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Deficient type I interferon-b and type III interferon-k induction by rhinoviruses has previously been reported in mild/

moderate atopic asthmatic adults. No studies have yet investigated if this occurs in severe therapy resistant asthma

(STRA). Here, we show that compared with non-allergic healthy control children, bronchial epithelial cells cultured

ex vivo from severe therapy resistant atopic asthmatic children have profoundly impaired interferon-b and interferon-k
mRNA and protein in response to rhinovirus (RV) and polyIC stimulation. Severe treatment resistant asthmatics also

exhibited increased virus load, which negatively correlated with interferon mRNA levels. Furthermore, uninfected cells

from severe therapy resistant asthmatic children showed lower levels of Toll-like receptor-3 mRNA and reduced retinoic

acid inducible gene and melanoma differentiation-associated gene 5 mRNA after RV stimulation. These data expand on

the original work, suggesting that the innate anti-viral response to RVs is impaired in asthmatic tissues and demonstrate

that this is a feature of STRA.

INTRODUCTION

Acute viral infections are the most frequent cause of asthma
exacerbations, and are therefore responsible for the majority of
the morbidity, mortality, and healthcare costs attributed to
asthma.1–4 Despite treatment with oral or inhaled corticoster-
oids (ICS), b2 agonists and their combinations; asthma
exacerbations continue to occur and represent a major unmet
need in medical practice.5–8 Children with severe therapy
resistant asthma (STRA), have asthma-related symptoms,
continued morbidity, hospitalizations, and asthma exacerba-
tions despite high-dose therapy.9 Atopic STRA children
previously exhibited variable eosinophillic airway inflamma-
tion yet submucosal mast cell, neutrophil, and lymphocyte
counts did not significantly differ from non-asthmatic control
groups. Increased bronchoalveolar lavage (BAL) Th2 cytokines
are not a defining feature of STRA, despite the presence of
atopy.10 More research is needed to understand potential
mechanisms of asthma exacerbations in severe asthma and the
identification of new therapeutic targets represent a major
research goal.

Recently, innate anti-viral responses to rhinovirus (RV)
infection have been shown to be impaired in cells from
asthmatics.11–15 Upon infection with RV, bronchial epithelial
cells (BECs) respond by producing innate interferon (IFN)
production composed of type I IFN-b, and the type III IFN-
ls;16–18 IFN-ls are a newly identified anti-viral cytokine family,
which use a unique receptor complex19 yet have similar
properties to the type I IFNs IFN-b and IFN-a.20 IFN-b, rather
than the numerous IFN-as are the most common type I IFN
produced by BECs,21 and both IFN-b and IFN-ls signal via
their respective receptor complexes to induce a well-ordered
program of transcription, resulting in the upregulation of IFN-
stimulated genes (ISGs).22,23 The ISGs elicit the anti-viral
response, through degrading virus RNA, preventing virus-
associated protein trafficking and/or virion assembly, and
inducing apoptosis. IFN from infected cells act in a positive
feedback loop and prime adjacent, uninfected cells for rapid
induction of anti-viral immunity through upregulation of more
IFN, innate receptors, and ISGs.24,25 BECs cultured from
bronchial brushings of mild–moderate atopic asthmatic adults
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have demonstrated deficient IFN-b mRNA and protein upon
RV16 infection ex vivo, decreased RV16 induced apoptosis, and
increased virus replication compared with control cells from
non-atopic non-asthmatics (NANA).12 The asthmatic BECs
had similar mRNA and protein of the pro-inflammatory
cytokines IL-6 and RANTES compared with non-asthmatics,
suggesting that this deficiency was associated specifically with
IFN production. The deficient IFN-b observed was not related
to GC use, as GC treated and GC naive asthmatic individuals
exhibited similar levels of reduced RV induced IFN-b. In a
related study,13 the type III IFN-l family was studied in the
BECs from adults sampled by Wark et al. The BECs from
asthmatic subjects also showed deficient IFN-l1 and IFN-l2/3
mRNA and protein compared with controls, which negatively
correlated with RV16 replication. Furthermore, the importance
of IFN-l was demonstrated in vivo using an experimental RV
challenge model in asthmatics.13 BAL cells from mild–
moderate atopic asthmatic adult donors stimulated with
RV16 ex vivo demonstrated deficient levels of IFN-l1 and
IFN-l2/3 protein and mRNA compared with NANA controls.
The abundance of ex vivo derived IFN-l1 and IFN-l2/3 protein
levels negatively correlated with RV load, cold score, reductions
in lung function and markers of airway inflammation after
experimental challenge in vivo.13 These data demonstrate IFN-
ls to be associated with severity of asthma exacerbations and
also highlight that adult asthmatics are deficient in this
important anti-viral cytokine family.

While the initial findings concerning IFN-b and IFN-l
impairment have been reproduced in a study using asthmatic
BECs cultured with polyIC;14 two recent studies have failed to
observe impaired IFN production in BECs cultured from
asthmatics, suggesting that impaired IFN may not be so easily
observable or is related to a subset of asthmatics.22,26

Furthermore, impaired IFN expression in BAL macrophages
was recently confirmed by a study of mild–moderate
asthmatic adults,27 and impaired IFN upon infection
has also been observed with other respiratory viruses including
Newcastle disease virus and respiratory syncytial virus infection
of peripheral blood mononuclear cells28,29 and influenza
infection of purified plasmacytoid dendritic cells (pDCs).30

Together, the data suggest that impaired IFN responses in

asthma may not be restricted to BECs and are not limited to RV
infection.

In the present report, we have investigated IFN expression
upon RV infection and stimulation with the Toll-like receptor-3
(TLR3) ligand polyIC in ex vivo cultured BECs. We observed
that IFN-b, IFN-l1, and IFN-l2/3 mRNA levels are up to 600-
fold lower in BECs from STRA children compared with NANA
controls. Basal TLR3 levels were also lower in STRA BECs, and
at 24 h post-infection, the virus induced RIG-like helicases
(RLHs) retinoic acid inducible gene (RIG-I) and melanoma
differentiation-associated gene 5 (MDA5) mRNA were also
diminished in STRA BECs. STRA children also showed
elevated RV replication yet normal CXCL8/IL-8 and
CXCL5/ENA-78 pro-inflammatory cytokine mRNA levels.
RV induced IFN-b, IFN-l1, and IFN-l2/3 mRNA levels were
not associated with age, IgE levels, allergen reactivity, BAL and
sputum neutrophils and eosinophils, or lung function. Thus,
deficient innate IFN responses are present in BECs from severe
therapy resistant asthmatic children.

RESULTS

STRA BECs exhibited impaired IFN-b and IFN-k2/3 mRNA
abundance at 8 and 24 h following RV infection.

We first assessed the expression of IFN-b, IFN-l1, IFN-l2/3
mRNA following RV16 and RV1B infection at 8 h in both
STRA and NANA using real-time quantitative PCR, presenting
the data as normalized copy number. At 8 h post-infection, we
observed significant induction of IFN-b in NANA (Po0.05)
and in STRA (Po0.01) by RV1B but not RV16 when compared
with medium. There was a significantly greater IFN-b mRNA
abundance in NANA compared with STRA in RV16 infected
cells (Po0.05, fold difference in median, 320) with a similar
trend for RV1B-induced IFN-b (fold difference in median 5.7),
though this trend was not statistically significant (Figure 1a).
For IFN-l1, we observed a significant induction by both RV16
and RV1B for NANA (Po0.05 for both viruses) and STRA
(Po0.05 RV16, Po0.001 RV1B). There was no statistically
significant difference in IFN-l1 mRNA abundance between
NANA and STRA; however, STRA had lower median levels for
both RV16 and RV1B (median fold difference 614 for RV16; 7.4
for RV1B) (Figure 1b). For IFN-l2/3 mRNA, we observed a

Figure 1 Bronchial epithelial cells (BECs) from severe therapy resistant asthma (STRA) have impaired RV16 induced interferon (IFN)-b
and IFN-l2/3 mRNA expression compared with non-atopic non-asthmatic (NANA) at 8 h. NANA (n¼11) and STRA (n¼ 11) BEC cultures were infected
with RV16, RV1B, or medium and (a) IFN-b, (b) IFN-l1, (c) IFN-l2/3 mRNA measured at 8 h post-infection. Horizontal line indicates the
median.*Po0.05, **Po0.01, ***Po0.001 vs. medium þPo0.05 as indicated, NS¼not significant.
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significant induction by both RV16 and RV1B for NANA
(Po0.05 for both viruses) and STRA (Po0.01 RV16, Po0.001
RV1B). STRA had less IFN-l2/3 mRNA than NANA for both
RV16 and RV1B infected cultures (median fold difference, 109
and 3.8, respectively) although differences were significant for
RV16 only (Po0.05) (Figure 1c).

At 24 h post-infection, each IFN subtype was significantly
induced by both RV1B and RV16 (Po0.01 at least) with the
exception of IFN-b in STRA, which was not significantly
induced by RV16 (Figures 2a–c). There was significantly less
IFN mRNA abundance in STRA compared with NANA for all
IFN subtypes, with median fold differences for IFN-b of 282
with RV16 (Po0.01), and 23 for RV1B (Po0.01) (Figure 2a),
for IFN-l1, 261 with RV16 (Po0.05) and 46 for RV1B
(Po0.05) (Figure 2b), for IFN-l2/3 a fold difference of 131 for
RV16 (Po0.01) and 11 for RV1B (Po0.05) was observed
(Figure 2c). IFN abundance at 24 h did not correlate with age
(Supplementary Figure S2 online) and was not significantly
different between males and females (Supplementary Figure
S3 online). We also measured the induction of two non-IFN
genes, CXCL8 and CXCL5 and compared expression levels in
NANA and STRA to determine whether deficiencies were
restricted to IFN induction. We observed that CXCL8 and
CXCL5 mRNA abundance was not significantly induced by
RV16 or RV1B vs. medium treated controls at either time point

and no differences were observed between NANA and STRA
for any treatment (data not shown).

Uninfected STRA BECs exhibited lower TLR3 mRNA levels
and impaired RV induced RIG-I and MDA5 mRNA
abundance at 24 h

Having established that IFN mRNA induction at 24 h was
significantly impaired in STRA vs. controls, we next assessed if
mRNA levels of the pattern recognition receptors RIG-I,
MDA5, and TLR3 were differentially expressed in STRA and
healthy control samples. Previously, studies have shown that
TLR3, RIG-I, and MDA5 are required for IFN mRNA
induction by RV17,18 with TLR3 acting as a likely initial sensor
of dsRNA and RIG-I and MDA5 serving as virus and IFN-
inducible sensors also required for maximal IFN mRNA
induction.18 We initially found that at 8 h post-infection with
RV1B or RV16, RIG-I and MDA5 were not significantly
induced and that levels were similar in STRA and controls
(Supplementary Figure S4 online). TLR3 mRNA was also not
induced at 8 h, but was significantly less abundant in STRA
samples vs. controls for all treatments (Po0.05 at least)
(Supplementary Figure S4 online). At 24 h postinfection, we
found that in healthy controls RV16 and RV1B both
significantly induced RIG-I (Po0.001 and Po0.01,
respectively) (Figure 3a) and MDA5 (Figure 3b) (Po0.001

Figure 2 Bronchial epithelial cells (BECs) from severe therapy resistant asthma (STRA) have impaired RV16 and RV1B induced interferon
(IFN)-b, IFN-l1, and IFN-l2/3 mRNA compared with non-atopic non-asthmatic (NANA) at 24 h. NANA (n¼ 11) and STRA (n¼11) BEC cultures
were infected with RV16, RV1B, or medium and (a) IFN-b, (b) IFN-l1, (c) IFN-l2/3 mRNA measured at 24 h post-infection. Horizontal line indicates the
median *Po0.05, **Po0.01, ***Po0.001 vs. medium þPo0.05, þ þPo0.01, as indicated, NS¼ not significant.

Figure 3 Unstimulated bronchial epithelial cells (BECs) from severe therapy resistant asthma (STRA) have impaired Toll-like receptor-3 (TLR3)
mRNA levels and impaired RV16 and RV1B induced RIG-I and MDA5 mRNA compared with non-atopic non-asthmatic (NANA) at 24 h. NANA
(RIG-I n¼ 11, MDA5 and TLR3 n¼ 10) and STRA (n¼ 10) BEC cultures were infected with RV16, RV1B, or medium and (a) RIG-I, (b) MDA5, (c) TLR3
mRNA measured at 24 h post-infection. Horizontal line indicates the median *Po0.05, **Po0.01, ***Po0.001 vs. medium þPo0.05, þ þPo0.01,
þ þ þPo0.001 as indicated, NS¼ not significant.
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and Po0.01, respectively), but not TLR3 (Figure 3c). In STRA
samples, RIG-I, MDA5 and TLR3 was not significantly induced
by either virus. STRA BECs had significantly lower RIG-I
mRNA in RV16 (9.6-fold difference vs. control, Po0.01) and
RV1B (9.2-fold difference, Po0.05) infected cultures,
significantly lower MDA5 also for RV16 (7.3-fold
difference, Po0.05) and RV1B (5.8-fold difference,
Po0.05) infected cultures, and significantly lower TLR3
mRNA in RV16 (11-fold difference, Po0.001) and RV1B
(16.6-fold difference, Po0.01) infected cultures, and also lower
TLR3 levels in cells treated with medium only (3.4-fold
difference, Po0.01) (Figures 3a–c).

STRA BECs exhibited increased RV load that negatively
correlated with IFN-b and IFN-k expression

We next examined RV release, hypothesizing that differences in
IFN expression between NANA and STRA should lead to
differences in RV release with STRA likely having higher RV
release due to impaired IFN induction. Changes in RV load
would also be consistent with the idea that IFN protein was
being produced by the epithelial cells, and induce IFN-
mediated signaling and thus ISGs that affect virus growth.
We found that abundance of RV1B but not RV16 was
significantly higher at 24 h post-infection in STRA compared
with NANA (Po0.05), with the median value for STRA for
RV16 being o1-fold lower than NANA, but 2.5-fold higher for
RV1B (Figure 4a). At 48 h, RV1B STRA virus load was signi-
ficantly higher still, when compared with NANA (7-fold higher
median, Po0.01) while RV16 virus release showed a trend for
higher levels in STRA (8.7-fold higher median) but was not
statistically significant (Figure 4b). Correlations showed that

RV1B induced IFN-b and IFN-l2/3 mRNA levels at 24 h
negatively correlated with RV1B loads at 48 h (Figure 4c and e)
and there was a trend for a negative correlation for RV1B
induced IFN-l1 mRNA levels (Figure 4d). We did not observe
any significant correlations with any IFN mRNA at 24 h and
RV16 load at 48 h (data not shown).

STRA BECs have reduced IFN-k protein at 24 h compared
with NANA

RV16 and RV1B induced IFN-b, IFN-l and CXCL8 protein in
culture supernatants at 24 h was also measured. Expression of
IFN-b was barely detectable at 24 h, not significantly induced
by either RV compared with medium at 24 h, but levels were
significantly greater in NANA than in STRA for RV16
(Po0.05) but not for RV1B (Figure 5a). IFN-l levels were
more robustly induced by RV16 and RV1B, but not signifi-
cantly different from medium. IFN-l protein was significantly
lower for STRA compared with NANA for both RV16
(Po0.01) and RV1B (Po0.05) (Figure 5b). CXCL8
showed trends for induction by RV16 and RV1B in NANA
that was not significantly different from medium treated cells.
RV1B, but not RV16 induced CXCL8 was significantly induced
compared with medium for STRA BECs (Po0.01). There was
no significant difference between STRA and NANA; however,
STRA showed trends for lower levels of CXCL8 release
(Figure 5c). We could not detect CXCL5 in amounts
greater than the sensitivity of the ELISA (data not shown).

STRA BECs have deficient IFN mRNA abundance upon
stimulation with polyIC at 8 h

We next assessed the expression of IFN-b, IFN-l1, IFN-l2/3
mRNA following stimulation with the TLR3 ligand, polyIC at

Figure 4 Bronchial epithelial cells (BECs) from severe therapy resistant asthma (STRA) have increased RV load, which negatively correlated
with interferon (IFN) induction. Non-atopic non-asthmatic (NANA) (n¼10) and STRA (n¼ 10) BEC cultures were infected with RV16, RV1B,
or medium and RV load (TCID50 per ml) measured at (a) 24 or (b) 48 h post-infection. RV1B load at 48 h was then correlated with RV1B induced (c) IFN-b,
(d) IFN-l1, and (e) IFN-l2/3 mRNA at 24 h. Horizontal line indicates the median *Po0.05, **Po0.01 vs. medium or as indicated.
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8 h, as previously reports of asthmatic BECs have observed
deficient IFN responses using polyIC.12,14 Previously, studies in
adults showed that the peak IFN mRNA expression with polyIC
is at 8 h, so differences at 8 h between NANA and STRA were
examined. At 8 h post-infection, we did not observe significant
induction of IFN-b in NANA or STRA, by polyIC, and no
significant difference in IFN-b mRNA abundance between the
two groups (fold difference in median of o1) (Figure 6a). For
IFN-l1, we observed a significant induction by polyIC for
NANA (Po0.001) and STRA (Po0.001), and STRA had
significantly less IFN-l1 mRNA abundance when compared
with NANA (fold difference in median of 433, Po0.01)
(Figure 6b). For IFN-l2/3, we observed a significant induction
by polyIC in NANA (Po0.001) and STRA (Po0.01), with
STRA having significantly less IFN-l2/3 mRNA than NANA
(fold difference in median of 218, Po0.001) (Figure 6c). We
also measured the induction of two non-IFN genes, CXCL8 and
CXCL5, and compared expression levels in NANA and STRA.
We observed that CXCL8 and CXCL5 mRNA abundance was
not significantly induced by polyIC vs. medium treated controls
at 8 h and no differences were observed between NANA and
STRA (data not shown).

STRA BECs exhibited impaired TLR3 mRNA levels in
unstimulated cells and unimpaired polyIC induced RIG-I
and MDA5 mRNA abundance at 8 h

We also wanted to assess if polyIC failed to induce the pattern
recognition receptors in STRA BECs. Previously, we established
that both RIG-I and MDA5 are polyIC inducible in BECs.18 At
8 h post-treatment, we found that polyIC significantly induced
RIG-I mRNA in NANA (Po0.01) and STRA BECs (Po0.05)
(Figure 7a), and also induced MDA5 in NANA (Po0.05) but
not STRA BECs (Figure 7b). We also observed that polyIC
significantly induced TLR3 mRNA in NANA (Po0.05) but not
STRA BECs (Figure 7c). When comparing mRNA induction of
the receptors between NANA and STRA BECs, we observed no
significant difference for RIG-I, or MDA5 but found that
medium treated and polyIC induced TLR3 mRNA was lower in
STRA BECs (Po0.05, 3.6-fold difference; and 4.7-fold
difference Po0.01, respectively) (Figure 7c).

STRA BECs exhibit reduced polyIC induced IFN-k and
CXCL8 protein release compared with NANA

PolyIC induced IFN-b, IFN-l, and CXCL8 protein in culture
supernatants was also measured at 8 and 24 h. At 8 h, no

Figure 5 Bronchial epithelial cells (BECs) from severe therapy resistant asthma (STRA) have impaired RV16 and RV1B induced interferon (IFN)-b,
and IFN-l protein in supernatants at 24 h compared with non-atopic non-asthmatic (NANA). NANA (n¼11) and STRA (n¼ 11) BEC cultures
were infected with RV16, RV1B or medium and (a) IFN-b, (b) IFN-l1, and pro-inflammatory cytokine (c) CXCL8 protein release in supernatants measured
at 24 h post-infection. Horizontal line indicates the median **Po0.01 vs. medium, þPo0.05, þ þPo0.01, as indicated, NS¼not significant.

Figure 6 Bronchial epithelial cells (BECs) from severe therapy resistant asthma (STRA) have impaired polyIC induced interferon
(IFN)-l1 and IFN-l2/3 mRNA compared with non-atopic non-asthmatic (NANA) at 8 h. NANA (n¼ 9) and STRA (n¼ 9) BEC cultures were treated with
1 mg/ml polyIC or medium and (a) IFN-b, (b) IFN-l1, (c) IFN-l2/3 mRNA measured at 8 h post-infection. Horizontal line indicates the median. **Po0.01,
***Po0.001 vs. medium, þ þPo0.01, as indicated, NS¼not significant.
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significant difference in IFN-b (Figure 8a) or IFN-l
(Figure 8b) was observed between NANA and STRA,
although NANA showed trends for a greater IFN-l
response. CXCL8 protein was not significantly induced in
NANA and STRA but showed trends for greater CXCL8 levels
upon polyIC treatment. There was no significant difference
between NANA and STRA, although STRA showed trends for
lower levels of CXCL8 (Figure 8c). At 24 h post-treatment,
IFN-b was again not significantly induced in NANA or STRA
BECs and not significantly different between the two groups but
more IFN-bwas seen in NANA (Figure 8d). For IFN-l, NANA
showed significant induction by polyIC (Po0.05); however,
STRA did not, and NANA IFN-l levels were significantly

higher than for STRA (Po0.05) (Figure 8e). For CXCL8,
NANA and STRA showed no significant induction by polyIC,
exhibited trends for increased CXCL8 release upon polyIC
treatment for both groups and CXCL8 levels were significantly
lower in STRA stimulated BECs compared with NANA BECs
(Po0.01) (Figure 8f). CXCL5 was not detectable in culture
supernatants following polyIC treatment (data not shown).

IFN mRNA levels from STRA BECs were not associated with
IgE, markers of atopy ICS, number of exacerbations and
lung function

We also attempted to correlate IFN mRNA levels at 24 h and
virus load data at 48 h with total IgE, numbers of positive RAST

Figure 7 Unstimulated bronchial epithelial cells (BECs) from severe therapy resistant asthma (STRA) have impaired Toll-like receptor-3 (TLR3) mRNA
levels but not impaired polyIC induced RIG-I and MDA5 mRNA compared with non-atopic non-asthmatic (NANA) at 8 h. NANA (n¼ 9) and STRA (n¼ 7)
BEC cultures were treated with 1mg/ml polyIC or medium and (a) RIG-I (b) MDA5 (c) TLR3 mRNA measured at 8 h post-infection. Horizontal line indicates
the median. *Po0.05, **Po0.01 vs. medium, þPo0.05, þ þPo0.01, as indicated, NS¼ not significant.

Figure 8 Bronchial epithelial cells (BECs) from severe therapy resistant asthma (STRA) have impaired polyIC induced interferon (IFN)-b, IFN-l and
CXCL8 protein in supernatants compared with non-atopic non-asthmatic (NANA) at 24 h. NANA (n¼ 9) and STRA (n¼ 9) BEC cultures were treated with
1 mg/ml polyIC or medium and (a) IFN-b, (b) IFN-l1, (c) CXCL8 protein release in supernatants measured at 8 h (a–c) and 24 h (d–f) post-infection.
Horizontal line indicates the median *Po0.05 vs. medium þPo0.05, þ þPo0.01, as indicated, NS¼ not significant.
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tests, cumulative RAST tests, BAL and sputum neutophil and
eosinophil numbers inhaled corticosteroids (ICS), numbers of
exacerbations and lung function. We found no correlation with
any IFN mRNA or virus load with any of these clinical end
points (data not shown).

DISCUSSION

In this study we have identified that BECs from STRA children
have impaired innate IFN responses to RV infection and polyIC
stimulation. Impaired IFN expression was related to increased
virus load, yet unrelated to age, IgE, or lung function. This study
has confirmed impaired innate responses to RV in asthmatic
BECs,12–14 and are important for a further two reasons; this is
the first observation in severe asthma and confirms a previous
report11 investigating impaired IFN responses in BECs
from asthmatic children, including children as young as 9
years of age.

The strong associations between virus infections in asthma
onset early in life and as precipitants of asthma exacerbations
later in life has led to the hypothesis that asthmatics may have
impaired protective immune responses to viruses and that
increased virus replication may lead to greater duration and
severity of asthma symptoms.3 Evidence for this idea came with
later studies of innate IFN production in mild–moderate
asthmatic BECs cultured ex vivo12,13 which showed that
asthmatic cells have a marked deficiency in IFN-b and
IFN-l production. Since, there has been one study in mixed
moderate and severe asthmatic adult donors treated with
polyIC14 but no studies have yet investigated severe asthma
exclusively. Two recent studies did not observe impaired IFN
expression in studies of mild–moderate asthmatics,22,26

suggesting that these observations may be restricted to a
poorly defined subgroup. We therefore set out to examine if
STRA children would also exhibit impaired IFN production.
The causes of STRA are incompletely understood, and severe
asthmatics present an important subgroup of asthma in need of
new therapies. If these patients too showed evidence of defective
anti-viral immunity, this could lead to new therapeutic options
for severe asthma such as IFN-b treatment.31 The identification
of impaired IFN responses in children, including very young
children could provide important insights into the mechan-
ism(s) responsible for this defect. We have thus extended the
original studies and report that BECs derived from STRA
children have profound defects in IFN-b and IFN-l produc-
tion, and therefore show elevated RV replication.

Our STRA children all experienced persistent symptoms
despite maximal therapy. We therefore, cannot rule out that
some of our data may be influenced by therapy. It is important
to point out, however, that BEC cultures are often seeded by a
few initial cells obtained in the brushings, which take B2–3
weeks to grow before being used for experiments. Therefore, it
is difficult to argue that the experimental BECs themselves are
influenced by therapy, as they have not been exposed to it. In
support we saw no association between ICS usage and IFN
abundance or RV replication. We cannot also distinguish
between the effects of atopy vs. asthma, as all our children were

atopic asthmatics, our controls are, however, healthy NANAs.
Further studies are required to make this important distinction.
One strength of our study is that all STRA children are truly
therapy resistant, as non-adherent children are careful filtered
out of the study group during this protocol. We experienced
great difficulty in recruiting appropriate STRA children and
controls, and spent over 3 years recruiting 11 STRA children
and NANA controls. Performing bronchoscopes and obtaining
brushings in children is technically difficult, and is not
commonly performed, as supported by the few published
studies available in the literature.32–34 Controls can be
especially difficult to recruit, thus limiting overall numbers.
This study represents the first investigation of impaired innate
responses to viruses in STRA.

We have shown that IFN-b, IFN-l1, and IFN-l2/3 mRNA
are impaired in asthmatic BECs, and this is specific for IFNs, as
the NF-kB regulated pro-inflammatory cytokines CXCL8 and
CXCL5 mRNA were very similar between NANA and STRA,
although polyIC induced CXCL8 protein release was sig-
nificantly higher in NANA. The decreased CXCL8 protein, a
pro-inflammatory cytokine, observed in STRA does not fit with
the mRNA data or what has been previously seen in asthmatic
BEC studies12 or BAL macrophages that exhibited deficient RV
induced IFN. Also, in a recent study in cystic fibrosis (CF),
BECs from CF children exhibited impaired IFN expression
after infection with RV but again had comparable CXCL8 levels
to controls.35 The differences in CXCL8 protein levels between
NANA and STRA in the present study may have been
influenced by a few NANA individuals who also exhibited
unusually increased spontaneous CXCL8 release in uninfected,
medium treated cells. Larger numbers are required to identify if
reduced CXCL8 in STRA is reproducible or is an anomaly of
our study.

We found it difficult to measure released IFN protein,
especially IFN-b in our culture supernatants. IFN-b protein is
notoriously difficult to measure and may be unstable. Hence,
our results for IFN-b protein measurements may not truly
reflect how deficient this protein is in STRA. IFN-l was
produced at higher levels and was easier to measure, and in
general results showed that IFN-l protein was impaired in
STRA. As surrogate markers of IFN protein production, we
measured RV replication and RLH mRNA expression. Again
there were distinct differences between RLH mRNA induction
and RV replication in STRA vs. controls, indirectly suggesting
that IFN protein levels are different in these two populations.
We found that RV1B but not RV16 negatively correlated with
IFN mRNA levels, and why RV1B but not RV16 gave this
association is difficult to explain. RV1B replicated at higher
levels and produced more IFN, it is possible that this made
associations to be more readily observed. It is also possible that
each virus responds subtly differently to IFN, affecting the
chances of observing meaningful associations between the two.

There are several possible ways in which defective IFN-b
and/or IFN-l could impact on asthma exacerbation pathogen-
esis. Herein, we observed increased RV release in STRA BECs
that was negatively related to IFN levels produced in the same
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cells, suggesting that an inability to control early virus
replication and dissemination in the lower airway by having
impaired IFN (but not impaired virus induced inflammation)
likely leads to later epithelial destruction, enhanced virus
induced inflammation,2,36 and mucus hyper secretion,37 and
therefore has enhanced negative effects on lung function. In
support, the previous study by Contoli showed that defective
IFN-l and IFN-l2/3 was related to enhanced cold symptoms,
airway inflammation, and decreases in lung function.13 The
IFN-inducible cytokine IL-15 has also been inversely related to
increased cold score and airway hyper responsiveness in
asthmatics.38 A recent study has highlighted the anti-Th2
nature of IFN-l in a mouse model, suggesting that IFNs may be
antagonists of Th2 immunity.39 Furthermore, asthmatic pDCs
have impaired IFN-a responses following influenza challenge,
which is negatively related to serum IgE; and cross-linking
FceR1-bound IgE reduced IFN-a induction in response to
influenza,30 suggesting again that Th2 pathways and innate IFN
responses reciprocally regulate each other. Thus, there are
many mechanisms through which a defective IFN-b or IFN-l
response may promote virus induced asthma exacerbations.

In our study of STRA children, we could not find any
relationship between atopy and allergy (RAST, IgE levels) or
Th2-mediated inflammation (eosinophils) with impaired IFN.
We also investigated associations between ICS usage and
numbers of exacerbations, and found no associations. This
could be due to the effects of therapy skewing these clinical
markers of disease such that the true levels are diluted, or
possibly due to the small sample size employed. Alternatively,
other data show that STRA is a disease not strongly associated
with Th2 cytokines such as IL-4 and IL-1310 such that
important clinical associations with impaired IFN in STRA
may not be associated with atopy, allergy, or Th2 immunity.
Further larger studies are required to identify clinical outcomes
that may be associated with impaired IFN in STRA.

Recently, the signaling pathway(s) used by RV to induce
IFN-b and IFN-l have been studied.17,18,40 RV dsRNA is
recognized by TLR3 and the RLHs RIG-I and MDA5. The bulk
of the evidence thus far does not support that a direct germline
defect in these pathway(s) may explain impaired IFN in asthma.
Array studies22 have not found that these pattern recognition
receptors are poorly expressed in asthma, and large genotyping
studies have not highlighted any single-nucleotide polymorph-
isms associated with asthma for these genes.41,42 These
receptors also activate signaling pathways that are also common
for pro-inflammatory cytokines,18 which are not consistently
reduced in studies where impaired IFN are observed.12,14 Of
interest we found less TLR3 mRNA in untreated STRA cells vs.
controls. These data suggest that TLR3 expression may be
impaired in asthmatic cells, but this observation was not seen in
a recent study of asthmatic BAL macrophages.27 The decreased
expression of TLR3 in STRA cells may also explain trends for
lower CXCL8 protein release, as RV induction of CXCL8 is
TLR3 dependent.18 We also saw decreased induction of RIG-I
and MDA5 by viruses at 24 h, which we believe is due to a lack of
IFN acting as an additional inducer of RIG-I and MDA5.18

Curiously, differences between STRA and NANA were not seen
for polyIC after 8 h, presumably because IFN had not had time
to signal back and contribute to further RLH induction at this
early time point. Whether or not defective IFN in severe asthma
is due to germline defects in a pattern recognition receptor or
signaling molecule in TLR or RLH pathway requires further
exploration.

In summary, we have shown for the first time that impaired
IFN-b and IFN-l induction is a feature of BECs cultured from
STRA children. There is also a functional readout; STRA BECs
also have higher RV loads that are consistent with impaired IFN
expression. We therefore conclude that impaired innate IFN
expression is a feature of STRA and can be observed in young
children. This study has therefore extended existing knowledge
concerning impaired innate immunity in asthma and could
potentially impact on how STRA and virus induced exacer-
bations of STRA are managed in the future.

METHODS

Severe therapy resistant asthmatic (STRA) and NANA children.
BECs were obtained from 11 pediatric patients with STRA undergoing
clinically indicated bronchoscopies. STRA was defined as persistent
(most days, for at least 3 months) chronic symptoms of airway
obstruction (requiring a rescue bronchodilator on at least 3 days per
week), despite treatment with high dose ICSs (at least 800mg/day of
beclomethasone equivalent) and trials of add on drugs (long acting b2

agonists, leukotriene receptor antagonists, and oral theophylline in a
low, anti-inflammatory dose) and/or recurrent severe asthma
exacerbations.43 None of the subjects was taking antibiotics at the time
of the study and all were considered to be free of clinical infections. All
had been evaluated in detail to exclude reversible factors such as poor
adherence as a cause of their severe asthma.44,45 Eleven children
(NANA) with no history of asthma, no record of food allergy, rhinitis
or eczema, and no family history of asthma were recruited. After
written consent, these children were recruited into the study while
being intubated for other clinical procedures (including haemoptysis,
laryngomalacia, and congenital cystic adenomatoid malformation).
Approval for the study of pediatric patients was given by Royal
Brompton Hospital Ethics Committee, and the Ethics Committee of
the Canton of Bern, Switzerland. Written informed consent from
parents and age-appropriate assent form children was obtained in each
case. Table 1 provides the details of the participants in the study.

BEC culture. BECs were grown from brushings (up to 6 brushes per
patient) of the bronchial tree during bronchoscopy or through the
endotracheal tube in subjects undergoing elective surgery under
general anesthesia. BECs were cultured according to previously
published protocols in BEGM medium (Clonetics, Basal Switzer-
land).12,32 BECs were split when confluent, and seeded for experi-
mentation at passage 2. Analysis by light microscopy showed that
cultures had the typical cobblestone appearance of epithelial cells and
staining for cytokeratin-19 confirmed the epithelial nature of all
cultures (Supplementary Figure S1 online).

Virus culture, reagents, and treatment of BECs. RV serotypes 16
(major group) and 1B (minor group) were grown in HeLa cells as
previously described.18 PolyIC was purchased from Sigma-Aldrich
(Dorset, UK), made up at 1 mg/ml in water and stored at � 801C.
Primary BECs obtained from STRA and NANA donors were infected
with RV1B or RV16 for 1 h as previously described.12 PolyIC was
diluted in BEBM medium at 1 mg/ml and incubated with shaking for
1 h at room temperature, medium was then replaced and cells
harvested at various time points.
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RNA extraction and quantitative RT–PCR. Total RNA was extracted
using commercially available reagents (Qiagen, Crawley, UK)
according to the manufacturer’s recommended protocol. cDNA was
synthesized (Qiagen) and 1 ml used as template in quantitative PCR
(ABI Biosystems, Paisley, UK). NANA and STRA samples were run
together on each plate, to minimize the effects of inter-assay variation
on differences between the two groups. The following genes were
quantified by comparison to standard curves using plasmid DNA,
IFN-b, IFN-l1, IFN-l2/3, TLR3, RIG-I, MDA5, IL-8 (CXCL8), and
ENA-78 (CXCL5) using 18S rRNA as a template control. All primers
and probe sequences are previously reported and were used in
ratios as previously described.18,27

Assessment of RV load by titration on HeLa cells. Supernatants were
thawed and used to infect HeLa cells as previously described.46 The
amount of RV16 or RV1B was assessed as a TCID50 value using the
Karber formula.47

Analysis of IFNs and cytokines by ELISA. IFN and cytokine protein
was assessed in sample supernatants using ELISA using reagents from
R&D Systems (Abingdon, UK) according to the manufacturer’s
recommended protocol. Sensitivities were IFN-b; 1 pg/ml, IFN-l;
15 pg/ml, and IL-8; 15 pg/ml.

Statistics. Power calculations performed in our group show that
n¼ 11 adult subjects per group is large enough to detect up to threefold
differences in 95% of mRNAs detected by qPCR. There are no available
data on children to perform power calculations. As data were not
normally distributed, non-parametric statistics were employed. The
Kruskal–Wallis test was first employed in each data set; if significant
differences were identified between two groups by pin pointing using
the Mann–Whitney U test, with Po0.05 taken as significant.

SUPPLEMENTARY MATERIAL is linked to the online version of the paper

at http://www.nature.com/mi
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