by wild muskoxen (64.5 to 71.7% neutral detergent fiber). Muskoxen digested fiber from
both forages faster and to a greater extent when straw rather than hay was consumed. Fiber digestion
was therefore inducible by diet 4 in each season. We used 16S rRNA sequences from ruminal contents
to study how season and diet affected the bacterial community and how the latter related to fiber
digestion. We found that Bacteroidetes and Firmicutes accounted for 90% of the sequences at the level of
Phylum, which is typical for the mammal gut microbiome. Using partial least square regressions, it was
found that between 48% and 72% of the variation in fiber digestion was associated with 36–43 genera of
bacteria. The main fibrolytic bacteria typical of domestic ruminants were generally not among the most
important bacteria associated with fiber digestion in muskoxen. This reveals that muskoxen rely upon
on a large suite of bacterial genera that are largely distinct from those used by other ruminants to digest
the cell walls of plants that vary widely in both abundance and nutritional quality through the year.
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1. Introduction

In ruminant herbivores, the reticulo-rumen supports the largest microbial community in the gut,
which accounts for most of the digestion of plant dry matter (DM) and fiber by bacteria, protozoa
and fungi. The ruminal microbiome provides the host with a wide array of enzymes to degrade the
complex cell walls and the potentially toxic compounds of plants [1,2]. The composition and size
of this microbial community depends upon the physical and chemical conditions of digesta flow
and buffering provided by the host through ruminal structure, motility and secretion [3]. The host
animal and its rumen microbiome co-evolve to adapt to the challenges imposed by the diet available
in the habitats used by an animal population [4–6]. The gut microbiome is influenced by the host
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through physicochemical conditions in the gut, endogenous secretions, and intake of foods that become
substrates for microbial digestion and fermentation [3,7].

Ruminants are obliged to vary their diet with the annual cycle of temperature, light and snow
that dictates the growth of plants in temperate and Arctic regions [8]. Muskoxen (Ovibos moschatus)
consume a fibrous diet of sedges and grasses throughout their Arctic range but also include stems and
leaves of woody browse in their diet at lower latitudes [9–13]. During the long winter, forage is scarce,
and often covered by snow, which often results in fasting and mass loss of muskoxen even though
appetite and metabolic rate are reduced [14–16]. Feed consumption in the short summer and early fall
has to be rapid enough to support growth or reproduction and body mass gain for the ensuing winter.
Muskoxen have therefore evolved strong hyperphagic behavior in the late summer and early fall
when forage biomass is high. This increase in feed consumption is not only a consequence of greater
forage availability and quality. Even if fed the same batch of grass hay all year round, muskoxen
exhibited a marked increase in feed intake in the summer/fall compared to winter/spring [17–19].
In domestic ruminants, greater intake is generally associated with a decrease in digestibility because
fractional passage rate from the reticulo-rumen increases [20]; however, in muskoxen, hyperphagia
occurred without loss of digestibility, because the rate of digestion in the rumen increased for DM, C,
N and fiber fractions, while ruminal retention time was conserved as digesta fill also increased [18].
Hyperphagia was accompanied by increased concentrations of short chain fatty acids (SCFA) in
the rumen, which indicated an increase in microbial fermentation with food intake [18]. Increased
microbial activity was also supported by close regulation of pH, SCFA and osmotic concentration
of rumen fluid before and after feeding in muskoxen during autumn hyperphagia [21]. Muskoxen
therefore alter ruminal function (i.e., regulation of pH and osmolarity as well as digesta flow) to
support seasonal changes in microbial activity often associated with changes in food intake.

The ruminal environment for microbes in muskoxen is similar to that of other grazers including
domestic cattle and sheep. Ruminal structure and function favor the stratification of digesta in
muskoxen to the same extent as other grazers [22–24]. The morphology of the ruminal mucosa and the
omasum of muskoxen are also similar to other grazers. These attributes are not simply responses to
the diet but evolutionary adaptations that develop in young muskoxen before they begin consumption
of plants [25]. The evolutionary history of the muskoxen may influence the diversity of its microbes.
Muskoxen (genus Ovibos de Blainville, 1816) are most closely related to gorals (genus Nemorhaedus
Hamilton Smith, 1827) and mountain goats (genus Oreamnos Rafinesque, 1817) that inhabit alpine
areas and feed on both graminoids and woody browse [26,27]. Isolation and genetic bottlenecks in
muskoxen may have further contributed to differentiation of the microbiome [28–30]. Recent analyses
of sequences from fungal and protozoal messenger RNA from the rumen of muskoxen indicate that
the microbiome produces novel enzymes for fiber digestion that are markedly different from those of
other herbivores including domestic ruminants [31]. The composition of the bacterial community in
muskoxen feces was recently reported [32,33], but has not been previously reported for the rumen.

We studied how the composition of the bacterial community in the rumen of muskoxen was
influenced by diet and season to examine the functional response associated with fiber digestion when
muskoxen consume low- or medium-quality forage at the beginning and the end of the annual cycle of
plant growth. We hypothesized that fiber digestion would increase with the fiber content of the forage and
also increase from spring to autumn when animals typically gain mass. The objective of this study was to
identify fibrolytic microorganisms potentially important to muskoxen and compare that community to
those organisms that have been functionally important to other herbivores especially domestic ruminants.

2. Materials and Methods

2.1. Animal Trial and Feed and Fecal Sampling

The study was conducted at the Robert G. White Large Animal Research Station, Fairbanks,
AK. All procedures were approved under protocol 139821 by the Institutional Animal Care and Use
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Committee at the University of Alaska Fairbanks. We used 8 castrated muskoxen that were ruminally
cannulated several years before this study. Muskoxen were housed in individual pens and blocked
into two groups based on their initial body mass. Each group of animals was ad libitum fed triticale
(Triticosecale hexaploide) straw as a low-quality diet or brome (Bromus spp.) hay as a medium-quality
diet. All animals were supplemented with 335 g d−1 of a protein and mineral supplement (M Ration,
Alaska Pet and Garden, Anchorage, AK; 14.0% crude protein (CP), 24% Neutral Detergent Fibre (NDF),
16% Acid Detergent Fiber (ADF), 2% lignin and 2% total ash, DM basis). Animals were fed the forage
component of their diets at mid-morning and late afternoon, and the protein and mineral supplement
at mid-morning. Fresh water or snow was always available ad libitum.

Each experimental period comprised three weeks of adaptation to diets followed by one week of
measurements and sampling, which comprised the study week. After the first experimental period,
the forages were switched for the second period of the trial (i.e., cross over design). Two trials were
conducted, in the spring (April and May) and fall (August and September) of 2009. All the animals
were fed brome hay and the mineral supplement between both trials.

Muskoxen were weighed at the beginning and end of each period. Mean body mass at the
beginning of the spring trial was 268 ± 18.4 and 278 ± 27.2 kg (p = 0.56) for the hay and straw
diet groups, respectively. Mean body mass at the beginning of the fall trial were 263 ± 25.3 and
272 ± 34.9 kg (p = 0.71) in the same order. The same batches of triticale straw and brome hay were
used in the spring and fall trials. One of the animals was removed from the experiment in the fall trial
due to an infection of the horn boss.

All measurements and sampling took place during the study week before the morning feeding.
Weekly feed intake was measured in the fall by weighing the forage supplied every day during the
study week and subtracting the refusal that was left at the end of the week to calculate the average
daily intake for the study week. Feed samples were taken every day during the study week, as well
as refusal samples at the end of the week. Fresh fecal samples were obtained for determination of
digestibility. All samples of feed, refusals and feces were stored frozen for analysis.

2.2. In Situ Digestibility

Triticale straw and brome hay were ground through a 1.27 mm screen (Wiley mill, A.H. Thomas,
Philadelphia, PA, USA) for incubation within a polyester bag (50-µm pore size; Ankom Technology,
Macedon, NY, USA) to measure digestion kinetics in situ within the rumen [18,34]. Each polyester
bag contained 0.75 g (fresh mass) of each forage. Prior to incubation in the rumen, the bags and the
substrate were dried to constant mass at 55 ◦C. Bags were simultaneously inserted into the rumen
before the morning feeding of the first day of the study week and removed at 24, 36, 48, 72, 96 and
120 h. Control bags without substrate were also placed in the rumen and removed at 120 h. Digestion
bags were stored at 4 ◦C until they were rinsed with tap water for a few seconds and dried to constant
mass at 55 ◦C for subsequent analysis. Sealed dry bags without sample were weighed as controls
before and after incubation to measure mass gain of the bag. Net content of dry sample was calculated
by subtracting the dry mass of the bag before and after incubation from the gross mass.

2.3. Ruminal pH and Sampling

On days 1 and 5 of the study week, ruminal pH was measured (Oakton Instruments pHmeter,
pH6 Acorn Series, Vernon Hills, IL, USA) by inserting an electrode (Premium Gel Glass Combo Cat #
476566 electrode, Corning, NY, USA) into the rumen through a PVC tube.

On day 4 of the study week, contents from different parts of the rumen were sampled using
forceps and mixed together in a beaker. The solids were separated from the liquid fraction of the
ruminal contents using a coffee press (Bodum Inc., Triengen, Switzerland). Three to four grams of
solids were then combined with 5 mL of grinding buffer (100 mm pH 8 EDTA, 100 mm pH 8 Tris,
1.5 mm NaCl) containing 1 g L−1 of Proteinase K (Sigma, Oakville, ON, USA). The mixture of ruminal
solids and grinding buffer was then wrapped in aluminum foil and immediately frozen in liquid
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nitrogen [35]. Frozen ruminal samples were transported on dry ice to the laboratory, where they were
stored at −80 ◦C until processed.

2.4. Chemical Analysis

Samples of feed, feces and the in situ bags were dried to constant weight at 55 ◦C for 3 day to
determine DM content. Analyses of N, fiber and ash followed the procedures described in Peltier et al. [18]
and Barboza et al. [17]. Ash content was subtracted from neutral and acid detergent fiber to obtain ash-free
fractions (reported as NDF and ADF, respectively). Cellulose was calculated as the difference between
ADF and ash free-lignin, and hemicellulose as the difference between NDF and ADF [18].

2.5. Overall Tract Apparent Digestibility Calculation

Overall tract apparent digestibility was calculated using lignin as an indigestible marker [18]:

Digestibility (kg kg−1) = 1 − (
nutrient
lignin

) feces × (
nutrient
lignin

) diet−1

We obtained the nutrient to lignin ratio in the diet as the average of the nutrient to lignin ratio in
the forage (for) and in the protein and mineral supplement (suppl), weighted by their respective DM
consumptions:

(
nutrient
lignin

) diet = [(
nutrient
lignin

) for × for DMI + (
nutrient
lignin

) suppl × suppl DMI]÷ (total DMI)

We did not measure forage intake in the spring and were therefore unable to determine
digestibility in the spring.

2.6. DNA Extraction from Ruminal Solids

DNA was extracted from the solid fraction of ruminal digesta using the procedure of
Kong et al. [35]. Briefly, ruminal solids were manually ground in liquid nitrogen to a fine powder.
After combining with proteinase K (1 mg/mL; Sigma-Aldrich Canada Ltd., Oakville, ON, Canada),
the samples were further ground for 5 min in liquid nitrogen using a Retsch RM100 grinder
(Retsch GmbH, Haan, Germany) with a pre-chilled grinding chamber. The sample (15 mL) was
mixed with 1.5 mL of 20% SDS, incubated at 65 ◦C for 45 min, and then centrifuged at 19,200 g at room
temperature for 10 min. Supernatants were combined with an equal volume of a sterile 2% agarose,
poured into Petri plates and allowed to solidify.

Agarose containing DNA was cut from the Petri plates and equilibrated in TBEG buffer
(100 mL/L 5 × TBE buffer and 500 mL/L pure glycerol). Samples were stored in TBEG buffer
at 4 ◦C. DNA was isolated from the agarose using the QIAquick Gel Extraction Kit (Quiagen Inc.,
Mississauga, ON, Canada).

2.7. Sequence Analysis

DNA concentration was quantified with a Synergy HT Platereader (Fisher Scientific, Ottawa,
ON, Canada) using a Quant-it PicoGreen dsDNA Assay Kit (Invitrogen, Burlington, ON, Canada),
and sent to the Research and Testing Laboratory (Lubbock, TX, USA), where pyrosequencing was
carried out using the bTEFAP FLX massively parallel method [36]. A 100-ng DNA aliquot was used
as a template in a 50-µL PCR reaction. The 16S rRNA gene universal bacterial primers 28F [37] and
519R [38] were used to obtain a 450-bp amplicon. The rest of the pyrosequencing procedure has
been described by Dowd et al. [36]. The metadata and sequence reads are available at the European
Nucleotide Archive (http://www.ebi.ac.uk/ena) under study accession number PRJEB6760 and run
accession numbers ERS1280392-ERS1280421.

http://www.ebi.ac.uk/ena
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FASTA sequences were processed using mother v 1.12.3 [39]. Sequences were trimmed to
a maximum of 450 bases. We removed ambiguous sequences with more than 8 homopolymers
or less than 150 bp. The sequences were then aligned against the Silva v 108 REF database [40],
which was modified to contain a greater representation of high quality rumen-originating sequences.
The sequences were screened and filtered to overlap the same sequence space and then clustered to
group sequences that differed by only 2 base pairs using the pre.cluster command. Chimeric sequences
were then removed using chimera.slayer when tested against the silva.gold database. Chao and
Shannon indexes of diversity were calculated by the software.

The resulting FASTA file for each sample was classified using mother against a custom Silva_108
REF database, modified to contain high-quality rumen sequences and annotated to include node
designations for uncultured clusters. These clusters were named after the clone first submitted to
Genbank in each cluster. Percentages of sequences in each sample at each classification level were
calculated using a custom perl summation script.

Sequences were classified according to the number of shared branching points. We used a
maximum of 7 branching points to assign each sequence to the lowest taxonomic level from phylum
to species. Almost all groups in higher order clades (e.g., phylum) in the database corresponded
to well-identified taxonomic groups. However, lower-order clades (e.g., species) included a greater
proportion of unclassified groups.

This initial database of bacterial sequences was censored to remove rare sequences (i.e., present in
one or two samples) that biased subsequent analyses of diversity and function (i.e., fiber digestion
kinetics). The sequence database was trimmed by calculating Cook’s influence distances for NDF
digestion rate against 16S rRNA gene sequence proportion in every taxonomical clade. Those sequences
with significant Cook influence distances (i.e., >F2,28,0.05) were eliminated.

2.8. Statistical Analysis

We examined the effects of diet (fixed effect), season (repeated measures fixed effect) and their
interaction on changes in body mass, ruminal pH, kinetics of fiber digestion (see calculations described
below) and bacterial populations. Models also included the fixed effect of sequence (hay first or straw
first) and the random effect of the animal nested in sequence. Because DM intake in the spring was not
measured, DM intake and overall tract digestibility were analyzed only for the fall.

Fiber digestion was parametrized for each combination of animal-season-diet-substrate for
digestion rate and extent. We fitted least squares negative exponential regression equations to the
digested residue (D) of NDF, cellulose and hemicellulose over time:

D = a + b × (1 − exp−c × t)

where t is time (h) and c is fractional digestion rate. Predicted digestion at 120 h (%) was calculated
from each parametrized regression equation. Subsequently, fractional digestion rate and predicted
digestion at 120 h for the NDF, cellulose and hemicellulose fractions were modeled as a function of
season, substrate, diet, animal and sequence as previously explained.

Neutral detergent fiber, cellulose and hemicellulose fractional digestion rate and predicted
digestion at 120 h were regressed against ruminal pH, substrate, and their interaction. Results are
reported as partial R2 (if significant) and the p value for the regression coefficient.

We examined the effect of season, diet and their interaction on the 16S rRNA gene proportion of
bacterial phyla with a MANOVA multivariate model. Effects of season, diet and their interaction on
bacterial 16S rRNA gene proportions was further analyzed through a univariate ANOVA on the 16S
rRNA gene proportion of each bacterial phyla separately. Results are expressed as mean ± standard
error with corresponding p values.

The association between all bacterial 16S rRNA gene sequence proportions and all 6 fiber digestion
parameters (NDF, cellulose and hemicellulose digestion rate and extent at 120 h) was studied using
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partial least square regressions fitted separately for the hay and straw substrates. Firstly, taxonomic
clades—phyla, classes, orders, families, genera and species—were compared for their simultaneous
prediction of all 6 fiber digestion kinetics variables. For both the hay and straw substrates, the best
predicting clade in terms of the percentage of variation in fiber digestion kinetics explained was
genus, and subsequently the relationships of each NDF, cellulose and hemicellulose digestion rate and
extent in hay and straw with the 16S rRNA gene proportion of bacterial genera were analyzed. In all
partial least squares regressions analyses, the number of latent vectors was selected through one at a
time-cross validation. All variables were standardized (centered and scaled).

All statistical analyses were conducted using JMP 8.0.2 [41]. All analyses that included the random
effect of animal nested in sequence were fitted using a restricted maximum likelihood algorithm.
Non-significant (p > 0.10) interactions were eliminated. If interactions were present (p < 0.10), the main
effects of one factor were described by comparing them across the levels of the other factors in the interaction.

3. Results

3.1. Feed Composition

Feed composition is presented in Table 1. Straw contained more NDF (p < 0.001), ADF (p < 0.001),
and cellulose (p < 0.001) than hay, but there was no difference in lignin content (p = 0.12). There was
a tendency for hay to contain more hemicellulose (p = 0.090). Hay contained more CP than straw
(p = 0.012). As a comparison, previously reported composition of sedges is also included (Table 1).

Table 1. Feed composition.

Feed DM
(kg kg−1)

NDF
(kg kg DM−1)

ADF
(kg kg DM−1)

Cellulose
(kg kg DM−1)

Hemicellulose
(kg kg DM−1)

Lignin
(kg kg DM−1)

N
(kg kg DM−1)

Hay 0.875 0.700 0.379 0.318 0.322 0.061 0.0756
Straw 0.878 0.846 0.536 0.435 0.310 0.10 0.0359
SEM 1.82 × 10−3 0.0090 0.00649 0.022 0.0077 0.027 4.31 × 10−3

p = 0.49 <0.001 <0.001 <0.001 0.090 0.12 0.012
Sedge 0.645–0.717 0.284–0.370 0.214–0.291 0.347–0.395 0.0621–0.0797 0.0638–0.156

NOTE: DM = dry matter; NDF = neutral detergent fiber; ADF = acid detergent fiber; N = nitrogen; Information of
the sedge proximal composition is from Gustine et al. (2017) [42] and Barboza et al. (2018) [43]. Moisture content of
fresh sedges were not measured.

3.2. Ruminal Fiber Digestion Kinetics

Animals digested NDF at a higher rate (0.022 vs. 0.017 h−1; p < 0.001) and to a greater extent
(p < 0.001; Figure 1; Supplementary Figures S1 and S2) when the diet was straw rather than hay.
Straw NDF was digested faster in the spring than the fall (0.0234 ± 0.0022 vs. 0.0145 ± 0.00231 h−1;
p < 0.001), whereas there was no effect of season (p = 0.72) on rate of NDF digestion in hay (interaction
season by substrate p = 0.012). Extent of digestion of NDF was greater in the hay than in the straw
substrate at 120 h (0.678 ± 0.010 vs. 0.540 ± 0.010 kg kg−1; p < 0.001).
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Figure 1. Digestion (%) of NDF (a), cellulose (b), and hemicellulose (c), at 120 h in nylon bags with
different substrates and animals on different diets.

3.3. Ruminal pH

Ruminal pH was more alkaline in the spring (6.54 ± 0.04 vs. 6.39 ± 0.04; p < 0.001) and tended
to be more alkaline in animals eating straw (6.50 ± 0.04 vs. 6.43 ± 0.04; p = 0.06). Ruminal pH was
positively related to NDF digestion rate (R2 = 0.344; p < 0.001), 120 h NDF digestion extent (R2 = 0. 077;
p < 0.001), cellulose digestion rate (R2 = 0.159; p = 0.001), and hemicellulose digestion rate (R2 = 0.201;
p < 0.001). Ruminal pH was weakly related to the extent of hemicellulose digestion at 120 h (R2 = 0.0603;
p = 0.006) but unrelated to that of cellulose (p = 0.24).

3.4. Bacterial Community Analyses

The number of sequences assembled was on average 36,980, 22,112, 32,619 and 35,607 for the
straw diet in the spring, the straw diet in the fall, the hay diet in the spring, and the hay diet in the fall,
respectively. Chao’s estimates of sequence richness were 8181 for straw and 9269 for hay in spring,
whereas fall sequences were estimated at 13,262, and 14,394 for straw and hay, respectively. Sequence
coverage was estimated at 94.2% and 92.7%, respectively, for straw and hay in spring, whereas fall
coverage was 85.7% and 89.5% for straw and hay respectively. The Shannon diversity index was
consistent between seasons and diet at 6.39 and 6.69 for the straw and hay in spring and at 6.59,
and 6.92 for the straw and hay in fall.

Bacterial community structure, in terms of proportional representation of individual phyla,
was affected by season (F10,17 = 2.82, p = 0.029; Table 2) and diet (F10,17 = 2.95, p = 0.024). Together,
Bacteroidetes and Firmicutes accounted for over 90% of sequences with no changes between seasons
and diets. Fibrobacteres 16S rRNA gene proportion of total bacterial 16S rRNA gene was greater in
animals eating the triticale straw diet (p = 0.036).
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Table 2. Effects of season and diet on the proportion of bacterial phyla.

Phylum
Season Diet

Season p = Diet p = Season × Diet p = SEM
Spring Fall Hay Straw

Actinobacteria 4.98 × 10−3 4.42 × 10−3 4.94 × 10−3 4.46 × 10−3 0.40 0.47 0.25 3.3 × 10−4

Bacteroidetes 0.335 0.346 0.340 0.341 0.37 0.93 0.35 5.53 × 10−3

Fibrobacteres 2.81 × 10−2 3.42 × 10−2 2.46 × 10−2 3.77 × 10−2 0.32 0.036 0.35 2.96 × 10−3

TM7 5.65 × 10−3 3.85 × 10−3 5.88 × 10−3 3.62 × 10−3 0.005 0.001 0.86 3.1 × 10−4

Firmicutes 0.577 0.566 0.577 0.566 0.39 0.30 0.10 5.48 × 10−3

Lentisphaerae 6.13 × 10−3 4.73 × 10−3 5.50 × 10−3 5.36 × 10−3 0.14 0.88 0.93 4.8 × 10−4

Planctomycetes 1.18 × 10−3 3.94 × 10−4 4.95 × 10−4 1.08 × 10−3 0.020 0.08 0.16 1.6 × 10−4

Proteobacteria 1.44 × 10−2 1.63 × 10−2 1.63 × 10−2 1.44 × 10−2 0.33 0.29 0.91 8.8 × 10−4

Spirochaetes 2.13 × 10−2 1.55 × 10−2 1.70 × 10−2 1.98 × 10−2 0.016 0.21 0.75 1.10 × 10−3

Synergistetes 8.1 × 10−4 1.12 × 10−3 1.10 × 10−3 8.27 × 10−4 0.41 0.43 0.48 1.7 × 10−4

NOTE: SEM = standard error of the mean.

3.5. Association between Fiber Digestion Kinetics and the Proportion of Bacterial Sequences

For both the hay and straw substrates, the greatest percentage of variation in fiber digestion
kinetics for all 6 response variables combined (rate and 120 h digestion extent of NDF, cellulose and
hemicellulose) was explained by grouping bacterial sequences at the genus level (Table 3).

Table 3. Percentage of variation in fiber digestion explained by bacterial sequences classified at different
clade levels.

Clade
Hay Substrate Straw Substrate

Variation in Response
Explained (%) Latent Vectors Variation in Response

Explained (%) Latent Vectors

Phylum 14.8 2 14.9 1
Class 21.4 1 22.5 2
Order 20.7 1 25.1 2
Family 34.1 1 32.2 3
Genus 39.3 1 36.9 2
Species 35.1 1 32.7 3

The proportional representation of bacterial genera in the rumen explained 50 to 70% of the
variation in the rate or 120 h extent of digestion of the different fiber fractions in hay (Table 4) and straw
(Table 5) as estimated using partial least squares regression. Out of 80 bacterial genera, around 40
were deemed important (variable importance score > 0.8) in fitting the models for digestion kinetics
of the different fiber fractions. Some of the genera that had a consistent positive association with fiber
digestion rate and/or extent were Catenibacterium, Catabacter, Clostridium and Papillibacter. Catabacter
spp., Catenibacterium spp. and Papillibacter spp. were all more abundant with the straw diet than with the
hay diet; Clostridium spp. was more abundant with the straw diet only in the spring (p < 0.001), but not
in the fall (p = 0.90). On the other hand, Roseburia, Prevotella, Coprococcus, Quinella and Pseudobutyrivibrio
were often negatively associated with fiber digestion rate and/or extent (Tables 4 and 5).
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Table 4. Main bacterial genera associated with fiber digestion in hay.

NDF Digestion Rate NDF Digestion at 120 h Cellulose Digestion Rate Cellulose Digestion at 120 h Hemicellulose
Digestion Rate

Hemicellulose
Digestion at 120 h

%response explained 49.8 69.5 47.7 57.9 49.8 48.4

Number of important genera
(variable importance score > 0.8) 39 36 42 43 41 37

Positive Associations (≥95% Percentile Variable Importance Score)

Catenibacterium Catenibacterium Clostridium Papillibacter Catabacter Clostridium
Catabacter Clostridium Catenibacterium RC9 gut group Aquiflexum Barnesiella
Aquiflexum Papillibacter Catabacter Desulfonatrovibrio Hydrogenoanaerobacterium Catenibacterium
Clostridium Catabacter Ruminobacter Catenibacterium Papillibacter Papillibacter

Negative Associations (≥95% Percentile Variable Importance Score)

Thalassospira Coprococcus Prevotella Thalassospira Kiloniella Kiloniella
Prevotella Ruminococcus Heliobacillus Prevotella Prevotella Quinella
Roseburia Pseudobutyrivibrio Roseburia Bacteroides Roseburia Roseburia

Coprococcus Roseburia Thalassospira Roseburia Coprococcus Pseudobutyrivibrio

NOTE: NDF = neutral detergent fiber.

Table 5. Main bacterial genera associated with fiber digestion in straw.

NDF Digestion Rate NDF Digestion at 120 h Cellulose Digestion Rate Cellulose Digestion at 120 h Hemicellulose
Digestion Rate

Hemicellulose
Digestion at 120 h

%response explained 59.6 72.4 49.9 56.3 56.7 56.5

Number of important genera
(variable importance > 0.8) 41 37 40 39 42 38

Positive Associations (≥95% Percentile Variable Importance Score)

Ruminobacter Catabacter Catabacter Papillibacter Ruminobacter Catabacter
Treponema Catenibacterium Fibrobacter RC9 gut group Clostridium Barnesiella

Clostridium Papillibacter Ethanoligenens Catenibacterium Treponema Clostridium
Catabacter Clostridium Anaerofustis Aquiflexum Dolosigranulum Catenibacterium

Negative Associations (≥95% Percentile Variable Importance Score)

Quinella Quinella Ruminococcus Quinella Geosporobacter Kiloniella
Pelospora Pseudobutyrivibrio Coprococcus Prevotella Proxilibacter Pseudobutyrivibrio

Ruminococcus Coprococcus Pelospora Thalassospira Desulfonatrovibrio Coprococcus
Oxobacter Roseburia Zhouia Roseburia Anaerophaga Quinella

NOTE: NDF = neutral detergent fiber.
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4. Discussion

4.1. Intake, Digestion and Body Mass Changes

DM intake in the fall was 3.2-fold greater for the hay than for the straw diet. In ruminants
eating high-roughage diets, intake is physically limited by distension of the reticulo-rumen, and can be
increased by greater digestion rate accelerating ruminal emptying [20]. However, in situ NDF digestion
rate in the fall was similar for the hay and straw substrates in animals eating the corresponding diets
(0.0145 vs. 0.0175 h−1; p = 0.44), suggesting that digestion rate did not limit straw intake in the fall.
Furthermore, the greater potentially digestible NDF fraction of the hay substrate, along with a similar
digestion rate, could result in hay particles being retained for longer because of greater buoyancy
over time, while fermentation gases are produced, which would delay passage out of the rumen and
thus potentially slow ruminal emptying [20]. However, the in situ incubation determination, in which
both forages were finely ground, does not take into account possible differences in the times needed
to achieve physical disruption and particle size reduction (e.g., mastication and rumination, initial
phases of digestion), which might have been greater for straw. Other factors such as N content and
palatability may also explain the greater DM intake of hay compared with straw.

In the fall, overall tract digestibility of hay fiber fractions was greater than straw. In general,
in situ fiber digestion rates were similar for the hay and straw substrates, but hay had greater extent of
digestion at 120 h. On the other hand, similar DM digestibility between the hay and straw diets can
be explained by the fact that the animals on straw consumed less forage, and consequently, a greater
proportion of their DM intake originated from the supplement (0.24 ± 0.015 vs. 0.092 ± 0.015 kg kg−1;
p = 0.001), which is more digestible than the forages due to its lesser fiber content [18,21].

Animals eating straw had a greater rate and extent of digestion for all fiber fractions of
both substrates. This observation can be interpreted on the basis of Michaelis-Menten kinetics.
When animals are not adapted to their diets, fibrolytic activity by microbial enzymes may limit
digestion of particles in the rumen. Alternatively, when the microbial community is adapted to
diet, particle digestion would be primarily limited by substrate kinetics, i.e., surface on the substrate
available for microbial colonization and digestion. The response of in situ digestion to diet indicates
that digestion of the materials incubated in situ was limited by enzyme kinetics. However, one could
expect that in animals adapted to their diet, microbial fibrolytic enzyme activity would match the
surface available for digestion (i.e., digestion being primarily limited by substrate kinetics). The diet
would influence ruminal microbiota (i.e., enzyme kinetics) but not in situ substrate surface available
for microbial digestion. The response of in situ digestion rate and extent to diet, could be due to one of
the substrates incubated being intrinsically more digestible than the diet ingested (i.e., response of
hay substrate to straw diet) and to the in situ substrate fine grinding, resulting in a greater surface
to volume ratio for microbial colonization and digestion in comparison to average digesta particles
(i.e., responses of both straw and hay substrates to straw diet).

In the present study, hay NDF digestion rate in muskoxen was numerically smaller than that
reported for cattle in studies that evaluated hay with similar ADF content, whereas straw NDF
digestion rate was numerically similar (Table 6). Therefore, greater overall tract digestibility of OM,
CP and fiber reported for muskoxen compared to cattle [17] may be the result of longer retention in
muskoxen than cattle [44] rather than greater rates of digestion in muskoxen than cattle.
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Table 6. Literature comparison of hay and straw NDF digestion rate.

Reference Animal Substrate ADF (kg kg DM−1) NDF Digestion Rate (h−1)

Leventini et al. [45] Cattle Brome/orchard grass hay 0.39 0.029
Messman et al. [46] Cattle Brome grass 0.39 0.065

Carey et al. [47] Cattle Brome hay 0.42 0.032
Huhtanen & Vanhatalo [48] Cattle Dried timothy 0.37 0.035

Leupp et al. [49] Cattle Brome hay 0.38 0.037
P. S. Barboza (pers. com.) Musk oxen Brome hay (spring) 0.34 0.009
P. S. Barboza (pers. com.) Musk oxen Brome hay (fall) 0.32 0.027
P. S. Barboza (pers. com.) Musk oxen Brome hay (winter) 0.35 0.016

This study (average spring) Musk oxen Brome hay 0.37 0.019
This study (average fall) Musk oxen Brome hay 0.37 0.018

Leventini et al. [45] Cattle Wheat straw NR 0.022
This study (average spring) Musk oxen Triticale straw 0.48 0.023

This study (average fall) Musk oxen Triticale straw 0.48 0.015

NOTE: NDF = neutral detergent fiber; ADF = acid detergent fiber.

The present study failed to find the summer/early fall body mass recovery reported by other
studies with captive muskoxen [19]. However, other studies with non-breeding captive female
muskoxen [17,50] also did not find clear seasonal patterns of body mass changes. It seems possible,
therefore, that seasonal body mass and intake changes in muskoxen could be influenced by year,
location and the loss of body mass in the previous winter [19,21]. Also, the differences in fiber digestion
kinetics seasonal patterns between the present study and the study by Barboza et al. [18] suggest
that microbial populations probably varied between these two studies. Considering the variation
between years and locations in body mass change patterns and digestion kinetics, that different studies
report, a more complete characterization of the ruminal microbial population in muskoxen may need
replicated experiments at different times, diets and locations.

4.2. Bacterial Community

An increase in bacterial richness between spring and fall without major changes in diversity
indices may be explained by a decrease in the evenness of sequences. Muskoxen evolved in the high
Arctic and remained isolated from domestic ruminants during their evolutionary history, so they
could harbor organisms that have not been reported for the rumen of domestic ruminants or other gut
environments. Even though these animals had not been in contact with domestic ruminants, they had
been raised in captivity for several generations. In agreement, a large proportion of uncharacterized
bacteria phylotypes was isolated from muskoxen feces, with a preponderance of Firmicutes and
Bacteroidetes [7]. Studying the ruminal microbiota of wild muskoxen could likely further expand the
current knowledge of the microbial community in ruminants.

The present analysis of relationships between fiber digestion kinetics and bacterial community
structure does not prove causal relationships. Therefore, an association between fiber digestion
kinetics and the relative abundance of a bacterial taxon could be the result of: (i) direct involvement
of the organism in fiber digestion; (ii) indirect effect of the organism on fiber digestion, be it
stimulatory (e.g., providing nutrients to fiber digesters, removing fermentation products) or inhibitory
(e.g., producing bacteriocins against fibrolytic organisms); (iii) reverse causal relationship i.e.,
fiber digestion affecting a particular bacterial group; (iv) association without any direct or indirect
effect of the organism on fiber digestion or its reversal.

Because 16S rRNA gene copy numbers and PCR efficiencies vary among ruminal organisms,
it should be noted that 16S rRNA gene sequences do not correspond exactly with bacterial numbers [51]
or activity. Furthermore, the associations reported herein involve 16S rRNA gene proportions and not
absolute gene numbers. Therefore, some of these relationships would need to be further explored with
a more quantitative technique such as qPCR or metatranscriptomic analysis.

In the rumen of domestic animals, the bulk of fiber digestion is thought to be carried out by three
species of highly specialized cellulolytic bacteria, Fibrobacter succinogenes, Ruminococcus flavefaciens,
and R. albus [51]. However, in muskoxen, it was only the genus Fibrobacter spp. that appeared within the
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upper 5th percentile of genera associated with any of the fiber digestion parameters studied, and only
in the case of cellulose digestion rate of the straw substrate (Tables 4 and 5). Furthermore, Ruminococcus
spp. had a negative association with NDF and cellulose digestion rate in straw. However, not all of
the species of the genus Ruminococcus are known to be cellulolytic [52]. Instead, organisms other than
the typical fiber digesters of domestic ruminants were positively associated with fiber digestion in
a consistent way and may be potentially important in muskoxen. Clostridium spp., Catabacter spp.,
Catenibacterium spp. and Papillibacter spp. frequently manifested positive associations with digestion
rate and extent of the different fiber fractions both in hay and straw (Tables 4 and 5). Cellulolytic
clostridia inhabiting the rumen have been previously described [53]. However, the genus Clostridium
is phylogenetically very heterogeneous and contains organisms from diverse phylogenetic groups [54].
Three clostridial species were identified in the present analysis: C. leptum, C. orbiscindens, and an
unidentified clostridial OTU. Of those, only C. leptum had a positive association with fiber digestion.
This organism belongs to the Clostridium Cluster IV, whose 16S rRNA gave numerous signals associated
with ruminal particulate fraction when tagged with fluorescent probes [55].

The genus Catabacter has been identified in cattle feces [36]. Although its ecological niche in the
ruminant gut remains unknown, the inability of Catabacter hongkongensis, the only species of Catabacter
so far isolated, to utilize cellobiose [56] could cast some doubt about a possible direct role of the
Catabacter spp. found in the present study on cellulose digestion. The genus Catenibacterium was also
positively associated with fiber digestion. Catenibacterium mitsuokai was able to ferment cellobiose [57],
although its capacity to digest cellulose was not reported. Although it could utilize mannose, it did
not use xylose or arabinose [57], which makes it unlikely to digest hemicellulose.

The proportion of 16S rRNA gene of some genera frequently had a negative association with fiber
digestion: Roseburia spp., Coprococcus spp., Quinella spp., Prevotella spp. and Pseudobutyrivibrio spp.
(Tables 4 and 5). Roseburia spp. and Coprococcus spp. isolates are butyrate producers in the human
gut [58], both genera belonging to Clostridium Cluster XIV [54]. Quinella spp. was abundant in the
rumen of sheep fed high-sugar diets of fresh alfalfa [59]. Prevotella spp. does not degrade cellulose,
but can use xylans and pectins [53]. The Butyrivibrio/Pseudobutyrivibrio group is phylogenetically
diverse [60], which makes it difficult to draw more accurate conclusions about the possible significance
of organisms belonging in this group in fiber digestion in muskoxen.

In summary, with the possible exception of cellulolytic clostridia, there is no clear indication at this
point that the associations observed between bacterial 16S rRNA gene proportion and fiber digestion
could be the consequence of causal relationships. Moreover, negative association of a cellulolytic genus
like Ruminococcus spp. [53] or cellulolytic/xylanolytic/pectinolytic-containing species/strains genera
like Roseburia spp. [61,62] with fiber digestion sometimes occurred. Perhaps these organisms may
have inhibited other fiber-digesting organisms. For example, inhibition of fibrolytic anaerobic fungi by
R. flavefaciens and R. albus has been reported [63].

4.3. Implications for Muskoxen Biology

Feeding muskoxen a low-quality diet stimulated fiber digestion. These changes in fiber digestion
kinetics in response to diet were accompanied by corresponding changes in the microbiome. There was
a greater abundance of those organisms most positively associated with fiber digestion when the
animals were fed straw rather than hay; therefore, changes in ruminal microbiome that affect digestion
appear to be driven by the quality of the forage available. As a limitation to the findings on the
association between fiber digestion and changes in the abundance of microbial groups, it must be
pointed out that only microbiota in rumen particles, but not fluid, was sequenced, and it has been
shown that the bacterial community compositions are distinct [64]. That said, fiber-digesting bacteria,
which were the principal object of the microbial diversity analysis conducted, are preferentially
attached to solid particles [65].

Barboza et al. [18] found greater fiber digestion rate in the fall compared to spring and winter.
In the present study, on the other hand, we found greater fiber digestion rates in the spring compared
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to the fall, but this was true only for the straw substrate, and there was no difference for hay, which was
the same substrate that Barboza et al. [18] used. It appears that, although muskoxen do modify intake
and digestion according to season and independently of diet [17–19], the effect of dietary changes on
intake and digestion may be greater than the effect of season alone. Seasonal changes in food selection
that accompany changes in the phenology and abundance of plants may have the greatest influence on
microbial function, fiber digestion and mass gain of muskoxen in the wild [66].

Digestion rates of medium- and low-quality forages seemed to be similar or even lower in
muskoxen than in cattle (Table 6), and previous results showing greater overall tract digestibility in
muskoxen compared to cattle during the spring [18] appear to be due to slow outflow of digesta.
Muskoxen have evolved to digest a wide variety of plants, including those consumed by cattle, but also
tolerate large changes in availability and quality of those forages through the year. Consequently,
they have also co-evolved a unique ruminal microbiome that shares some organisms with cattle and
other gut-related environments, but also includes organisms never described for those environments.
In agreement, fibrolytic enzymes in eukaryotes inhabiting the muskoxen rumen differ from those
found in domestic ruminants [31]. The muskoxen rumen harbors fibrolytic organisms whose novel
enzymes are currently being prospected for their potential use in other areas such as biofuel production
from lignocelluloses.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/6/3/89/s1,
Figure S1: NDF digestion vs. time: hay substrate, Figure S2: NDF digestion vs. time: straw substrate.
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