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Abstract 

Background:  Mouse is probably the most important model organism to study mammal biology and human dis-
eases. A better understanding of the mouse genome will help understand the human genome, biology and diseases. 
However, despite the recent progress, the characterization of the regulatory sequences in the mouse genome is still 
far from complete, limiting its use to understand the regulatory sequences in the human genome.

Results:  Here, by integrating binding peaks in ~ 9,000 transcription factor (TF) ChIP-seq datasets that cover 79.9% 
of the mouse mappable genome using an efficient pipeline, we were able to partition these binding peak-covered 
genome regions into a cis-regulatory module (CRM) candidate (CRMC) set and a non-CRMC set. The CRMCs contain 
912,197 putative CRMs and 38,554,729 TF binding sites (TFBSs) islands, covering 55.5% and 24.4% of the mappable 
genome, respectively. The CRMCs tend to be under strong evolutionary constraints, indicating that they are likely cis-
regulatory; while the non-CRMCs are largely selectively neutral, indicating that they are unlikely cis-regulatory. Based 
on evolutionary profiles of the genome positions, we further estimated that 63.8% and 27.4% of the mouse genome 
might code for CRMs and TFBSs, respectively.

Conclusions:  Validation using experimental data suggests that at least most of the CRMCs are authentic. Thus, this 
unprecedentedly comprehensive map of CRMs and TFBSs can be a good resource to guide experimental studies of 
regulatory genomes in mice and humans.
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Background
Mouse is probably the most widely used model organism 
to understand mammal biology and pathology of human 
diseases. Thus, it is not surprising that mouse is the first 
sequenced non-human mammal [1]. Conserved syntenies 
between the human and mouse genomes provide a pow-
erful tool to understand functions of the human genome 
based on the known functions of the mouse orthologous 
sequences [1]. This homology-based approach plays a 

critical role in annotating the coding DNA sequences 
(CDSs) in the human genome. However, the power of 
such comparative genomics approach is hampered in 
annotating human cis-regulatory sequences due to the 
lack of a good understanding of mouse orthologous 
sequences and their less conservation nature compared 
with CDSs [2]. cis-regulatory sequences such as promot-
ers, enhancers and silencers are also called cis-regulatory 
modules (CRMs). While promoters are located upstream 
of target genes, enhancers and silencers can be far away 
(up to millions base pairs) from target genes, and they 
regulate the transcription of target genes independently 
of their locations and orientation [3, 4]. A CRM is made 
of clusters of transcriptional factor (TF) binding sites 
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(TFBSs) of the same and different cooperative TFs, with 
a length ranging from hundreds to thousands of base 
pairs [5]. A CRM carries out its transcriptional regula-
tory function through specific bindings of cognate TFs to 
the TFBSs that it harbors. CRMs play equally important 
roles as CDSs in development, homeostasis, responses 
to environmental changes and evolution of organisms 
[6]. Diversity of CRMs may play even more important 
roles in driving diverse complex traits in humans [7] and 
mice [8]. For example, genome-wide association studies 
(GWAS) in humans have found that most (90%) com-
plex trait-associated single nucleotide variations (SNVs) 
reside in non-coding sequences [9, 10]. Many of these 
SNVs overlap and disrupt TFBSs [11], thereby affect-
ing gene transcription [12–16], and ultimately complex 
traits and diseases. On the other hand, many SNVs are 
in linkage disequilibrium (LD) with nearby TFBSs, and 
thus may not necessarily causal [17–27]. Hence, a better 
understanding of the mouse CRMs will not only aid to 
understand various aspects of mouse biology and make 
it an even better model of human diseases, but also will 
facilitate annotating human CRMs and understanding 
human biology. For example, studies of CRMs in human 
cells or tissues can be complemented by manipulating 
the orthologous CRMs in transgenic mouse in vivo using 
knockout and knockin techniques [1, 28, 29].

In fact, great efforts have been made in the last dec-
ade to systematically annotate CRMs and constituent 
TFBSs in the mouse genome by the research commu-
nity including the mouse ENCODE consortium [30–32] 
and individual groups worldwide using state-of-the-art 
techniques. Particularly, an enormous amount of data 
have been generated using ChIP-seq techniques to locate 
CRM function-related epigenetic marks [33, 34] and TF 
bindings [35] in the genomes of various mouse cell/tis-
sue types. Numerous machine-learning methods [36–42] 
have been developed to simultaneously predict CRMs 
and their functional states using location data of multi-
ple epigenetic marks including histone modifications 
such as H3K4me1 [43–45], H3K4me3 [46] and H3K27ac 
[47], and chromatin accessibility (CA) measured by 
DNase I hypersensitivity [33] and transposase accessibil-
ity [34]. Although conceptually attractive, these meth-
ods suffer quite high false discovery rates (FDRs) [40, 
48–53] due probably to low the specificity of these epige-
netic marks used [48–51, 54] and at the same time, they 
might miss many CRMs in the genome because these 
data are only available in a few cell types [50]. Moreo-
ver, these methods do not predict constituent TFBSs in 
the CRMs, notwithstanding it is mainly the TFBSs in a 
CRM that determine its functions [5, 55]. More recently, 
the ENCODE phase 3 consortium [30] predicted 339,815 
candidate cis-regulatory elements (cCREs) in the mouse 

genome based on overlaps between millions of DNase I 
hypersensitivity sites [56], transposase accessible sites 
[34], active promoter histone mark H3K4me3 [57] peaks, 
active enhancer mark H3K27ac [58] peaks, and insulator 
mark CTCF[59] peaks, in a large number of mouse cell/
tissue types. Nonetheless, the cCREs with an almost uni-
form length of 272  bp are likely only fragments of full-
length CRMs, because the known mouse enhancers have 
a mean length about 2,400 bp [60]. Moreover, the cCREs 
make up of 3.4% of the mouse genome [30], they might 
be largely under predicted.

To overcome the limitations of the existing methods, 
we proposed a two-step approach to first predict a map of 
CRMs and their constituent TFBSs in the genome using 
all available TF ChIP-seq data in the organism, and then 
predict functional states of all the predicted CRMs in 
any cell/tissue type of the organism using few epigenetic 
marks from the very cell/tissue type [50]. We recently 
developed a new CRM predictor dePCRM2 [50] for the 
first step of our approach. dePCRM2 works by identify-
ing closely located clusters of TFBSs in a genome through 
integrating all available thousands of TF ChIP-seq data-
sets in the organism [50]. Unlike the existing methods, 
we use TF ChIP-seq data instead of CA and histone mod-
ification data to predict the loci of CRMs and constituent 
TFBSs, because it has been shown that TF binding is a 
more reliable predictor of CRM loci than CA and histone 
marks [48]. Using dePCRM2, we have predicted a highly 
accurate and unprecedentedly complete map of CRMs 
and constituent TFBSs in the human genome using then 
available 6,092 human TF ChIP-seq datasets [50]. In this 
study, we applied dePCRM2 to 9,060 mouse TF ChIP-
seq datasets, and predicted an unprecedentedly complete 
map of CRMs and constituent TFBSs in 79.9% of the 
mouse genome. Validation of the map using orthogonal 
evolutionary and experimental data suggests that our 
predictions are highly accurate. The map can be a good 
resource to guide experimental studies of the regulatory 
genomes of both mice and humans.

Results
The 1,000 bp binding peaks for cooperative TFs in different 
datasets have extensive overlaps
After quality-control filtering of the 9,060 collected TF 
ChIP-seq datasets (Table S1) (Materials and Methods), 
we ended up with 8,884 datasets containing at least 20 
binding peaks for 696 TFs in 435 cell line/tissue/organ 
types. As in the case in humans [50, 61], these datasets 
are high biased to a few well-studied cell/tissue types 
(Fig. 1A) and TFs (Fig. 1B). For example, 1,020, 504 and 
545 datasets were collected from mouse embryonic 
stem cells, epithelial cells and macrophage in bone mar-
row, respectively, while only one dataset was generated 
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from 68 cell/tissue types, including pancreas beta cell 
MIN6B1, superior cervical ganglion, hepatocellular carci-
noma, and so on (Table S1). Moreover, 460 and 160 data-
sets were collected for TFs Ctcf and SpI1, respectively, 
while just one dataset was produced for 131 TFs, such as 
Tfcp2, Nelfb, Hoxd11, and so on (Table S1). The number 
of remaining binding peaks in a dataset vary widely, rang-
ing from 20 to 110,347, with an average of 15,359 peaks 
(Fig.  1C). The length of the called binding peaks also 
vary widely, ranging from 21 to 11,047 bp with a mean of 
315 bp, but the vast majority of them (98.7%) are shorter 
than 1,000 bp (Fig. 1D). We extracted 1,000 bp genomic 
sequences centered on the summits of the called bind-
ing peaks for motif-finding to identify motifs of both the 
ChIP-ed TFs and their cooperators in each dataset [50, 
62]. Therefore, we extended the lengths of most (98.7%) 
of the originally called binding peak. We have previously 
shown that such extension (~ 1,000  bp) of called peaks 
does not affect finding the motifs of ChIP-ed TFs, which 
typically reside in the middle of the peaks, but allows to 
find motifs of cooperative TFs, which can reside any-
where along the extended peaks [50, 62].

In theory, the larger the number of TF ChIP-seq data-
sets available and used, and the less bias of the datasets to 

few TFs and cell/tissue types, the better predictions that 
dePCRM2 can achieve [50, 61]. To see whether such the 
highly biased datasets include enough datasets for coop-
erative TFs that are reused in different cell/tissue types, 
an assumption upon which dePCRM2 is designed for 
predicting CRMs and constituent TFBSs [50], we calcu-
lated an overlapping score So (formula 1) for each pair of 
the 8,884 filtered datasets, and hierarchically clustered 
them. As show in Fig.  1E, there are numerous overlap-
ping clusters among the datasets which are either for 
largely the same TFs that were ChIP-ed in different cell/
tissue types, or for different known cooperative TFs that 
were ChIP-ed in the same and/or different cell/tissue 
types. For example, as seen in the human datasets [50], a 
cluster is formed by 50 datasets for cooperative TFs Ctcf, 
Rad21, Stag1, and Smc1A in various cell/tissue, reflect-
ing the conserved cooperative relationships of the TFs 
in forming the cohesin complex [63]. Shown in Fig.  1F 
is another example of cluster formed by 88 datasets for 
20 TFs in various cell/tissue types, many of these TFs are 
known or likely to collaborate with each other according 
their physical interactions documented in the BioGRID 
[64] and reactome [65] databases (Fig.  1G). Therefore, 
notwithstanding these datasets are highly biased to few 

Fig. 1  Evaluation of the TF ChIP-seq datasets. A Number of datasets collected in each cell/tissue types sorted in the descending order. B Number 
of datasets collected for each ChIP-ed TF sorted in the descending order. C Number of peaks in each dataset sorted in the ascending order. 
D Distribution of the lengths of originally called binding peaks in the 8,884 datasets. E Heatmap of overlaps of the 1,000 bp binding peaks between 
each pair of the datasets. The highlighted cluster a is formed by 50 datasets for Ctcf and varying number of datasets for its cooperative TFs Rad21, 
Stag1, and Smc1A in different cell/tissue types. F A blowup view of cluster b highlighted in E, formed by 88 datasets for 20 TFs. G Known physical 
interactions between 13 of the 20 TFs for which the 88 datasets form the cluster in F 
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TFs (Fig. 1A) and cell/tissue types (Fig. 1B), they include 
datasets of many cooperative TFs that are reused in vari-
ous cell/tissue types. The 1,000 bp peaks in all the 8,884 
datasets contain a total of 136,441,496,000  bp, which is 
50.1 times the size of the mouse genome (version mm10/
GRCm38), but cover only 2,178,603,271  bp (79.9%) of 
the mappable genome (2,725,521,370  bp). Compared 
with the originally called peaks that cover a total of 
1,398,035,305  bp (51.3%) of the mappable genome, we 
substantially increased the coverage of the genome by 
extending the called peaks to 1,000 bp, the size of shorter 
enhancers [60]. dePCRM2 will predict which DNA seg-
ments in the 79.9% genome regions covered by the 
1,000 bp peaks are CRM candidate (CRMCs), and which 
are non-CRMCs, based on cooccurring patterns of puta-
tive TFBSs of motifs found in the binding peaks in all the 
datasets.

Most of identified unique motifs (UMs) resemble known 
motifs and show intensive cooccurring pattens
dePCRM2 [50] starts by identifying all possible motifs in 
each dataset using ProSampler, an ultrafast motif finder 
[62]. ProSampler finds at least one motif in 8,294 (93.4%) 
of the 8,884 datasets, with a total of 1,062,339 motifs 
found. As shown in Fig. 2A, the number of motifs found 
in a dataset increases with the number of peaks in it, but 
becomes stabilized around 250 when the number of peaks 
is above 50,000. dePCRM2 next identifies co-occurring 
motifs pair (CPs) as potential motifs, thereby filtering out 
most spurious motifs. To do so, dePCRM2 computes a 
co-occurring score Sc (formula 2) for each pair of motifs 
in each dataset and selects the pairs with high scores as 
CPs. As in the case of human genome [50], the Sc scores 
show a trimodal distribution (Fig. 2B). dePCRM2 selects 
motifs pairs as PCs that account for the mode with the 
highest Sc scores ( Sc > 0.7 by default). More specifically, 
dePCRM2 identifies 4,028,221 CPs containing 225,809 
(21.3%) potential motifs from 7,076 (85.3%) of the 8,294 
datasets, while filtering out the remaining 1,218 (15.7%) 
datasets where no CPs are kept, and 836,530 (78.7%) pos-
sible spurious motifs. Many motifs in different CPs can 
be sub-motifs of the same TF, or of different members 
of a TF family that recognize highly similar motifs [66, 
67]. Therefore, dePCRM2 clusters the 225,809 motifs in 
the 4,028,221 CPs by constructing a graph whose nodes 
are the motifs and edges are the SPIC similarity score 
[68] between the motifs pairs, and then cutting the 
graph into dense subgraph as clusters of similar motifs. 
This results in 276 clusters, each containing from 28 to 
49,308 motifs (Figure S1A). From these 276 motif clus-
ters, dePCRM2 identifies 238 unique motifs (UMs) (Fig-
ure S1B). The UMs contain highly varying number of 

TFBSs, ranging from 72 to 14,025,382 with an average of 
1,107,677 (Fig. 2C). The lengths of the UMs range from 
10 to 20 bp with a mean of 10.3 bp, and are in the range 
of the lengths of known TF binding motifs (Fig.  2D). 
The bias of the lengths of UMs to 10  bp is due to the 
limitation of ProSampler that needs to be improved. As 
expected, the UMs and their member motifs are highly 
similar to one another. For example, the 11,799 member 
motifs of UM41 form a dense subgraph/cluster (Fig. 2E), 
and UM41 resembles its highly similar member motifs 
(Fig. 2E, F). To evaluate the UMs, we compared the 238 
UMs against 875 annotated non-redundant motifs in the 
HOCOMOCO [69, 70] and JASPAR [71] databases using 
TOMTOM [72]. Of the 238 UMs, 146 (61.3%) match at 
least one annotated motif, and 113 (77.4%) of the 146 
UMs match at least two (Table S2), suggesting that most 
of the UMs might represent the motifs of the same TF 
family/superfamily which bind highly similar motifs 
[66, 67]. For instance, UM41 matches known motifs of 
five TFs of the “Jun-related factors” family (Jund, Bach1, 
Bach2, Junb and Nfe2) (Fig. 2G), and five TFs of the “Fos-
related factors” family (Atf3, Fosl2, Fosb, Fosl1 and Fos) 
(Table S2). On the other hand, the remaining 92 UMs 
might be novel motifs of unknown cognate TFs. We also 
evaluated the coverage of the UMs on motif families in 
the two databases [70, 71], and found that 82 (64.1%) of 
the 128 annotated TF motif families match one of the 
238 UMs (Table S2), indicating that our predicted UMs 
recovery most of the known TF motif families.

To model cooccurring patterns of the UMs and inter-
actions between their cognate TFs, dePCRM2 computes 
a cooccurrence/interaction score SINTER  (formula 3) 
between each pair of UMs based on the co-occurrence 
of binding sites of UMs. As shown in Fig. 2H, there are 
extensive cooccurrences between the UMs and inter-
actions of their cognate TFs. These patterns of cooc-
currences of the UMs indeed reflect the interactions 
among their cognate TFs or TF families for transcrip-
tional regulation. For example, in a cluster formed by 14 
UMs (Fig. 2I), 10 of them (UM14, UM26, UM28, UM29, 
UM32, UM45, UM53, UM55, UM57 and UM116) match 
known motifs of TF families. More specifically, UM116 
matches Msantd3, UM14 matches Ctcfl, UM26 matches 
Nfe2|Fosb|Atf3|Bach1|Pknox1|Jund|Nkx2-2|Jdp2|Fos
|Junb|Fosl1|Fosl2|Batf|Msantd3|Bnc2|Mafk|Pbx3|Batf
3|Jun, UM28 matches Zfp57|Atf3, UM29 matches Sp3|
Mxi1|Nr1h4|Plagl1|Zfx|Klf3|Rfx1, and UM57 matches 
Nkx2-5|Fos|Fosb|Atf3|Pbx3|Junb|Jund|Pknox1|Fosl1|B
atf3|Fosl2|Jun|Batf|Nkx2-2|Msantd3|Bnc2, etc. Some of 
these TFs are known collaborators in transcriptional reg-
ulation, such as Fos and Jun [73–76], Atf3 and Jun [77], 
Pbx3 and Pknox1 [78], Jun and Batf [78].
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Fig. 2  Prediction of UMs. A Relationship between the number of predicted motifs in a dataset and the size (the number of binding peaks in the 
dataset). The datasets are sorted in the ascending order of their sizes. B Distribution of cooccurrence scores ( Sc ) of motif pairs found in each dataset. 
The dotted vertical line indicates the cutoff value of Sc for predicting cooccurring pairs (CPs). C Number of putative binding sites in each of the UMs 
sorted in the ascending order. D Distribution of the lengths of the UMs and known motifs in the HOCOMOCO and JASPAR databases. E The motif 
similarity graph (upper panel) and the logo (bottom panel) of UM41 containing 11,799 member motifs. In the graph, the nodes (colored in blue, 
each representing a member motif ) are arranged on the rim of the ova, and two member motifs are connected by an edge (colored in green) with 
SPIC score > 0.8. F Logos of six examples of highly similar member motifs of UM41. G UM41 matches known motifs of five TFs of the JUN-related 
family. H Heatmap of the cooccurrence/interaction networks of the 238 UMs, names of most UMs are omitted for clarity. I A blowup view of the 
indicated cluster in H, formed by 14 UMs, of which UM116, UM14, UM26, UM28, UM29, UM32, UM45, UM53, UM55, and UM57 match known motifs 
(see main text)
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Prediction of CRMs and constituent TFBSs in the mouse 
genome
To predict CRMs and constituent TFBSs in the mouse 
genome, dePCRM2 projects the TFBSs of the UMs to the 
genome and links adjacent TFBSs if their distance is less 
than 300  bp (roughly, the length of two nucleosomes). 
dePCRM2 predicts each linked sequence as a CRM can-
didate (CRMC) and each sequence between two adjacent 
CRMCs in the peak-covered regions as a non-CRMC, 
thereby partitioning the peak-covered genome regions 
in two exclusive sets, CRMCs and non-CRMCs. Con-
cretely, dePCTM2 predicts a total of 912,197 CRMCs 
and 1,270,937 non-CRMCs in the peak-covered genome 
regions, consisting of 55.5% and 24.4% of the genome, 
respectively. The CRMCs contains a total of 125,113,756 
TFBSs, consisting of 23.9% of the genome and 42.9% of 
the CRMCs (Fig.  3A). Many of these TFBSs have over-
laps due partially to the aforementioned limitation of our 
motif-finder ProSampler, although it has been shown that 
certain patterns of transcriptional regulation are achieved 
by competitive or cooperative binding of the same or 
different TFs to overlapping TFBSs in a CRM [79–83]. 
We connected each two adjacent overlapping putative 
TFBSs, resulting in a total of 38,554,729 non-overlapping 
putative TFBS islands with a mean length of 17 bp.

Interestingly, as in the case of human genome [50], 
75.6% of genome positions of the originally called binding 
peaks were predicted as CRMC positions (kept-original), 
while the remaining 24.4% were predicted as non-CRMC 
position (abandoned-original) (Fig.  3A). On the other 
hand, 58.7% of the extended positions were predicted 
as CRMCs (kept-extended), while the remaining 41.3% 
were predicted as non-CRMC positions (abandoned-
extended) (Fig. 3A). These results suggest that originally 
called binding peak positions may not necessarily parts 
of CRMs, while many flanking positions of the called 
peaks may be parts of CRMs. Therefore, as we concluded 
earlier [50], extension of the originally called peaks to 
roughly half of the mean length (1,000 bp) of known of 
CRMs (2,400 bp) [60] could greatly increase the chance 
of finding more CRMs in genomes.

To evaluate the CRMCs, dePCRM2 computes a SCRM 
score (formula 3) and a corresponding p-value for each 
CRMC (Materials and Methods). As shown in Fig. 3B, the 
distribution of the SCRM scores of the CRMCs is strongly 
right-skewed relative to that of the Null CRMCs with the 
same number and lengths of the CRMs (Materials and 
Methods), suggesting that the CRMCs are unlikely pro-
duced by chance. Moreover, with the increase in the SCRM 
cutoff α, the corresponding p value drops rapidly, while 
both the number of predicted CRMs with a SCRM > α 
and their coverage of the genome decrease only slowly 
(Fig. 3C), suggesting that most of the CRMCs have quite 
low p-values. More specifically, when the p-value drops 
precipitously from 0.05 to 1.00 × 10–6 the number of 
predicted CRMs and their coverage of the genome only 
decrease from 798,257 to 295,382, and from 55.5% to 
42.1%, respectively (Fig. 3D). Moreover, with the p-value 
dropping from 0.05 to 1.00 × 10–6, the coverage of puta-
tive TFBSs on the genome decreases only from 23.9% to 
19.3%, and their percentage in the CRMs increases only 
from 43.0% to 45.8% (p-value ≤ 1.00 × 10–6) (Fig.  3D). 
As expected, in the 0.05 ~ 1.00 × 10–6 range of p-value 
cutoffs, the vast majority of the predicted CRM posi-
tions (94.9 ~ 95.9%) and constituent TFBS positions 
(93.8 ~ 94.8%) are located in non-exonic sequences 
(Fig.  3D), converging 41.0 ~ 54.70% and 18.6 ~ 23.2% of 
their lengths, respectively (Fig.  3E). Interestingly, the 
remaining 4.1 ~ 5.1% of the predicted CRM positions and 
5.2 ~ 6.2% of constituent TFBS positions are located in 
exonic sequences (Fig. 3D), a well-known phenomenon in 
mammal genome [84–100]. We will address these exonic 
CRMs and TFBS positions in great detail elsewhere.

We next compared the lengths of predicted CRMs 
at different SCRM cutoffs α with those of known mouse 
enhancers in the VISTA database [60]. As shown in 
Fig.  3F, the predicted CRMCs have a shorter mean 
length (1,682 bp) than the VISTA enhancers (2,432 bp). 
This is not surprising since most VISTA enhancers are 
involved in complex embryonic development and tend to 
be longer than other types of enhancers [101]. However, 
with the increase in the SCRM cutoff α, the distribution of 

(See figure on next page.)
Fig. 3  Prediction of CRMs using different SCRM cutoffs. A A cartoon shows the proportions of the 79.9% of genome regions covered by originally 
called binding peaks (64.2%) and their extended parts (35.8%) as well as their relative contributions to the predicted CRMs (kept original (69.5%) 
and kept extended (30.5%)) and non-CRMCs (abandoned original (51.4%) and abandoned extended (41.3%)). Percentage above the lines are 
the proportion of originally called binding peaks and their extended parts that are predicted to be CRMCs and non-CRMCs. B Distribution of the 
SCRM scores of the CRMCs and the Null CRMCs. The inset is a blowup view of the indicated regions. The dotted vertical lines indicate SCRM cutoffs 
for the corresponding p-values. C Number of the predicted CRMs, proportion of the genome predicted to be CRMs and the corresponding p-value 
as functions of the SCRM cutoff α. D Percentage of the genome that are predicted to be CRM and TFBS positions in exonic sequences (ESs) and 
non-exonic sequences (NESs) using various SCRM cutoffs and corresponding p-values. E Percentage of NESs that are predicted to be CRMs and 
TFBSs using various SCRM cutoffs and corresponding p-values. F Distribution of the lengths of CRMs predicted using different SCRM  cutoffs and 
corresponding p-values
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the lengths of predicted CRMs shifts to right. Specifically, 
252,349 (27.7%) of the 912,197 CRMCs were shorter than 
the shortest VISTA enhancer (330  bp), but they cover 

only 2.1% of total length of the CRMCs, suggesting that 
they are likely either short CRMs or components of full-
length enhancers remained to be fully predicted using 

Fig. 3  (See legend on previous page.)
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more TF ChIP-seq datasets in the future. The remaining 
659,848 (72.3%) CRMCs that are longer than the shortest 
VISTA mouse enhancer (330 bp) consist of 97.9% of the 
total length of the CRMCs, and they are likely full-length 
CRMs. Thus, the vast majority (97.9%) of the CRMC 
positions are covered by predicted full-length CRMs. The 
predicted CRMs and constituent TFBSs are available at 
(https://​cci-​bioin​fo.​uncc.​edu).

Predicted CRMCs tend to be under strongly evolutionary 
constraints
To see how the CRMCs and non-CRMC evolve, we 
plotted the distributions of the phyloP scores [102] of 
their nucleotide positions. The phyloP treats negative 
and positive selections in a unified manner and detects 
departures from the neutral rate of substitution in either 
direction, while allowing for clade-specific selection 
[102]. A positive phyloP score indicates the position is 
under purifying selection, a negative score indicates the 
position is under positive selection, and a score around 
zero means the position is selective neutral or nearly 
so. For convenience of discussion, we consider a posi-
tion with a score in the range [-δ, δ] (δ > 0) to be selec-
tively neutral, in the range (δ, max) to be under positive 
selection, and in the range (min, -δ) to be under negative 
selection, respectively. We define the proportion of neu-
trality of a set of position as the areas under the distribu-
tion of the scores within range [-δ, δ], and choose δ = 1 
in this study. For this analysis, we focused on the CRMCs 
and the non-CRMCs in non-exonic sequences, because 
including exonic sequences would confound the analy-
sis due to their coding functions. The distribution of the 
phyloP scores of the non-CRMCs peaks at the neutral 
range with a proportion of neutrality of 0.89 (Fig.  4A), 
suggesting that the non-CRMC positions are largely 
selective neutral as expected, although it is possible that 
some non-CRMC positions that are under some level of 
selections might have functions other than cis-regulatory. 
In contrast, the distribution of the phyloP scores of the 
CRMC positions displays a lower peak in the neutral 
range with a proportion of neutrality of 0.77 (Fig.  4A), 
and spreads to both negative selection and positive selec-
tion ranges. These results indicate that CRMC positions 
are more likely to be under evolutional constraints than 
the non-CRMC positions. Thus, the CRMCs are more 
likely to be functional than non-CRMCs, although some 
CRMC positions that are selected neutral might not be 
functional. Notably, the mouse VISTA enhancers are 
even more likely to be evolutionarily conserved than 
our predicted CRMCs (Fig.  4A), although the former 
are largely a small subset of the latter (see below). This 
is not surprising that the VISTA enhancers were selected 
for validation in transgene animal models due to their 

ultra-conservation [28] and thus are mainly involved in 
embryonic development [103, 104] Therefore, as in the 
case of the human genome [50], dePCRM2 is able to par-
tition the peak-covered genome regions into a functional 
set, i.e., the CRMCs, and a non-functional set, i.e., the 
non-CRMCs.

As we indicated earlier, there are still 20.1% of genome 
regions that are not covered by the extended peaks. To 
see whether the non-exonic sequences in these peak-
uncovered regions contain functional elements such as 
CRMs, we plotted the distribution of the phyloP scores 
of their genomic positions. The proportion of neutrality 
(0.83) of these positions is in between those of the peak-
covered regions (0.78) and those of the non-CRMCs 
(0.89) (Fig. 4A), suggesting that they might contain func-
tional elements, albeit with a lower density than that in 
the peak-covered regions. Based on the difference in the 
proportion of neutralities of the peak-covered and peak-
uncovered regions as well as that of the non-CRMCs, 
we estimate that proportion of CRMC positions in the 
peak-uncovered regions is about [(1–0.83)-(1–0.89)]/
[(1–0.78)-(1–0.89)] = 54.55% that of CRMC positions in 
the peak-covered regions.

As expected, the kept-original positions as well as the 
kept-extended positions have almost the same phyloP 
score distributions as the CRMCs (Fig.  4B), indicating 
that they all are under strongly evolutionary constraints. 
In contrast, the abandoned-original peak positions as 
well as the abandoned-extended positions have an almost 
identical phyloP score distributions to that of the non-
CRMCs (Fig. 4B), indicating that they all are largely selec-
tively natural or nearly so. These results strongly suggest 
that the kept extended positions are likely functional, 
while the abandoned-original positions are unlikely func-
tional. This results confirm our earlier conclusion that 
originally called binding peaks cannot be equivalent to 
CRMs, and appropriate extension of the originally called 
short binding peaks can greatly increase the power of 
available datasets for predicting CRMs and constituent 
TFBSs in genomes [50].

Higher‑scoring CRMs are more likely under evolutionary 
constraints
To investigate the relationship between the evolution-
ary behaviors of the CRMCs and their SCRM scores, we 
plotted the distribution of the phyloP score of subsets of 
CRMCs with SCRM scores in nonoverlapping intervals. 
As shown in Fig. 4C and D, with the increase in the SCRM 
scores, the proportion of neutrality of the correspond-
ing CRMs first drops rapidly and then enters a gradually 
decreasing phase. Thus, CRMCs with higher SCRM  scores 
are more likely under evolutionary constraints, indicating 
that the SCRM score captures the evolutionary behavior 

https://cci-bioinfo.uncc.edu
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Fig. 4  Different evolutionary constraints on the predicted CRMCs and the non-CRMCs in non-exonic sequences measured by phyloP scores. 
A Distributions of phyloP scores of nucleotide positions of the VISTA enhancers, the predicted CRMCs, the non-CRMCs, peak-covered regions 
and peak-uncovered regions. The area under the density curves in the score interval [-1, 1] is defined as the proportion of neutrality of the 
positions. B Distributions of phyloP scores the kept-original, the kept-extended, the abandoned-original and the abandoned-extended positions 
in comparison with those of the CRMCs and the non-CRMCs. The distributions for the kept-original positions and the kept-extended positions 
are significantly different from those of the abandoned-original positions and the abandoned-extended positions, respectively, p < 2.2 × 10–302 
(K-S test). C Proportion of neutrality of the CRMCs with a SCRM score in different intervals in comparison with that of the non-CRMCs (a). 
D Distributions of the phyloP scores of the non-CRMCs and the CRMCs with SCRM scores in the intervals indicted by color and letters in 
(C). E Proportion of neutrality of the CRMs predicted using different SCRM score cutoffs and corresponding p-values in comparison with 
those of the non-CRMCs (a) and the CRMCs (b). F Distributions of the phyloP scores of the non-CRMCs, the CRMCs and the CRMs predicted using 
the SCRM score cutoffs and corresponding p-values indicated by color and letters in (E)
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of a CRM. Interestingly, even the CRMCs with scores 
in the lowest interval [0, 1) have a lower proportion of 
neutrality than that of the non-CRMCs (0.87 vs 0.89) 
(Fig. 4C and D), suggesting that even these lowest scoring 
CRMCs that tend to be short (Fig. 3F) are under stronger 
evolution constraints than the non-CRMCs, and thus are 
likely functional.

Next, we examined the phyloP scores for the CRMs 
predicted at different SCRM  score cutoffs α (or p-values). 
As shown in Fig. 4E and F, with the increase in the SCRM  
score cutoff α, the proportion of neutrality of the pre-
dicted CRMs decreases gradually, suggesting again that 
the SCRM score captures the evolutionary behavior of the 
CRMCs. As indicated earlier, even at the lowest SCRM 
cutoff (α = 0), the predicted CRMs (i.e., all the CRMCs) 
have smaller neutral composition than that of the non-
CRMCs, suggesting that at least most of the CRMC are 
functional, and the higher the SCRM score of a CRM, the 
more likely it is evolutionarily constrained, and thus the 
more likely it is functional.

Predicted CRMs are supported by independent 
experimental data
We next evaluated the sensitivity (recall rate) of our 
CRMs predicted at different p-values for recalling four 
types of experimentally determined CRM-related ele-
ments, including 620 mouse enhancers documented in 
the VISTA database [60], 163,311 mouse promoters and 
49,385 mouse enhancers determined by the FANTOM 

project [105, 106], and 2,208 QTLs documented in the 
Mouse Genome Informatics (MGI) databases [107]. 
Interestingly, most of these experimentally determined 
elements are located in the peak-covered genome regions, 
including 579 (93.4%) VISTA enhancers, 163,311 (99.1%) 
FANTOM promoters and 49,385 FANTOM enhanc-
ers (99.2%) [108], with the exception for QTLs with only 
1,023 (46.3%) being located in the peak-covered regions. 
If a predicted CRM and an element overlaps each other 
by at least 50% of the length of the shorter one, we say 
that the CRM recovers the element. As show in Fig. 5A, 
with the increase in the p value (decrease in -log(p)) cut-
off, the sensitivity increases rapidly and saturates at a 
p-value cutoff 0.05 (α ≥ 65) to 99.3%, 93.8%, 86.8%, 82.3% 
for recovering the VISTA enhancers, FANTOM promot-
ers, FNATOM enhancers and QTLs, respectively. Thus, 
the VISTA enhancers are largely a subset of our CRMCs. 
In contrast, the control sequences with the matched 
number and lengths of the predicted CRMs at different 
p-value cutoffs only recall an expected proportions of 
the elements by chance (p < 2.2 × 10–302, χ2 test) (Fig. 5A). 
Figures S2A ~ S2D show examples of the predicted CRMs 
that recover these four different types of experimentally 
determined elements.

The varying range of sensitivity from 82.3% for QTLs 
to 99.3% for VISTA enhancers might reflect the vary-
ing reliability of methods used to characterize these four 
types of elements. For example, VISTA enhancers and 
FANTOM promoters were determined by highly reliable 

Fig. 5  Validation of the predicted CRMs by VISTA enhancers, FANTOM promoters (FPs), FANTOM enhancers (FEs) and QTLs. A Sensitivity (recall rate) 
of the predicted CRMs or the control sequences as a function of p-value cutoff for recalling each set of the experimentally determined elements. 
The dashed vertical line indicates the p-value cutoff of 0.05. The sensitivity of the CRMs predicted at all the indicated p-value cutoffs are significantly 
higher (p < 2.2 × 10–302, χ2 test) than the control sequences for recalling each set of the experimentally determined elements. B Distributions 
of phyloP scores of the shared and unshared nucleotide positions of the elements in each set of the experimentally determined elements, in 
comparison with those of the predicted CRMs at p ≤ 0.05 and of the non-CRMCs. The difference between the distributions of shared and unshared 
positions in each set of the experimentally determined elements is significant, p < 2.2 × 10–302 (K-S test). Note that there are only three unrecalled 
VISTA enhancers
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transgene animal models [60] and CAGE methods [109], 
respectively, and our predicted CRMs achieve very high 
sensitivity to recall them. On the other hand, FANTOM 
enhancers and QTLs were determined by less reli-
able eRNA quantification [108] and association studies, 
respectively, and our predicted CRMs achieve relatively 
low sensitivity to recall them.

To find out whether our predicted CRMs missed these 
unrecalled elements, or they are simply false positives 
due to the limitations of experimental methods used 
to characterize them, we compared the phyloP scores 
of the recalled and unrecalled elements. As shown in 
Fig. 5B, for all the four types of elements, the recalled ele-
ments (solid lines) tend to be under strongly evolution-
ary constrains like our predicted CRMs, thus are likely 
functional. In contrast, the unrecalled elements (dashed 
lines) are largely selective neutral like our predicted non-
CRMCs, thus are likely false positives produced by the 
methods used to characterize them. Based these results, 
we estimated an FDR of 0.7% (100%-99.3%), 6.2% (100%-
93.8%), 13.2% (100%-86.8%) and 17.7% (100%-82.3%) 
in VISTA enhancers, FANTOM promoters, FANTOM 
enhancers and QTLs, respectively.

Most of predicted CRMs might be in correct lengths
Correct characterization of the lengths of CRMs is noto-
riously difficult both experimentally and computation-
ally, because even short components of a long CRM 
might still be at least partially functional in transgene 
animal models [28], and because functionally related 
independent enhancers may cluster with each other to 
form super-enhancers [110, 111], or locus control regions 

(LCRs) [112]. Although VISTA enhancers are by no 
means a gold standard set of CRMs with correctly char-
acterized lengths [60], they are the only available set of 
validated enhancers in mouse. As we indicated earlier, 
our CRMs predicted at p-value cutoff 0.05 recall 575 
(99.3%) of the 579 VISTA enhancers in the peak-covered 
genome regions (Fig. 5A), we thus ask whether the recall-
ing CRMs have a length matching the recalled VISTA 
enhancers. To this end, we computed the ratio of the 
length of a recalling CRM over that of its recalled VISTA 
enhancer. As shown in Fig.  6A, the recalling CRMs are 
on average twice as long as the recalled VISTA enhanc-
ers. To see whether we over-predict the lengths of the 
recalling CRMs or the recalled VISTA enhancers are 
only shorter functional components of long enhancers, 
we compared phyloP scores of the 1,303,562 bp positions 
shared by the recalling CRMs and the recalled VISTA 
enhancers, with those of the 3,005,862  bp (69.75%) and 
73173 bp (5.31%) positions specific to the recalling CRMs 
and the recalled VISTA enhancers (Fig. 6B). As expected, 
like our predicted CRMC positions (Fig.  4A), positions 
shared by the CRMs and the VISTA enhancers tend to 
be under strongly evolutionary constraints (Fig.  6C). 
Moreover, the CRM specific positions (69.75%) also tend 
to be under strongly evolutionary constraints (Fig.  6C) 
as expected, suggesting that the positions in recalling 
CRMs that the recalled VISTA enhancers lack might be 
functional. In contrast, like our predicted non-CRMCs 
(Fig. 4A), the VISTA enhancer specific positions (5.31%) 
are largely selectively neutral (Fig.  6C), suggesting that 
the positions in the recalled VISTA enhancers that the 
recalling CRMs lack might not be functional. Therefore, 

Fig. 6  dePCRM2 might correctly predict the lengths of most CRMs. A Boxplots of the ratio of the length of a recalling CRM over that of its recalled 
VISTA enhancers and FANTOM5 enhancers. The p value was calculated using the Mann–Whitney U test. B Venn diagram showing the number of 
nucleotide positions shared by recalling CRMs and recalled VISTA enhancers, and the number of positions specific to the recalling CRMs and the 
recalled VISTA enhancers. C Distributions of phyloP scores of the positions shared by the recalling CRMs and the recalled VISTA enhancers, and of 
the positions specific to the recalling CRMs and to the recalled VISTA enhancers. The difference between the distributions of the shared and VISTA 
specific positions is significantly different, p < 2.2 × 10–302, K-S test
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although the recalled VISTA enhancers are only half as 
long as the recalling CRMs, they might contain non-
enhancer sequences that comprise 5.31% of the total 
length of the recalled VISTA enhancers. On the other 
hand, we noted that 38 (6.6%) VISTA enhancers were 
recalled by multiple short CRMCs, suggesting that some 
of short CRMCs are indeed only components of a long 
CRMC, whose full-length forms remain to be predicted 
when more TF ChIP-seq data are available in the future.

We also compared the lengths of the recalling CRMs 
and their recalled FANTOM5 enhancers. As shown in 
Fig.  6A, the recalling CRMs (median length 4,233  bp) 
are about 14.7 times as long as the recalled FANTOM 
enhancers (median length 288  bp). Moreover, 34.8% of 
the recalled FANTOM enhancers were located in the 
same CRMs. Thus, FANTOM enhancers tend to be short 
components of long CRMs. Taken together, these results 
strongly suggest that although some of our CRMCs might 
be short components of long CRMs, the vast majority of 
the CRMs predicted p-value cutoff of 0.05 might be in 
correct full length, while many VISTA enhancers and 
most FANTOM enhancers might be only a component of 
otherwise long enhancers.

Our predicted CRMs and constituent TFBSs are more 
accurate and complete than existing predictions
We further evaluated our 798,257 CRMs predicted at 
p-value ≤ 0.05 ( SCRM ≥ 65 ) with two sets of predicted 
mouse enhancers, including 339,815 cCREs predicted 
recently by the ENCODE phase 3 consortium [30] and 
519,386 enhancers from the EnhancerAtlas database [42]. 
As shown in Fig. 7A, these three sets of predicted CRMs 
containing highly varying numbers of elements cover 
highly varying portions of the genomes, i.e., 55.5%, 3.4% 
and 81.6% by our CRMs, the cCREs and the Enhancer-
Atlas enhancers, respectively. Since all our CRMs are 
located in the peak-covered genome regions, we only 
consider for comparison the cCREs and the Enhancer-
Atlas enhancers that have at least one nucleotide posi-
tion overlapping the peak-covered genome regions. As 
shown in Fig. 7A, the vast majority of the cCREs (339,721 
or 99.97%) and the EnhancerAtlas enhancers (436,504 
or 84.0%) have at least one nucleotide position overlap-
ping the peak-covered genome regions. The cCREs and 
EnhancerAtlas enhancers that at least partially overlap 
the peak-covered genome regions cover 3.4% and 81.6% 
of the genome (Fig.  7A). Therefore, our CRMs in the 
peak-covered genome regions cover a much larger pro-
portion (55.5%) of the genome than do the cCREs (3.4%), 
but a much smaller proportion of the genome than do the 
EnhancerAtlas enhancers (81.6%).

To see whether we over-predicted the CRMs with 
respect to the cCREs, or under-predicted the CRMs 

with respect to the EnhancerAtlas, we first identified 
the shared and unshared genome positions among the 
three sets of sequence elements. As shown in Fig.  7B, 
most (85,075,038  bp or 92.0%) of the cCRE positions 
overlap our CRM positions, but they only cover 5.6% of 
our CRM positions, while missing 94.4% of our CRM 
positions because of the much shorter total lengths of 
the cCREs (Fig.  7A). The remaining 8.0% of the cCRE 
positions do not overlap our CRM positions. A total of 
1,364,995,621  bp (61.3%) EnhancerAtlas enhancer posi-
tions overlap our CRM positions (Fig.  7B), covering 
90.3% of our CRM positions, while missing 9.7% of our 
CRM positions. The remaining 39.7% of the EnhancerAt-
las enhancer positions do not overlap our CRMs.

We then compared the phyloP scores of the cCRE 
and EnhancerAtlas enhancer positions that they shared 
and unshared with our CRMs positions (Fig.  7B). As 
expected, like our CRM positions (Fig.  7C), both the 
cCRE and the EnhancerAtlas positions shared with 
our CRMs tend to be under strongly evolutionary con-
straints, suggesting that they are likely functional. In 
stark contrast, the eCRE and the EnhancerAtlas posi-
tions unshared with our CRMs are largely selectively 
neutral like the non-CRMCs, suggesting that they might 
be not functional, and thus are false positive predictions. 
These results suggest that the cCRE and EnhancerAtlas 
enhancer positions that overlap our CRMs are more 
likely to be functional, while those that do not overlap 
our CRMs are more likely to be false positives. There-
fore, based on the proportion of the unshared positions, 
we estimate the FDRs of the cCREs and EnhancerAtlas 
enhancers to be about 8.0% and 39.7%, respectively.

We also compared sensitivity of our CRMs, Enhancer-
Atlas and cCREs for recalling FANTOM prompters and 
VISTA enhancers in the peak-covered genome regions. 
We choose the FANTOM promoters and VISTA enhanc-
ers for this validation because the high quality of the 
two datasets with an estimated FDR of 0.7% and 6.2%, 
respectively, based on their proportions of neutrality 
(Fig.  5B). As shown in Fig.  7D, our CRMs substantially 
outperform the cCREs for recalling the FANTOM pro-
moters (93.8% vs 46.3%) and VISTA enhancers (99.3% vs 
91.4%). However, this comparison might not be meaning-
ful as the total length of our CRMs is 16 time as large as 
that of the cCREs. On the other hand, although the total 
length of our CRMs is only 68.0% that of the Enhancer-
Atlas enhancers, our CRMs outperform the Enhancer-
Atlas enhancers for recalling VISTA enhancers (99.3% vs 
97.9%) and FANTOM promoters (93.8% vs 70.1%).

Finally, we compared the lengths of our CRMs with 
those of the cCREs and the EnhancerAtlas enhancers. 
As shown in Fig. 7E, the distribution of the lengths of 
the cCREs has a very sharp peak around 250  bp with 
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a mean length of 272  bp, indicating that the cCREs 
have almost the same lengths, a possible artifact of 
the prediction methods. Both the distributions of the 
lengths of our CRMs and EnhancerAtlas enhancers 
are similarly strongly skewed toward right with a mean 
length of 1,893 and 4,285  bp, respectively. Since there 
is no gold standard set of full-length CRMs, we could 
not validate the length of our CRMs and Enhancer-
Atlas enhancers. However, based on the evolutionary 
constraints on our CRMs, most our predicted CRMs 

might be in full-length, while 39.7% of the Enhancer-
Atlas enhancers positions might be false positives as we 
argued earlier. Taken together, our results suggest that 
our CRMs might be more accurate and complete than 
both the cCREs and the EnhancerAtlas enhancers.

About 64% of the mouse genome might code for CRMs
As we indicated earlier, our predicted 912,197 CRMCs 
make up of 55.5% of the mappable mouse genome. To 

Fig. 7  Comparison of our CRMs (p-value < 0.05) with the cCREs and the EnhancerAtlas enhancers. A Percentage of the genome covered by all the 
sequences of the CRMs, the cCREs and the EnhancerAtlas enhancers (All), and by the sequences in the CRMs, the cCREs and the EnhancerAtlas 
enhancers, which at least partially overlap the peak-covered genome regions (Partially overlap). B Upset plot showing numbers of nucleotide 
positions shared and unshared among the sequences in the three sets of predicted CRMs. C Distributions of phyloP scores of nucleotide positions 
of the cCREs and the EnhancerAtlas enhancers that are shared and unshared with our CRMs (p-value ≤ 0.05). D Comparison of sensitivity of the 
three sets of predicted CRMs for recalling FANTOM promoters and Vista enhancers. E Distributions of lengths of the CRMs, EnhancerAtlas enhancers 
and cCREs. The inset is a zooming-in view of the indicated range of the vertical axis
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estimate the FDR of the CRMCs, we took a semi-theo-
retic approach as we did earlier in the human genome 
[50]. Specifically, we calculated the expected num-
ber of true positives and false positives in the CRMCs 
with a SCRM score in each of non-overlapping interval 
based on the density of the SCRM  scores of the CRMCs 
and the density of the SCRM  scores of the Null CRMCs 
(Fig.  8A), yielding 910,711 (99.84%) expected true 
positives and 1,486 (0.16%) expected false positives 
in the CRMCs (Fig.  8B). Most (1,373/1,486 = 92.40%) 
of the 1,486 expected false positive CRMCs have a 
low SCRM score < 50 (insets in Fig.  8A and B) with a 
mean length of 64 bp, comprising 0.004% (1,486*64 bp 
/2,725,521,370 bp) of the mappable genome and 0.007% 
(0.004/55.5) of the total length of the CRMCs, i.e., an 

FDR of 0.007% for the CRMC positions (Fig. 8C). Thus, 
our predicted true CRMCs would comprise 55.5%-
0.004% = 55.496% of the genome. On the other hand, as 
the CRMCs miss 0.7% of VISTA enhancers in the peak-
covered regions [the point at -log (p) = 0 in Fig.  5A], 
we assume the FNR of predicting CRMC positions to 
be about 0.7%. We estimate false negative CRMC posi-
tions to be 0.007*0.55496/(1–0.007) = 0.39% of the 
genome, which is 0.39%/24.4% = 1.60% of the total 
length of the non-CRMCs, meaning a false omis-
sion rate (FOR) of 1.60% for the non-CRMC positions 
(Fig. 8C). Hence, true CRM positions in the peak-cov-
ered regions would be 55.5%-0.004% + 0.39% = 55.89% 
of the genome (Fig.  8C). In addition, as we argued 
earlier, the CRMC density in the peak-uncovered 

Fig. 8  Estimation of the portion of the mouse genome encoding CRMs. A Expected number of true positive and false positive CRMCs in the 
predicted CRMCs in each one-unit interval of the SCRM  scores. The inset is a blow-up view of the axes defined region. B Expected cumulative 
number of true positives and false positives with the increase in SCRM  score cutoff for predicting CRMs. The inset is a blow-up view of the axes 
defined region. C Proportions of the peak-covered genome regions (79.9%) and peak-uncovered genome regions (20.1%) in the genome and 
estimated proportions of CRMCs in them. Percentages in the braces are the proportions of the indicated sequence types in the genome, and 
percentages in the boxes are the proportions of the indicated sequence types in the covered regions or in the uncovered regions
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20.10% genome regions is about 54.55% of that in the 
peak-covered genome regions, CRMCs in the uncov-
ered regions would be about 0.201*0.5589*0.5455/0
.779 = 7.87% of the genome (Fig.  8C). Taken together, 
we estimated about 55.89% + 7.87% = 63.76% of the 
genome to code for CRMs, for which we have pre-
dicted 55.89/63.76 = 87.66%. Moreover, as we pre-
dicted about 42.9% of CRMs to be made up of TFBSs 
(Fig.  3D), we estimated about 0.429*63.76% = 27.35% 
of the genome to encode TFBSs. Furthermore, assum-
ing a mean length 1,893 bp for CRMs (the mean length 
of our predicted CRMs at p-value ≤ 0.05), and a mean 
length of 17 bp for TFBS islands, we estimated that the 
mouse genome would encode about 918,010 CRMs 
(2,725,521,370 × 0.6376/1,893) and 43,848,829 non-
overlapping TFBS islands (2,725,521,370 × 0.2735/17). 

Discussion
In this study, using the dePCRM2 pipeline [50], we predicted 
an unprecedented comprehensives map of 0.91 M CRMCs 
and 38.55 M constituent TFBS islands in 79.9% of the mouse 
mappable genome covered by 1,000  bp binding peaks in 
8,884 ChIP-seq datasets for 696 TFs in 435 mouse cell line/
tissue/organ types. Many features of the predicted CRMCs 
and TFBSs in the mouse genome are reminiscent of those 
of our earlier predicted CRMCs and TFBSs in the human 
genome [50]. First, the number of predicted UMs in both 
genomes are very close (238 vs 210), reflecting the fact that 
both genomes encode highly conserved sets of TF families 
[66, 113]. Second, most of the UMs in both genomes match 
known TF motif families, and most known motif families 
are matched by the UMs in both genomes. Third, the mouse 
CRMCs consist of 55.5% of the mouse genome, while the 
human CRMCs make up of 44.0% of the human genome 
[50]. The higher genome coverage of the mouse CRMCs are 
clearly due to a larger number (9,060 vs 6,092) of available TF 
ChIP-seq datasets covering a higher proportion (79.9% vs 
77.5%) of the mouse genome were used. Fourth, peak-uncov-
ered regions in both genome may still contain CRMs albeit 
at a lower density than the peak-covered regions accord-
ing to their evolutionary profiles (Fig.  4A) [50]. To predict 
CRMs and constituent TFBSs in these peak-uncovered 
regions in both genomes, more TF ChIP-seq data, particu-
larly, for new TFs in new cell/tissues of human and mouse 
are needed to cover these currently peak-uncovered regions. 
We expect that with more TF ChIP-seq datasets available in 
both the human and mouse cell/tissue types, the peak-cov-
ered genome regions would increase and eventually become 
saturated [50, 61]. Fifth, we estimated that about 63.8% 
(Fig. 8C) and 55.4% [50] of the mouse and human genomes 
might encode CRMs, and TFBSs make up of about 40% of 
the lengths of the CRMs in both genomes. Therefore, CRMs 
might be more prevalent than originally thought in both the 

mouse and human genomes. However, they might not be as 
prevalent (81% and 59% in the mouse and human genomes, 
respectively) (Fig.  7C) [50] as the EnhancerAtlas database 
documented [42].

Sixth, the predicted CRMCs in both genomes are more 
likely subject to evolutionary constraints than the pre-
dicted non-CRMCs that are largely selectively neutral 
or nearly so. Hence, the CRMCs are likely cis-regulatory, 
while the non-CRMCs are unlikely cis-regulatory. Sev-
enth, the predicted CRMCs in both genomes achieve 
very high sensitivity for recalling CRM-related ele-
ments determined by highly reliable methods, such as 
the VISTA enhancers and FANTOM promoters. Eighth, 
recalling CRMs in both genomes are about twice as long 
as the recalled VISTA enhancers, and the unshared posi-
tions in the recalling CRMs are subject to strong evo-
lutionary constrains, while unshared positions in the 
recalled VISTA enhancers are not. Therefore, most of the 
predicted CRMCs in both genomes are likely in correct 
full-lengths, particularly, those with higher SCRM  scores 
and lower p-values, while some VISTA enhancers might 
be only components of long CRMs, but still are at least 
partially functional [3, 114]. However, a small portion of 
the predicted CRMCs in both genomes might be short 
components of long CRMs, particularly, those with low 
SCRM scores and higher p-values. Clearly, more TF ChIP-
seq data are needed to cover the relevant genome regions 
to predict them in full-lengths.

Nineth, the predicted CRMCs in both genomes are sub-
stantially more complete and more accurate than those 
predicted by other state-of-the-art methods measured by 
evolutionary constraints (Fig. 7C) and sensitivity for recall-
ing experimentally determined VISTA enhancers and 
FANTOM5 promoters. Thus, dePCRM2 is a powerful and 
robust method for de novo prediction of CRMs and TFBSs 
in large mammal genomes by integrating a very large num-
ber of TF ChIP-seq datasets. Tenth, we predicted 42.1% 
and 30.5% of the CRMC positions in the human and 
mouse genomes, respectively, based on the extended parts 
of the sequences. Therefore, extending the lengths of most 
of originally called peaks to 1,000  bp could substantially 
increase the power of the available datasets. On the other 
hand, we predicted 37.8% and 24.8% of originally called 
peak positions in the human and mouse genomes, respec-
tively, to be non-CRMCs. Thus, the originally called bind-
ing peaks might not be equivalent to parts of CRMs. These 
results reflect the noisy nature of TF ChIP-seq data and 
the fact that although TFBSs of a ChIP-ed TF are typically 
located in the middle of called peaks, those of its coopera-
tive TFs can reside anywhere along the flanking regions of 
the peak within the host CRM [50, 62].

Finally, although the functional states (TF binding or 
non-TF-binding) of some CRMs in a cell/tissue type can 
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be predicted based on the overlaps of the CRMCs and TF 
binding peaks available in the cell type [50], functional 
states of most of the predicted CRMCs in most cell types 
in both organisms are currently agnostic due to the lim-
ited availability of TF ChIP-seq data in most cell types. 
Fortunately, it has been shown that when the locus of a 
CRM is accurately anchored by the bindings of key TFs, 
few epigenetic marks can be an accurate predictor of the 
functional state of the CRM [40, 48, 49, 53, 115]. Thus, 
the second step of our proposed two-step approach is to 
predict the functional states of all the predicted CRMs in 
any cell type in an organism using a minimal set of epige-
netic marks collected from the very cell type.

With the availability in the future of even more TF ChIP-
seq datasets for more diverse TFs in more diverse cell/tis-
sue types of humans and mice, as well as of other important 
model organisms such as Caenorhabditis elegans, Drosoph-
ila melanogaster and Arabidopsis thaliana, we are hopeful 
to predict even more accurate and complete maps of CRMs 
and constituent TFBSs in all these genomes. These maps will 
facilitate characterizing functional states and target genes of 
the CRMs in various cell/tissue types of the organisms, and 
elucidating the rules of organization and evolution of CRMs 
and constituent TFBSs at a genome scale.

Methods
Datasets
We downloaded the.narrowPeak BED files for 9,060 
mouse TF ChIP-seq datasets (Table S1) from the Cis-
trome database [116]. The binding peaks in each dataset 
were uniformly called by a pipeline based on the MACS 
program [117], and each binding peak was assigned with 
a score (the 5th column in the.narrowPeak BED files) that 
measured enrichment of the ChIP-seq reads count in the 
peak relative to the influence of local biases [116]. We fil-
tered out low-quality peaks with an enrichment score less 
than 20 in each dataset. We discarded filtered datasets 
with fewer than 20 binding peaks, resulting in 8,884 data-
sets used in the subsequent predictions. For each called 
binding peak in each dataset, we extracted a 1,000 bp peak 
centered on the middle of the peak. We did so, because 
almost all known mammal enhancers with a mean length 
about 2,400  bp [60] were longer than the mean length 
(315pb) of the called binding peaks and TFBSs are scat-
tered along the entire lengths of enhancers [62, 118–120].

To validate our predictions, we downloaded 620 mouse 
enhancers from the VISTA Enhancer database [60], a total 
of 49,385 mouse enhancers and 163,311 mouse promoters 
from the FANTOM5 data portal [105, 106], and 2,208 QTLs 
from Mouse Genome Informatics (MGI) databases [107]. 
Two compared our predictions with existing methods, we 
downloaded 339,815 mouse cCREs [30] and 519,386 mouse 
EnhancerAtlas enhancers [42] from the respective websites.

Measurement of the overlap of binding peaks 
between two different datasets
We calculate an overlap score S0

(

di, dj
)

 of binding peaks 
between each pair of datasets di and dj , defined as,

Prediction of CRMs and constituent TFBSs
To predict CRMs and constituent TFBSs in the mouse 
genome, we applied the dePCRM2 pipeline [50] to the 
datasets containing 1,000  bp peaks. DePCRM2 predicts 
CRMs and constituent TFBSs by identifying repeatedly 
cooccurring TFBSs of cooperative TFs in the 1,000 bp bind-
ing peaks in all the collected ChIP-seq datasets for various 
TFs in different cell/tissue types of the organism [50, 61]. 
This design of dePCRM2 was based on the observation that 
most cooperative TFs are often reused in various cell/tissue 
types at different developmental stages and/or under dif-
ferent homeostasis conditions [3]. Briefly, we first identify 
motifs using ProSampler [62]. Secondly, we find the highly 
frequently co-occurring motifs pairs (CPs) in each dataset 
by computing a co-occurring score, defined as

where |Md(i)| and |Md (j)| are the number of bind-
ing peaks containing TFBSs of motifs Md(i) and Md (j), 
respectively; and o Md(i),Md j  the number of bind-
ing peaks containing TFBSs of both the motifs in d. 
Thirdly, we cluster highly similar motifs in CPs across 
all the datasets, and find a representative motif in each 
resulting motif cluster as a unique motif (UM) using 
ProSampler [62]. Fourthly, we construct an interaction 
network N  to model cooccurrence patterns of the UMs 
and interactions between their cognate TFs. In N  , the 
nodes are the UMs that are fully connected, and the 
edge between UMs Ui and Uj is weighted using an inter-
action score, defined as,

where D(Ui,Uj) is the datasets in which TFBSs of 
both Ui and Uj occur, d(Uk) the subset of dataset d , 
containing at least one TFBS of Uk , S(d(Ui), (d(Uj)) the 
subset of d containing TFBSs of both Ui and Uj , and r(s) 
the shortest distance between any TFBS of Ui and any 
TFBS of Uj in a sequence s ∈ S(d(Ui), (d(Uj)) . Fifthly, 
we connect two adjacent TFBSs of the UMs if their dis-
tance d ≤ 300  bp and predict the connected segment 
to be a CRM candidate (CRMC) and at the same time, 
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we predict a sequence in the peak-covered regions that 
cannot be connected to be a non-CRMC. In this way, 
we partition the peak-covered genome regions in two 
exclusive sets, i.e., the CRMCs and the non-CRMCs. 
Sixthly, we evaluate each CRMC containing n TFBSs, 
( b1, b2 · · · , bn), by computing a CRM score, defined as,

where U(bk) is the UM of TFBS bk , 
SINTER

[

U(bi),U(bj)
]

 the interaction score between U(bi) 
and U

(

bj
)

 in N  , S(bk ) the binding score of bk based on 
the position weight matrix (PWM) of U(bk) [121]. Only 
TFBSs with a positive score are considered. Seventh, we 
evaluate the statistical significance of each predicted 
CRMC. To do so, we first generate a Null CRMC set 
with matched lengths and nucleotide frequencies of the 
CRMCs using a third order Markov chain model [62], 
and a random interaction network Nʹ generated by ran-
domly shuffling the weights in N  . Then, we compute 
the SCRM score for each Null CRMC using formula (4). 
We compute an empirical p-value for a CRMC with a 
SCRM = s , defined as,

where n(s) is the number of Null CRMCs with a 
SCRM > s, and M the total number of the CRMCs. 
Finally, dePCRM predicts functional states (TF-binding 
or non-TF-binding) in a cell/tissue type of the CRMs 
whose constituent TFBSs overlap binding peaks of 
ChIP-ed TFs in the cell/tissue type [50].
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member motifs in the 245 motif clusters. In each graph, a node in blue 
represents a member motif of the cluster, and two member motifs are 
connected by an edge in green if their similarity is greater than 0.8 (SPIC 
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44620464) recovers a VISTA enhancer located in gene Runx2. B.  A 
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