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Non-equilibrium formation and relaxation
of magnetic flux ropes at kinetic scales

Check for updates
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Magnetic flux ropes are pivotal structures and building blocks in astrophysical and laboratory
plasmas, and various equilibrium models have thus been studied in the past. However, flux ropes in
general form at non-equilibrium, and their pathway from formation to relaxation is a crucial process
that determines their eventual properties. Here we show that any localized current parallel to a
background magnetic field will evolve into a flux rope via non-equilibrium processes. The detailed
kinetic dynamics are exhaustively explained through single-particle and Vlasov analyses and verified
through particle-in-cell simulations. This process is consistent with many proposed mechanisms of
flux rope generation such asmagnetic reconnection. A spacecraft observation of an example flux rope
is also presented; by invoking the non-equilibrium process, its structure and properties can be
explicated down to all six components of the temperature tensor.

Magnetic flux ropes are twisted bundles of magnetic field lines that confine
current-carrying plasma and are fundamental and ubiquitous structures in
space, astrophysical, and laboratory plasmas1–14. They act as underlying
structures in various plasma phenomena and instabilities, serving as mag-
netic batteries that convert magnetic energy into other forms of energy via
processes such as magnetic reconnection6,15, eruption7,8,16, flux transfer
events (FTEs)17, and current-driven/kinetic instabilities18,19. Due to their
significance, various equilibrium models such as force-free models20–22,
magnetohydrodynamic (MHD) models5, and MHD models including
deformation effects23–25 have been developed to explain various observed
characteristics of these structures.

Despite extensive studies, no single model can comprehensively
interpret flux ropes. For example, only 60% of flux ropes observed in the
magnetotail can be described by force-free models4. Also, many small-scale
flux ropes admit anisotropic/off-diagonal pressure tensor components26,
which MHD models and widely-used Grad–Shafranov reconstruction
methods cannot accommodate.Thus, there is aneed to revisit theproblemof
whether allflux ropes are alike in termsofmorphology,magnetic andplasma
properties, and dynamics, and answering this question calls for a revelation
of their formation, relaxation, and evolution27. In particular, for (sub-)ion-
scale systems, the detailed structure of the particle distribution function is an
important determining factor of their stability and subsequent dynamics.

Now, recent investigations28,29 of collisionless current sheet relaxation
revealed the process through which a current sheet that has formed at non-
equilibrium undergoes relaxation to a final equilibrium. It was shown that
non-equilibrium dynamics must be taken into account to explain the
eventual structure of the equilibrium; notably, the origin of bifurcated

structures was readily explained by invoking said non-equilibrium
dynamics. Also, how a particular equilibrium is selected from an infinite
number of possibilities was explained. It was also shown that detailed
dynamics of the particle distribution function in phase-space is crucial for
the explication of the structures.

Becauseflux ropes are cylindrical cousins ofCartesian current sheets, it is
also expected that non-equilibrium dynamics and detailed phase-space dis-
tributions must be invoked to construct correct flux rope models. Although
flux ropes in general should format non-equilibriumstates, the pathway from
initial tofinal states has been relatively less understood. For instance, although
most laboratory experiments initially induce only parallel current density to
generate flux ropes, the eventual current density develops a twist7,18.

Here we present an analysis of the non-equilibrium formation and
relaxation process of a flux rope at kinetic scales. The process is thoroughly
understood using collective phase-space analysis. It is shown by considering
pinching dynamics that a localized current flowing parallel to a magnetic
field is a sufficient condition for the formation of a flux rope. This process is
consistent withmany proposedmechanisms offlux rope generation such as
magnetic reconnection. Our investigation attributes the observed structural
characteristics of a representative flux rope observed in space exclusively to
these kinetic dynamics, thereby encompassing all six components of the
electron temperature tensor.

Results
Formation process
Consider the following model distribution function, magnetic field, and
current density profiles for a current-carrying flux tube along a uniform
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guide field in cylindrical coordinates:

f σ r; vð Þ ¼ 1
2πv2Tσ

� �3=2

exp � v � Vσ ẑ
� �2

2v2Tσ

 !
n0

1þ r2=λ2
� �2 ; ð1Þ

B rð Þ ¼ ϕ̂
B0r=λ

1þ r2=λ2
þ ẑbgB0; ð2Þ

J rð Þ ¼ ẑ
B0

μ0λ

2

1þ r2=λ2
� �2 ; ð3Þ

and the electrostatic potential Φ = 0, where the subscript σ = i, e is for
the ion and electron species, vTσ and Vσ are the species thermal and
drift velocities, n0 and B0 are the reference density and magnetic field,
λ is the radial tube thickness, and bg is the relative guide field
strength. This is in fact the Bennett solution30 under a guide field but
the drift and thermal velocities are left arbitrary so that it is not
necessarily an equilibrium solution. The initial parallel current is
assumed to have been induced by a parallel electric field whose
source may arise from, e.g., guide-field reconnection, kinetic
instabilities, turbulence, or boundary sources8,9,19,31–35. Note that ideal
MHD cannot support parallel electric fields due to Ohm’s law,
hinting the need for non-ideal-MHD mechanisms. Also note that
there are other methods such as electron cyclotron current drive
(ECCD) in fusion contexts that can also drive parallel current and
form flux ropes as well36.

Now we define �r ¼ r=λ, �t ¼ qσB0t=mσ ¼ ωcσ t where qσ and mσ are
the charge and mass of each species, �v ¼ v=λωcσ for any velocity v, and
normalize themagnetic field by B0, and density by n0. Inserting Eqs. (1) and
(2) into the Vlasov equation yields:

∂ ln f σ
∂�t

¼ ��vr
4�r

1þ �r2
�Vσ

4�v2Tσ
� 1

� �
: ð4Þ

Denoting ξ ¼ �Vσ=4�v
2
Tσ � 1, ξ = 0 corresponds to the Bennett

equilibrium30. Because Vσ is associated with current density and vTσ
with thermal pressure, ξ measures the balance between the radially-
inward pinching force and the outward thermal force. Note that if the
radial dependence of fσ is eliminated and bg ¼ 1þ �r2

� ��1
, the system

corresponds to the Gold-Hoyle flux tube20, where the inward
pinching force is balanced by a gradient in the guide field.

If ξ ≠ 0, Eq. (4) yields a solution after a small linear time interval δ�t
(discardingO δ�t2

� �
):

f σ ∼ exp � �v � �Vσ ẑ � �Vrσ r̂
� �2

2�v2Tσ

 !
; ð5Þ

where

�Vrσ ¼ �4�v2Tσξδ�t
�r

1þ �r2
; ð6Þ

which shows that if ξ > 0, there is a radial focusing of fσ towards r = 0, i.e.,
pinching. This radial velocity couples toBz, generating an azimuthal velocity
which in turn creates an azimuthal current; this is equivalent to the plasma
carrying the guide field towards the center and effectively amplifying it.

The preceding analysis prompts the following model for the non-
equilibrium formation of a flux rope, as shown in Fig. 1. Consider a radially
localized current parallel to a seed (not necessarily small) guide magnetic
field, embedded in a plasma whose thermal pressure cannot balance the
pinching force, e.g., a uniform plasma. The current density will then pinch,
focusing and magnifying both the plasma density and the guide magnetic
field near r = 0 until an equilibrium is reached. The guide magnetic field
becomes peaked near r = 0, corresponding to a finite azimuthal current (red
arrowed circle). The final equilibrium is thus a flux rope involving twisted
magnetic field lines, twisted current density, and central plasma confine-
ment, and it can be thought of as a mixture of the Bennett and Gold-Hoyle
flux tubes20,30, where the pinching force is balanced by a combination of
gradients in the thermal pressure and the axial field. The detailed profile of
the final equilibrium may vary greatly and depends entirely on the initial
conditions atwhich the initial parallel currentwas induced. For example, the
higher the initial plasma beta, the less pinching the flux rope will experience
due to the higher expansive force. Or, if the initial guidefield is non-existent,
there will be no azimuthal current because there is no guide-field
amplification.

Numerical results
To corroborate and study the above process in detail, 2D particle-in-cell
(PIC) simulations were conducted in Cartesian geometry, i.e.,
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The initial conditions of the fiducial run were Eqs. (1) and

(2), with λ = 2di where di is the collisionless ion skin depth, bg = 0.15,
and 4�v2Tσ ¼ 0:2�Vσ so ξ = 4. A reduced mass ratio ofmi/me = 100 was used,
and theAlfvénvelocity vA/c = 0.1.The systemreaches equilibriumat around
100ω�1

pi . The resultant 2D data were repeated in the z-direction to generate
3D data.

Figure 2 shows initial (a and c) and final (b and d) states of B, the
current density J and the thermal pressure P, calculated with the trace of the
ion and electron pressure tensors, namely Tr Pi þ Pe

� �
=3. The quantities

are in units of B0, n0evA, and n0miv
2
A, respectively. Initially, J is purely in the

axial direction, and B is mainly azimuthal with a relatively small axial
component. After pinching, J is enhanced and also importantly develops an
azimuthal component, i.e., becomes twisted. The twisting of J corresponds
to a local amplification of the background guide field by a factor of 4,
resulting in a decrease of themagneticfield pitch anglewith respect to ẑ. P is
also locally amplified by a factor of 8 (the initial peak pressure is around

Fig. 1 | Formation process of a flux rope. In a plasma with a uniform pressure P
(pink color), a localized current J (red dots) parallel to the guide magnetic field
B (black dots) induces an azimuthal magnetic field (black arrowed circles). The

current pinches due to the pinching force (green arrows) and amplifies, carrying the
guide field and plasma pressure towards the center and amplifying them. Guide field
amplification corresponds to azimuthal current generation (red arrowed circle).
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0.17), indicating plasma confinement. It is clear from the final states that a
flux rope has been generated simply by a localized parallel current trying to
reach equilibrium.

Figure 3a–f shows the initial (a–c) and final (d–f) 2D profiles of B, J,
andP corresponding to those inFig. 2. The amplificationofBz, generationof
Jϕ, and confinement of P are evident. Figure 3g–l are all six elements of the
electron pressure tensor, which are determined by the possible particle
trajectories in phase-space, as will be seen shortly. A seemingly unexpected
development is the negative Jϕ (black lines in Fig. 3e), as opposed to the
positive Jϕ at the outskirts (white lines inFig. 3e), that induces a central dip in
Bz (color in Fig. 3d). This is a finite Larmor radius effect where the axis-
encirclingparticles undergodiamagnetic acceleration.Another feature is the
ring-like structure of Jz and Pezz (Fig. 3e, i), which is due to conservation of
canonical momentum as will be seen later.

Single-particle and kinetic analysis
Let us now examine single-particle dynamics by using the initial B profile
(Eq. (2)) as reference, focusing on electron dynamics which mainly govern
flux ropes with scale lengths of ~ di. The normalized vector potential can be
chosen to be �A ¼ �ẑ ln 1þ �r2

� �� �
=2þ ϕ̂bg�r=2, where �A ¼ A=λB0. Since

the Lagrangian is �L ¼ �v2=2þ �v � �A, we can find three conserved quantities,
namely the canonical momentum in the z-direction �pz ¼ �vz þ �Az , the
canonical angular momentum �Lϕ ¼ �r�vϕ þ �r�Aϕ, and the Hamiltonian

�H ¼ �v2=2þΦ. Then, the normalized electron velocities are:

�vz ¼ �pz þ
1
2
ln 1þ �r2
� �

; ð7Þ

�vϕ ¼
�Lϕ
�r
� 1

2
bg�r; ð8Þ

�vr ¼ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �H �Φ
� �þ v2ϕ �rð Þ þ v2z �rð Þ

q
: ð9Þ

Note that the velocities arenormalizedby λωcσwhich includes the signof the
particle charge, so apositivenormalizedvelocity contributespositively to the
current density and vice versa.

Figure 4 shows the trajectory of a representative electron in the PIC
simulation during its centripetal action from t = 0 to 60ω�1

pi . The red lines
are the initial trajectories described by Eqs. (7)–(9). In Fig. 4a, the electron
undergoes periodic motion in r; vr

� �
, and adiabatically travels toward r = 0

while approximately conserving its phase-space area. Thus, its oscillation in
r decreases while its oscillation in vr increases, resulting in heating in the
r-direction.

Fig. 2 | Initial and final states from the PIC
simulation. The magnetic field B and the plasma
pressure P at a t = 0 and bt ¼ 200ω�1

pi , in units of B0
and n0miv

2
A, respectively. The current density J at

c t = 0 and d t ¼ 200ω�1
pi in units of n0evA. The total

dimension is x; y; z
� � ¼ 10; 10; 10ð Þdi, and brown

cubes of side lengths of 1di are also plotted for scale
reference.
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In Fig. 4b, the electron initially follows the line predicted byEq. (8)with
�Lϕ>0 in ðr; vϕÞ space. As it travels toward r = 0, it accesses higher average �vϕ
and so induces positive Jϕ and also Bz. Its excursion in vϕ-space increases as
well, indicating heating in the ϕ-direction. This, together with r-directed
heating, results in increases in Pexx and Peyy (Fig. 3). For axis-encircling
particles which have �Lϕ<0 and thus negative �vϕ for all t, their traveling
toward r = 0 decreases �vϕ and increases −Jϕ, corresponding to the
�ϕ̂-directed current in Fig. 3e.

In Fig. 4c, the electron initially follows the line predicted by Eq. (7) in
r; vz
� �

space,which, because ln 1þ �r2
� � ’ �r2 for small�r, is approximately a

parabola with an intercept �pz . As the system pinches and decreases in radial
scale, so does the parabola while maintaining the intercept. As a result, �vz
increases at finite r but less near r = 0 (think of a lotus flower shrugging its
petals). This translates to the ring-like structure of Jz in Fig. 3e, which is in
fact akin to bifurcated current sheets in Cartesian geometry28. The particle’s
excursion in �vz increases as well, i.e., z-directed heating. This heating, again,
does not affect the region near r = 0, resulting in a dip in the Pezz pro-
file (Fig. 3i).

Although not explicitly discussed, the above analysis already includes
the role of the electricfields. The electrostaticfieldEr comesmainly from the

Hall effect and the electron pressure gradient, i.e.:

E ¼ �ue ×B�∇ � pe
nee

;

where ue, ne, pe are the electron fluid velocity, density, and pressure tensor,
respectively. This electric field is manifested in Eq. (9) as Φ that affects the
shape of the radial effective potential and thus the trajectory in �r;�vr

� �
space.

This change in �r oscillation in turn changes �vϕ and �vz through Eqs. (8) and
(7). Eϕ and Ez are the inductive components that change �Aϕ and �Az which
are the last terms in Eqs. (8) and (7). In the final state of the fiducial run,
particle orbits aremainlymagnetically-driven, i.e.,E ×Bdrifts aremuch less
than magnetic (grad-B and curvature) drifts, because the Hall and pressure
gradient terms nearly cancel each other out. Also, note that an initialΦ can
be frame-transformed away as long as the vector potential has the same
functional formover the domainof interest; this iswhat is done in theHarris
solution37.

These changes in phase-space trajectories change the phase-space
distributions. Figure 5 shows the change in the electron distribution func-
tion Δfe in different phase-spaces as the system reaches equilibrium. The

Fig. 3 | 2D profiles of various physical quantities. The initial a magnetic field
B, b current density J, and c thermal pressure P and their final states (d–f). The units
for B, J, and P are B0, n0evA, and n0miv

2
A, respectively. Vector quantities are

represented by their in-plane (lines; white for + ϕ-direction and black for − ϕ-
direction) and out-of-plane (colors) components. Diagonal (g–i) and off-diagonal
(j–l) components of the electron pressure tensor, again in units of n0miv

2
A.
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black contours are fe at t = 0. The electrons migrate from the purple regions
to the orange regions. In all spaces, fe moves into regions of low r and high
∣�v∣, i.e., the electron pressure increases. In Fig. 5b, Δfe is asymmetric with
respect to �vϕ ¼ 0 and is higher in the þ�vϕ region; this translates to the
increase of Jϕ necessary to amplify Bz. In Fig. 5c, Δfe is also asymmetric in
such a way that the average �vz is higher around �r≲ 0:2 but lower at larger
r≳ 0.2, which leads to pinching of Jz. The final distribution function is far
from Maxwellian and is determined by the allowed particle orbits for the
given electromagnetic field. Also, the final current density profile is sup-
ported by a combination of the density and drift velocity profiles, in contrast
tomanykinetic equilibriumsolutions inwhich it is supported entirely by the
density profile with a spatially uniform drift velocity30,37,38. The former is a
much more likely state if the source for particle acceleration is local rather
than uniform.

Spacecraft comparison
We now present a Magnetospheric Multiscale (MMS) observation of an
ion-scale flux rope that has formed and equilibrated through this pinching
process. On July 6th 2017, when MMS was located at
∼ �22:1; 3:1; 3:0ð ÞRE , it passed through an ion-scale flux rope traveling
earthward with a reference frame velocity of 811;�24;�61ð Þ km/s in
geocentric solar magnetospheric (GSM) coordinates26. For a comparative
analysis, another PIC simulation was conducted with parameters that are
closer to the observed parameters. Namely, the mass ratio was set to
mi/me = 400, vA/c = 0.025, bg = 0.3, tmax ¼ 500ω�1

pi , and the direction of Jz
was reversed to match the observed flux rope (initially J ⋅ B < 0). The non-
equilibrium dynamics of the rope and the eventual equilibrium are quali-
tatively similar to the fiducial run except for some sign changes.

Aparticular coordinate systemwas chosen to better compare theMMS
observation to the PIC simulation (see Methods). Namely, coordinates
of the same event obtained by Sun et al.26 through a combination of
the spatio-temporal difference (STD) and minimum directional derivative
(MDD) methods were redefined so that our z-axis is the out-of-plane
direction and rotated about the z-axis by 7π/8. The resultant

unit vectors in GSM coordinates are x!¼ �0:361;�0:22;�0:9½ �,
y!¼ 0:889; 0:222;�0:409½ �, and z!¼ 0:291;�0:950; 0:116½ �.

Figure 6a–e shows the observed profiles of B, Je, ne, and all six com-
ponents of the electron temperature tensor. J was calculated after sub-
tracting the reference frame velocity of the flux rope. Figure 6f–j shows the
synthetic profiles from the PIC simulation, obtained by taking a cut in the
direction of the red arrow in Fig. 3l. The length scale of the observed flux
rope is around ~1000 km26 which is ~ 2di, comparable to the simulated
flux rope.

There is good agreement between the twoflux ropes in all properties. A
distinctly striking agreement is among all six components of the electron
temperature tensor. In particular, the diagonal components are well
explained by double-adiabatic closures, but non-equilibrium dynamics and
particle phase-space distributions must be invoked to explain the off-
diagonal components. Although the agreement onTexy is weaker than other
components, the magnetic field profile of the observed flux rope agrees less
with the simulationflux rope on the left side of the origin (l < 0), so the slight
disagreement of Texy can be accounted for. The overall comparison well
substantiates the claim that the observed flux rope has formed from this
pinching process.

Discussion
An important implication of this model is that flux rope formation through
current pinching dynamics must involve non-ideal-MHD dynamics or
boundaries. This is because finite J ⋅ B is necessary to initiate the pinching
process, but E ⋅B = 0 in ideal MHD so parallel current drive is not possible.
Thus, the initial conditionmust have been induced by non-MHDprocesses,
although subsequent dynamics may be MHD. This aligns with many flux
rope formation models which involve non-MHD processes such as mag-
netic reconnection and kinetic turbulence31–34, and also with generic
laboratory methods of flux rope generation by helicity injection at the
boundaries6,8. Guide-field reconnection, which is a well-known source of
flux ropes31, generates a parallel reconnection electric field that induces
parallel current. Kinetic turbulence heavily involves reconnection as well.

Fig. 5 | Electron distribution changes. Change in
the electron distribution function Δfe from t = 0 to
200ω�1

pi in a r; vr
� �

, b ðr; vϕÞ, and c r; vz
� �

spaces.
The black contours are f e t ¼ 0ð Þ. The distribution
function is in units of n0/λωce.

Fig. 4 | Electron phase-space trajectories. Trajec-
tory of a representative electron in a r; vr

� �
, b ðr; vϕÞ,

c r; vz
� �

spaces for t = 0 to 60ω�1
pi (viridis color). The

blue dot indicates the initial positions, and the red
lines are the initial trajectories described by
Eqs. (7)–(9).
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Helicity injection in laboratory flux ropes is typically achieved by voltage
sources combined with bias magnetic fields, which induce parallel electric
fields and current. Kinetic instabilities are also known to serve as a localized
load impedance that can generate parallel electric fields19,39.

Another important implication of this model is that small-scale flux
ropes can form from larger-scale initial conditions via pinching. If the initial
plasma beta and guide field strengths are sufficiently weak or, equivalently,
the initial parallel current is sufficiently strong, it is possible to transition
fromMHD scales to kinetic scales. This process enables non-adiabatic and
agyrotropic particle motions and kinetic instabilities, which have recently
proven to be crucial for instigating solar eruptions19.

As discussed above, the eventual flux rope profile depends heavily on
the initial conditions at which the parallel current was induced. Thus, non-
equilibrium dynamics and phase-space distributions must be taken into
account to come up with good kinetic flux rope models. In particular, the
observed temperature tensor profiles in Fig. 6 cannot be explained without
invoking kinetic pinching dynamics. However, for lack of better solutions,
Grad–Shafranov models that use only scalar pressure are readily used to
reconstruct 2D flux rope structure from line measurements11,26,34; an
improvedmodel that takes into account the variation in the pressure tensor
due to non-equilibrium dynamics is thus exigent.

Our present model focuses on kinetic-scale flux ropes. However, even
for flux ropes, e.g., in solar environments, whose time and length scales are

relatively slower and larger, thepressure tensormaybecomeanisotropic due
to non-equilibrium dynamics and frozen-in flux. For sufficiently high-beta
situations, this anisotropy may place limits on stable flux rope configura-
tions due to mirror/firehose instabilities40,41, which will be further
investigated.

Although the initial conditions of our model are superficially simple,
the ensuing non-equilibrium dynamics and the eventual equilibrium
attained is rather complicated yet can still be explained in simple terms
throughparticle orbits.Nonetheless, there are some restrictionsof themodel
that need to be addressed. First, we assume a 2D geometry, which corre-
sponds to a situationwhere the curvature of theflux rope axis ismuch larger
than its radius. If the two length scales are comparable, models akin to
Taylor states should be developed. Also, the 2D assumption means that the
model cannot address dynamics such as the torus instability16, although
some 3D processes like kink and sausage instabilities can be addressed by
calculating the Kruskal–Shafranov criterion in the final equilibrium state.
Second, our model obviously falls short of explaining highly collisional
systems, although they can be regarded to somedegree as special cases of the
present model with isotropic scalar pressure.

In conclusion, we have investigated the dynamics of a kinetic-scale flux
rope from its non-equilibrium formation to relaxation. It was shown that a
localized current parallel to the background magnetic field is a sufficient
condition for flux rope generation via pinching. By comparing spacecraft

Fig. 6 | Comparisons to spacecraft observations.MMS spacecraft crossing of a flux
rope on July 6th 2017, compared to a synthetic crossing from the PIC simulation.
Observed profiles of a themagneticfieldB, and b electron current density Je. The x, y,
and z components correspond to the blue, orange, and green lines, respectively. The
total magnetic field ∣B∣ is represented by the red line. Observed profiles of the
c electron density ne, d diagonal components and e off-diagonal components of the

electron temperature tensor. Again, each component of the pressure tensor is dif-
ferentiated by the blue, orange, and green colors. f–jCorresponding profiles from the
PIC simulation. Jwas calculated after subtracting the reference frame velocity of the
flux rope. The velocity of the spacecraft was ~800 km s−1, and so the length scale of
the observed flux rope was ~1000 km s−1, which is ~2di, comparable to the simu-
lated flux rope.
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observation toPIC simulations, a representativeflux ropeobservedbyMMS
was shown to be consistent with generation by this very process, and its
structurewas explicabledown to all components of the electron temperature
tensor. Several implications of thismodelwere discussed, namely its initially
non-MHDnature, connection betweenMHDand kinetic scales, and a need
for better kinetic flux rope models that can accommodate deviations from
isotropic pressure tensors.

Methods
Vlasov calculation
The normalized Vlasov equation for an initially zero electric field is:

∂f σ
∂�t

þ �v � ∂f σ
∂�r

þ �v × �B
� � � ∂f σ

∂�v
¼ 0; ð10Þ

where barred quantities are normalized. Equation (1) gives:

∂f σ
∂�r

¼ �4�rf σ
1þ �r2

r̂; ð11Þ

∂f σ
∂�v

¼ � �v � �Vσ ẑ
� �

f σ
�v2Tσ

; ð12Þ

and so Eq. (10) becomes:

∂f σ
∂�t

� 4�rf σ
1þ �r2

�vr þ �v × �B
� � � ẑ �Vσ f σ

�v2Tσ
¼ 0: ð13Þ

Inserting Eq. (2):

∂f σ
∂�t

� 4�rf σ
1þ �r2

�vr þ �vr
�r

1þ �r2
�Vσ f σ
�v2Tσ

¼ 0; ð14Þ

∂f σ
∂�t

þ 4�rf σ
1þ �r2

�vr
�Vσ

4�v2Tσ
� 1

� �
¼ 0; ð15Þ

which yields Eq. (4).
For a small time interval δ�t, Eq. (4) can be solved as, writing

ξ ¼ �Vσ=4�v
2
Tσ � 1:

ln
f σ �t ¼ δ�tð Þ
f σ �t ¼ 0ð Þ

� �
¼� �vr

4�rξδ�t
1þ �r2

;

f σ �t ¼ δ�tð Þ ¼ 1
2πv2Tσ

� �3=2

exp � �v � �Vσ ẑ
� �2

2�v2Tσ
� �vr

4�rξδ�t
1þ �r2

 !
n0

1þ �r2ð Þ2 ;

¼ 1
2πv2Tσ

� �3=2

exp � �v � �Vrσ r̂ � �Vσ ẑ
� �2

2�v2Tσ
þO δ�t2

� � !
n0

1þ �r2ð Þ2 ;

which corresponds to Eqs. (5) and (6).

Particle-in-cell simulation
The open-source, fully-relativistic particle-in-cell code, SMILEI42, was used.
The simulationdomainwasLx × Ly = 10di × 10di on a 1024 × 1024grid. The
electromagnetic field boundary condition was Silver-Müller. The particle
boundary condition was set to remove on exit, and a thermal plasma was
continuously injected to replenish the lost particles. A total of 100–200
particles per cell were placed depending on the initial local density. The
fiducial run was conducted with a mass ratio mi/me = 100, Alfven velocity
vA/c = 0.1, initial guide field bg = 0.15, total time 200ω�1

pi , and timestep
Δt ¼ 6:56× 10�3ω�1

pi . The run that was compared with spacecraft obser-
vations was conducted with mi/me = 400, vA/c = 0.025, bg = 0.3, and total
time 500ω�1

pi .

MMS data and coordinate system
MMS1 data from 08:23:09.5 to 08:23:13.5 UT on 6 July 2017 were used to
yield the profile in Fig. 6a–e. The data were imported using the pySPEDAS
package43. The magnetic field data and plasma data were collected by the
Fluxgate Magnetometer instrument44 and the Fast Plasma Investigation
instrument45, respectively.

A particular coordinate system was constructed for a better
comparison with the simulation results. We first took the XYZ
coordinates calculated by Sun et al.26, namely X ¼ �0:96;�0:29; 0:03½ �,
Y ¼ 0:291;�0:95; 0:12½ �, Z ¼ �0:0042; 0:12; 0:99½ � in GSM coordinates,
and redefined Y to be our z-axis—the out-of-plane direction—by
shuffling X;Y ;Zð Þ to Z;X;Yð Þ. The well-known Rodrigues’ rotation
formula was used to rotation the coordinates about the z-axis by 7π/8. The
resultant unit vectors in GSM coordinates are x!¼ �0:361;�0:22;�0:9½ �,
y!¼ 0:889; 0:222;�0:409½ �, and z!¼ 0:291;�0:950; 0:116½ �.

Data availability
MMS data are publicly available from https://lasp.colorado.edu/mms/sdc/
public. PIC simulation data for the fiducial run are available from https://
doi.org/10.5281/zenodo.12191434. PIC simulation data for the MMS
comparison are available from the corresponding author upon reasonable
request.

Code availability
SMILEI42 is an open-source particle-in-cell code available from
https://smileipic.github.io/Smilei. MMS data were imported and
analyzed using the pySPEDAS package43, available from https://
github.com/spedas/pyspedas. The codes used in data analysis and
figure generation are available at https://github.com/ydyoon93/
FluxRopeFormationPostProcess.git.
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