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Grid cells and place cells are important neurons in the animal brain. The information transmission between them provides the
basis for the spatial representation and navigation of animals and also provides reference for the research on the autonomous
navigation mechanism of intelligent agents. Grid cells are important information source of place cells. The supervised learning and
unsupervised learning models can be used to simulate the generation of place cells from grid cell inputs. However, the existing
models preset the firing characteristics of grid cell. In this paper, we propose a united generation model of grid cells and place cells.
First, the visual place cells with nonuniform distribution generate the visual grid cells with regional firing field through
feedforward network. Second, the visual grid cells and the self-motion information generate the united grid cells whose firing
fields extend to the whole space through genetic algorithm. Finally, the visual place cells and the united grid cells generate the
united place cells with uniform distribution through supervised fuzzy adaptive resonance theory (ART) network. Simulation
results show that this model has stronger environmental adaptability and can provide reference for the research on spatial
representation model and brain-inspired navigation mechanism of intelligent agents under the condition of nonuniform

environmental information.

1. Introduction

Environmental cognitive ability is the basis of free move-
ment of animals and intelligent agents. Learning from nature
and brain is an important method to study the autonomous
navigation mechanism of intelligent agents [1]. The hip-
pocampal structure in the brain is an important organization
related to episodic memory and spatial navigation and is the
core area that constitutes the neural circuit of cognitive map.
The hippocampal structure contains a variety of cells which
are related to spatial representation and located in different
regions, such as place cells [2], grid cells [3], head-direction
cells [4], and boundary vector cells [5]. Through information
transformations between these cells, spatial representation
[6], cognitive map construction [7, 8], goal navigation
[9, 10], episodic memory [11],and other functions can be
realized.

Place cells and grid cells represent space in different
ways. Place cells are mainly located in the hippocampus

CA1, CA3, and dentate gyrus. In familiar environment,
place cell has a single or limited number of firing fields.
When an animal conducts spatial exploration, a certain
number of place cells randomly constitute cell population
to realize space representation [12]. The changes of the
environment may cause global remapping [13, 14], partial
remapping [15], or firing rate remapping [16, 17] of the
place cell population. Grid cells are mainly located in the
entorhinal cortex, which includes the middle entorhinal
cortex and the lateral entorhinal cortex and is an im-
portant information source of hippocampus. Grid cell has
regular hexagonal firing field extending to the whole
space, which is characterized by size, spacing, phase, and
direction. The grid cells with similar firing field spacing
and direction are clustered into cell module. The ratios of
firing field spacing between any adjacent modules are
similar [18-21]. Self-motion information is an important
information source of grid cells to maintain the firing field
stability [22-24]. However, the firing field phase and
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direction may be varied with the change of environment
[25-27].

Grid cells are important information source of place cells
[28-31]. Since grid cells were discovered, researchers have
proposed a variety of generation models of place cells from
grid cell inputs. In the unsupervised models, the place cells
are generated through the weighted summation of the grid
cell inputs and the weights from grid cells to place cells are
trained through competition mechanism [32-34]. In the
supervised models, the visual place cells are generated from
environment information and are used as supervision to
update the weights from grid cells to place cells [35-37].
Although the existing models have simulated the generation
of place cells from grid cell inputs, there still exists short-
coming. In these models, the grid cells are generated from
self-motion information. The firing models of grid cell
driven directly by the self-motion information can be di-
vided into the continuous attractor network model [38] and
the oscillatory interference model [39]. The continuous
attractor network model is based on the preset activation-
inhibition connections between grid cells, namely, local
activation and long-range inhibition. The parameters in
oscillatory interference model include maximum firing rate,
firing field spacing, firing field direction, and firing field
phase and are also preset [32-34]. Therefore, the firing
characteristics of grid cell and place cell cannot adapt to the
environment.

When the first outbound exploration of the rat pups,
place cells and grid cells develop simultaneously [7, 30, 40].
It is suggested that there may exist information transfor-
mations between place cells and grid cells. In this paper, we
propose a united generation model of grid cells and place
cells which has the ability to adapt to the environment. In
order to distinguish all kinds of grid cells and place cells,
the place cells generated from environment information
are called visual place cells, the grid cells generated from
visual place cell inputs are called visual grid cells, the grid
cells generated from self-motion information are called
self-motion grid cells, the grid cells generated from two
information sources are called united grid cells, and the
place cells generated through supervised learning are called
united place cells. In this model, the generation process of
united grid cells and united place cells is mainly divided
into three steps. First, visual place cells generate visual grid
cells along the boundary through feedforward network.
Second, visual grid cells and self-motion information
generate united grid cells extending to the whole space
through genetic algorithm. Third, united grid cells generate
more compact united place cells in the sparse area of visual
place cells through supervised fuzzy ART network. The
model can be used for the spatial representation of intel-
ligent agents.

2. Models

Visual place cells are driven by the external environment and
own high stability, absolute location information, and the
earlier generation time. Therefore, they are used as the
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supervisions for the generation of united grid cells and
united place cells. The generation process of united grid cells
and united place cells is shown in Figure 1.

2.1. Visual Place Cells Generate Visual Grid Cells. It is as-
sumed that the agent explores a rectangular space at the
speed v and reaches any location with the same probability.
The spatial boundary information drives the generation of
visual place cells which have a tighter distribution near the
boundary. Gaussian function is used to represent the firing
field of visual place cell:
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where R; (x, y) is the firing rate of the i-th visual place cell at
the location (x, y); A is the maximum firing rate of visual
place cells; (x;, ;) is the place where the i-th visual place cell
is generated.

When the agent explores freely, if the firing rates of all
visual place cells were less than A/+/2, new visual place cell
will be generated. o; is the standard deviation of firing field
size of the i-th visual place cell, which increases as d goes up:

o(d) = L=/ (L-1);(d-1)/ (L-1)

min max

d<D, (2)

where d is the minimum distance from the exploring lo-
cation to the boundary; [ is the minimum standard de-
viation of the firing field size; [, is the maximum standard
deviation of the firing field size; L is the firing field distri-
bution constant; D is the maximum distance from which
visual place cells can be generated.

The feedforward network based on place cell inputs and
Hebbian learning to weights can be used to generate grid cell
with hexagonal firing field [41-46]. The periodic grid cell
firing field is derived from the periodic weight distribution
from place cells to single grid cell, and the input correlation
driving the development of periodic weight distribution is
usually presented as the Mexican hat model. The input
correlation with Mexican hat model may be derived from the
temporal correlation [42-44] or the spatial correlation
[45, 46] of the place cell firing rates. However, the existing
temporal correlation models assume the Hebbian learning as
nonlinear correlation plasticity [42], the spiking rate
adaptive function as Mexican hat model [43], or the weight
window function as Mexican hat model [44]. We found that,
without any presupposition, the input correlation with
Mexican hat model can be derived only through the linear
temporal correlation of the place cell firing rates. The firing
field spacing of grid cell generated by this model is pro-
portional to the exploring speed of the intelligent agent. It is
assumed that the weight update from the place cell pop-
ulation to a grid cell has a certain time interval. The Hebbian
learning is implemented based on the change of place cell
firing rates before and after the time interval and the real-
time grid cell firing rate. The weight update can be expressed
as follows:
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FIGURE 1: The generation process of united grid cells and united place cells.
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where E,, is the weight from the n-th visual place cell to the
generated visual grid cell; n is weight update rate; 7 is the
weight update time interval; & is the reduction coefficient of
place cell firing rate; G¥%! (¢) = ¥, E;RY*" (¢) is the firing
rate of visual grid cell generated from visual place cell inputs
at any moment t; S is the weight update constant.

In order to develop weights with periodic spatial dis-
tribution, competitive nonlinear restriction is applied. The
upper boundary Th,, and the lower boundary Thy,,, of the
weights are set, respectively. When a weight is less than the
lower boundary, the weight is set to the lower boundary.
When any weight is larger than the upper boundary, all
weights are equally scaled down through competition, so
that the maximum weight is equal to the upper boundary.

2.2. Visual Grid Cells and Self-Motion Information Generate
United Grid Cells. In the existing models, either place cell
inputs or self-motion information can generate grid cells
independently. However, in this paper, on the one hand,
since the firing field distribution of visual place cells varies
with the change of the distance from the exploring location
to the boundary, the firing field of visual grid cell generated
from the visual place cell inputs through the feedforward
network cannot expand to the whole space. On the other
hand, the firing field parameters of self-motion grid cells
generated from self-motion information need to be preset
and cannot be adaptive to the environment. In view of the
above shortcomings, we combine the visual grid cell and the
self-motion information through genetic algorithm to
generate the united grid cell with firing field adaptive to
environment and extending to the whole space.

The grid cell models driven directly by self-motion in-
formation mainly include continuous attractor network
model [38] and oscillatory interference model [39]. The
continuous attractor network model represents the firing

pattern of the grid cell population. The asymmetrical in-
tercellular connections and self-motion information make
the firing pattern move as a whole. The oscillatory inter-
ference model represents the firing rate of a single grid cell.
The self-motion information causes the phase shift of each
oscillator, so as to change the firing rate. In this paper, the
united grid cells are independent of each other and there is
no interconnection. Therefore, the united grid cell is rep-
resented by the oscillatory interference model referring to
[34]. The firing rate of united grid cell at location r = (x, y)
can be expressed as
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where C is the maximum firing rate; B is the firing field
spacing; ¢ = [x,, y,] is the firing field phase; w is the firing
field direction.

The visual grid cell whose firing characteristics are
adaptive to environment is generated from visual place cell
inputs. We regard the firing field of visual grid cell as the
sample of the firing field of united grid cell along one certain
environmental boundary. The genetic algorithm is used to
optimize the parameters in (4) to maximize the similarity
between the firing characteristics of visual grid cell and the
firing characteristics of united grid cell. The parameters
optimization can be seen as where the grid pattern which is
adaptive to environment comes.

Genetic algorithm is a model to search for the optimal
solution by simulating the biological evolution process. It
begins with populations that represent the potential set of
solutions to a problem. After the initial populations,
according to the principle of survival of the fittest, gener-
ation evolution produces better approximate solutions. In
each generation, crossover and mutation are performed with
the help of genetic operators to generate new populations
representing a new solution set, and then populations are
selected according to the fitness. This process will result in



having selected populations more adaptive to the environ-
ment than the populations in previous generation. The
optimal population in the last generation is regarded as the
approximate optimal solution. The genetic algorithm can be
shown in Figure 2.

In this paper, set the update range of the parameters as
C € [0,1], B € [0,min(L1,L2)/2], x, € [0,L1], y, € [0,12],
and w € [0, 27]. The evolution process of genetic algorithm
is as follows.

@ Initialize the population randomly. The population size
is N; each population contains the above five param-
eters; each parameter is represented by M bits binary.

@® Set crossover probability pc and mutation probability
pm. N offsprings are generated through crossover
operator and mutation operator.

® Record the firing rate G"*"! (k) of visual grid cell and
calculate the firing rates Gunited (] 1 ~ 2N) of united
grid cell in the sampling region. When the record
number k reaches K, the fitness of each population is
calculated. The fitness is defined as the quadratic sum
of the firing rate differences at each record moment;
namely, FitValue (1 ~ 2N) = Zszl [GVisual
(k,1 ~ 2N) — Gunited ()2,

@ Select N populations with low fitness from the parent
and the offspring as the next generation.

® Record the optimal solution and reset the record
number k to zero.

® Determine whether the end condition is satisfied. If
so, output the optimal solution; if not, return to step

@.

2.3. Visual Place Cells and United Grid Cells Generate United
Place Cells. Influenced by the boundaries, the visual place cells
have nonuniform distribution. However, the grid cells can
generate place cells by competitive neural network whose
parameters can influence the firing field characteristics of the
generated place cells. Therefore, the combination of visual place
cells and united grid cells can improve the distribution density
and positioning accuracy of the place cells far away from the
boundaries. In this paper, supervised fuzzy ART network is
used to realize the information transmission from the visual
place cells and united grid cells to the united place cells.

ART network is a competitive classifying and clus-
tering network with both plasticity and incremental
learning. It has the ability of learning new knowledge and
meanwhile maintaining the memory of old knowledge.
Therefore, the learning process is robust to the input order
of the samples. ART network mainly includes ARTI
network for binary input processing, ART2 network for
real input processing [47], ART3 network for multilayer
network [48], fuzzy ART network for fuzzy processing
[49], and ARTMAP network for supervised learning
[50, 51]. The fuzzy ART network structure is shown in
Figure 3(a).

The competitive learning of fuzzy ART network includes
the following steps.
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FIGURE 2: The genetic algorithm.

@ Input preprocessing: I=[G,,G,,...,G,] is the
normalized input vector, and the range of each el-
ement G; is [0,1]; the parameter p represents the
number of input elements; H = [I,I°] is the com-
plement representation of the input vector.

@ Category selecting: for the input vector H and the

node O; in field F,, the selection function T; is
defined as

'H/\wj'
Tj(H)= , j=L2,...,9 (5)
oc+|wj

where « is a small nonnegative real, and the value in
this paper is 0.001; g is the number of nodes in field
Fy; w; is the adaptive weight vector from input vector
H to node O}, and the initial value of each weight is 1;
A is the fuzzy sum operator defined as
(UAV); = min(u;,v;); |-] is l-norm defined as
Ul = ¥l

The node O; corresponding to the largest function
T (H) in all the selection functions is regarded as the
category. If there are multiple maximum selection
functions at the same time, the node with the smallest
index is selected as the category. After the category
selection, the vector X in field F, is calculated:

{ H, no node is selected,

HAw;, node O isselected.

(6)

® Category matching: to match X and H, if |X| > p|H|,
the match succeeds; otherwise, the match fails.
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FIGURE 3: (a) The fuzzy ART network structure. (b) The supervised fuzzy ART network structure. VPC represents the visual place cell.

p € [0,1] is the match parameter. If the match fails,
the selection function T'; (H) will be set to zero, and
the learning will return to step @ to select category
and match category again. The match process will
end until the match succeeds or all g nodes in field F,
have been tried.

@® Weight updating: if the input vector H matches the
node O; successfully, the weight vector w; will be
updated. If the input vector H does not match any
node in field F,, a new node will be added as the
match node, and the weight vector from the input
vector to the added node is initialized. The update of
weight vector is expressed as

W) = BHAWY) + (1 - Byw), (7)
where 5 € [0, 1] is the learning rate. When f = 1, the

process is defined as fast learning. In this paper, we
take f = 1.

In the existing ART network models, the supervised
network is ARTMAP network which includes a pair
of fuzzy ART networks (i.e., ART, and ART)}). The
ART}, network provides learning supervision for the
ART, network. The process of generating united
place cells is actually to classify firing rates of united
grid cell population. In the model of generating
united place cells from visual place cells and united
grid cells, we simplify the supervised ARTMAP
network. According to the firing fields of visual place
cells, the whole space is divided into different types,
between which there may exist overlap. The firing
field of each visual place cell is one type, and the
region without visual place cells is one type. The
ART}, network is replaced by the visual place cell
types as the supervision of the ART, network, and the
input vector of the ART, network is the firing rates of
united grid cell population. Each type is divided into
a number of categories which are defined as the
united place cells. This simplification enables the
fuzzy ART network to have the supervised learning
ability. The supervised fuzzy ART network structure
is shown in Figure 3(b).

In Figure 3(b), the inputs are the firing rates of united
grid cell population and the fuzzy ART network is the
structure in Figure 2(a). The blue blocks represent the
visual place cells which act as supervisors. Their firing
fields are small enough that one type contains only
one category. They are used to train the parameters in
the fuzzy ART network. The red blocks represent the
types which are divided into different categories.
They include the visual place cells whose firing fields
are large enough and the region where there is no
visual place cell. The category range, namely, the
firing field size of the united place cell, is determined
by the trained parameters in the fuzzy ART network.

3. Results

3.1. The Firing Field of Visual Grid Cell Distributes Periodically
along the Boundary. The environment and boundary in-
formation drive the generation of visual place cells with
different distribution density, and then visual place cells
generate locally distributed visual grid cell through feed-
forward network. Simulation parameters of visual grid cell
are shown in Table 1.

The agent explores the whole space and reaches any
location with the same probability. According to the gen-
eration process of visual place cells introduced in Section 2.1,
after le5 s exploration, the distribution of visual place cells is
shown in Figure 4.

As can be seen from Figure 4, in the region close to the
boundaries, the distribution of visual place cells is closer and
the firing field size is smaller, which suggests a more accurate
spatial representation. In the region moving away from the
boundaries, the firing field spacing and size increase grad-
ually, and the spatial representation becomes fuzzy. The
distribution of visual place cells conforms to the distribution
characteristics of initial place cells proposed in the pre-
weaning rat experiment [30].

In the brain, the appearance of mature grid cell is later
than that of mature place cell. Therefore, it is suggested that
the place cells can provide input information for the gen-
eration of grid cells. Assuming that the weight update time
interval 7 in this paper is a positive integer, the change of 7
will have an influence on the weight distribution under the
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TaBLE 1: Simulation parameters of visual grid cells.
Parameter Variable Value
Exploring space L1x 12 80m x 60 m
Exploring speed v 2m/s
Maximum firing rate of visual place cells A 10Hz
Minimum standard deviation of firing field of visual place cells Loin 1m
Maximum standard deviation of firing field of visual place cells Lax 15m
Maximum distance to generate visual place cell D 20m
Firing field distribution constant of visual place cells L 30m
Weight update rate n 5%10°°
Reduction coefficient of firing rate of visual place cells h 5
Weight update constant S 7
Lower weight boundary Thyown 0
Upper weight boundary Thy, 5
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FIGURE 4: The distribution of visual location cells. After free space
exploration, a total of 1487 visual place cells are generated. The red
marks indicate the locations where the visual place cells are gen-
erated, and the blue circles indicate the region with firing rate

A/V2.

same exploring speed. Taking the visual place cells shown in
Figure 4 as the information source of the visual grid cell and
according to the weight update model introduced in Section
2.1 and the parameters in Table 1, the weights from visual
place cell to visual grid cell learned under different weight
update time intervals are shown in Figure 5.

The weights and the firing field of visual grid cell have the
same distribution. Therefore, it can be seen from Figure 5
that the firing field of visual grid cell is influenced by the
weight update time interval and boundary. When the time
interval is small (e.g., 7 = 2), the visual grid cell with periodic
firing field cannot be generated in the rectangular space. In
fact, this is because the small time interval does not make the
weight update process ((3)) meet the reaction-diffusion
mechanism [52]. With the increase of time interval, the
visual grid cell with periodic firing field is generated along
the boundary and the firing field spacing increases mono-
tonically. Under the same time interval, the boundary in-
fluences the firing field distribution of visual grid cell, and
the firing field along each boundary can correspond to an
independent visual grid cell (e.g., 7 = 5). As the time interval

increases continuously, the firing field of generated visual
grid cell will gradually lose the periodicity and meanwhile
lose the ability of serving as the sample of the united grid cell.

3.2. The Firing Field of United Grid Cell Can Extend to the
Whole Exploring Space. Although the firing field of visual
grid cell cannot cover the whole exploring space, it can be
used as the sample of united grid cell whose firing field can
extend freely. First, the sampling region of the genetic al-
gorithm is determined. If there is activated visual place cell
with weight to any visual grid cell greater than threshold V¥ at
a certain exploring location, the firing rates G*** (k) and
G"ited (k1 ~ 2N) are sampled. The simulation parameters
of the genetic algorithm used to generate united grid cells are
shown in Table 2, and the sampling region of the genetic
algorithm is shown in Figure 6.

According to the simulation in Section 3.1, the visual
grid cells generated when the weight update time interval is
7 = 4: 7 are selected for the generation of united grid cells
through the genetic algorithm. Each visual grid cell inde-
pendently participates in the generation of a united grid cell,
so that four united grid cells could be generated at each time
interval. The firing rate of each visual grid cell is normalized
so that its maximum firing rate in the sampling region is
1 Hz. The agent explores the region near the boundaries at
the speed v =2m/s for le5s. According to the evolution
process of genetic algorithm introduced in Section 2.2, the
firing parameters of the united grid cells are updated. After
the exploration, taking the time interval 7 = 5 as an example,
the firing fields of the generated four united grid cells are
shown in Figure 7.

It can be seen from Figure 7 that the united grid cell
generated through genetic algorithm has hexagonal firing
field extending to the whole exploring space. And in the
sampling region near each boundary the firing field of visual
grid cell is almost the same as that of the generated united
grid cell. Therefore, the united grid cell generated through
genetic algorithm has the characteristics of free expansion
and environmental adaptation and is more suitable for
spatial representation than the grid cells generated from a
single information source.

In Figure 5, because the firing field of each visual grid cell
is a one-dimensional distribution along one boundary, the
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FIGURE 5: The weights from visual place cell to visual grid cell learned under different weight update time intervals. The parameter on the top
of each image is the weight update time interval 7. The color bar represents the weight.

TaBLE 2: The simulation parameters of genetic algorithm.

Parameter Variable Value
Weight threshold in sampling region v 1
Population size N 100
Parameter binary digit M 10
Crossover probability pc 0.6
Mutation probability pm 0.1

unique united grid cell with hexagon firing field cannot be
determined. Further, in view of the above simulation results,
the firing field direction is increased 7/6 as a preset pa-
rameter and the other parameters are taken as the learning
parameters to conduct space exploring and genetic algo-
rithm learning again. After the exploration, still taking the
time interval 7 = 5 as an example, the firing fields of another
generated four united grid cells are shown in Figure 8.

As can be seen from Figures 7 and 8, under the same
visual grid cell, the firing fields of generated united grid cells
with a direction difference of 77/6 can both match the firing
field of visual grid cell precisely. Therefore, they are both
used to represent space in this paper. After the learning
through the above two genetic algorithms, 32 united grid
cells are generated under the condition of 4 different weight
update time intervals, and their firing parameters are shown
in Table 3.
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FiGure 6: The sampling region of the genetic algorithm. A total of
1088 visual place cells marked in blue are in the sampling region of
the genetic algorithm. The other 399 visual place cells marked in red
are not in the sampling region of genetic algorithm.

3.3. The Distribution of United Place Cells Is Closer than That of
Visual Place Cells. The united grid cells and the visual place
cells generate the united place cells through the supervised
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o 20.8407, [78.1232 41.9941], 0.8094, 5.2759

F1GURE 7: The firing field of generated united grid cell. (a) The firing field of visual grid cell along each boundary when the weight update time
interval is 7 = 5. In each image, the maximum firing rate is normalized to 1 Hz, and red represents higher firing rate. (b) The firing field of
united grid cell generated based on the corresponding visual grid cell in (a). The parameters on the top of each image are firing field spacing,
firing field phase, maximum firing rate, and firing field direction, respectively.

13.7634, [27.5269 51.0264], 0.9932, 6.2663
0 = -

0,V .U
0,0,0

9.6188, [31.1241 11.2023], 0.9971, 5.7258
0

12.5122, [52.9423 19.5894], 0.9932, 5.7995
T

F1GURE 8: The firing field of generated united grid cell under the preset firing field direction. Each united grid cell corresponds to one visual
grid cell in Figure 7(a). The parameters on the top of each image are firing field spacing, firing field phase, maximum firing rate, and firing

field direction, respectively.

tuzzy ART network. The united grid cells provide input
information, the visual place cells provide supervision in-
formation, and the matching parameter p of the supervised
fuzzy ART network determines the distribution density of
generated united place cells. In order to make the generated
united place cells have uniform distribution density in the
whole exploring space similar to that of visual place cells
near the boundaries, the matching parameter p of the su-
pervised fuzzy ART network is learned. The agent explores
the space at 0.5 m interval. For the visual place cells satistying
the sampling region of genetic algorithm in Figure 6, the
fuzzy ART network is used to implement category learning
and real-time adjustment of matching parameter p, so that
there is only one category of united place cell in each type of

visual place cell. The learning result of matching parameter is
shown in Figure 9.

In Figure 9, each matching parameter ensures that the
corresponding visual place cell contains only one category.
Different matching parameters are obtained since these
visual place cells have different distances to boundary and
different firing field sizes. Therefore, the matching param-
eters are fluctuant. The mean value of all 1088 matching
parameters is calculated as the matching parameter of the
types that are not in the sampling region of genetic algo-
rithm. The space that does not belong to the sampling region
of genetic algorithm is explored successively at 0.5m in-
terval, and the category learning is implemented for each
type based on the supervised fuzzy ART network. The
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TaBLE 3: The firing parameters of generated united grid cells.
Boundary to generate visual grid cell Weight update time interval Spacing Phase Maximum firing rate  Direction
=4 16.2268 [12.2776, 29.3255] 0.9071 5.7427
9.6970  [20.1760, 26.4516] 0.9853 6.2663
=5 20.9189  [71.2414, 54.3109] 0.8759 5.7427
-0 13.7634 [27.5269, 51.0264] 0.9932 6.2663
Y =6 229130 [37.8495, 0.5865] 0.8759 4.7477
13.6070 [72.5709, 11.2610] 0.9932 52713
=7 30.0293  [29.5601, 1.4663] 0.7341 4.7477
17.5171  [73.5093, 48.7977] 0.9932 5.2713
=4 14.0371  [4.5357, 46.9795] 0.8289 4.7109
8.3675  [61.3099, 37.0088] 0.9932 5.2345
=5 18.4146  [38.7097, 42.7566] 0.7977 4.7109
=60 10.8700  [19.9413, 8.4457] 0.9853 5.2345
-6 22.4047 [46.2170, 38.5924] 0.8133 4.6494
13.2942  [35.3470, 44.3402] 0.9932 5.1732
=7 28.4262 [55.5230, 58.2991] 0.7195 3.6852
16.9306 [42.5415, 48.7390] 0.9775 4.2088
=4 15.5230 [14.9365, 21.5836] 0.8094 4.1888
9.0323  [6.8035, 52.7273] 0.9971 4.7124
=5 16.3050 [16.4223, 52.6100] 0.8358 5.2022
x=0 9.6188  [31.1241, 11.2023] 0.9971 5.7258
-6 23.7732  [63.8905, 54.0762] 0.8133 4.1826
13.6070  [2.9717, 42.1114] 0.9971 4.7062
=7 29.4819 [1.6422, 0.3519] 0.6491 6.2770
17.5171  [20.4888, 29.4428] 0.9384 0.5174
=4 15.2102 [78.7488, 29.6774] 0.8133 4.1704
9.1105  [64.3597, 22.5220] 0.9511 4.6940
=5 20.8407 [78.1232, 41.9941] 0.8094 5.2759
X = 60 12.5122  [52.9423, 19.5894] 0.9932 5.7995
-6 21.3881 [78.7488, 20] 0.7820 3.1877
13.4506  [9.0714, 39.4135] 0.9951 3.7113
=7 23.9687 [57.5562, 29.9120] 0.7830 6.2832
14.7019  [76.5591, 16.8328] 0.9932 0.5236

Matching parameter

0.6 1 1
0 200 400

600 800 1000

Visual place cells in the sampling region

FIGURE 9: The learning result of matching parameter p. 1088 matching parameters are learned. The mean value of all matching parameters is

0.8252.

distribution of generated united place cell is shown in
Figure 10.

As can be seen from Figure 10, the united place cells
generated through supervised fuzzy ART network can not
only retain the distribution density of visual place cells near

the boundary, but also extend the distribution density to the
whole exploring space. Compared with the visual place cells
shown in Figure 4, the united place cells are more closely
distributed in the region far from the boundary, so the
spatial representation accuracy of united place cells is higher.



10

AT
”4»‘ BV
‘::»,n’»”;":’

+* ‘*3*4‘“,““ T *,
Syatiat * ““,‘*‘;}’4 ¥
AP : A

t&“‘ ¢ ‘“‘“ % “t

A
»\‘;»»“wo ey
R A W IS o

P g 0, * ”‘\» e
*&“" TR
+ P c‘» +* fﬁ*
W Py
- ‘;“*“N -,

"!"3‘»3 ST
3*';”&.* %‘ %

a 4 4 t,‘“ﬁ‘ “" "}
R ‘d A RO

Place cell density

Computational Intelligence and Neuroscience

0.8 T T T

<
o

N
NS

0.2

0 1 1
100 200 300

Visual place cells out of sampling region

()

400

FiGure 10: The distribution of generated united place cells. (a) The distribution of united place cells in the whole exploring space. A total of
3,862 united place cells are generated. The blue marks are the united place cells generated in the sampling region of genetic algorithm; the red
marks are the united place cells generated in the space that does not belong to the sampling region of genetic algorithm. (b) The place cell
density in the firing field of each visual place cell which is not in the sampling region of genetic algorithm. There are a total of 399 visual place
cells. The blue solid line indicates the density after category learning; the red solid line indicates the density before category learning.

4. Conclusion

Neurons in the hippocampal structure, such as grid cells and
place cells, are the basis of environmental cognition and free
movement. The research on their firing mechanism can not
only deeply understand the working principle of the brain,
but also provide reference for the construction of the brain-
inspired navigation mechanism of intelligent agents. In this
paper, we propose a united generation model of grid cells
and place cells, which successively generates visual place
cells, visual grid cells, united grid cells, and united place cells.
The model can realize the spatial representation and provide
a foundation for the construction of navigation cognitive
map.

In the generation process of grid cells and place cells, we
only presuppose the firing field distribution of visual place
cells, and the other three cell types are all the results of
environmental adaptation. The visual place cells generate the
visual grid cell through feedforward network, whose firing
field spacing varies with the change of the weight update
time interval. The visual grid cell and self-motion infor-
mation generate the united grid cell through genetic algo-
rithm, whose firing field extends to the whole exploring
space. The visual place cells and the united grid cells generate
the united place cells through supervised fuzzy ART net-
work, which are evenly distributed in the whole exploring
space. Therefore, compared with the existing models, the
model in this paper has stronger environmental adaptability
and can adaptively represent the space under the condition
of uneven distribution of environment information.

Based on the reaction-diffusion mechanism and weights’
Hebbian learning, grid cell can be generated from the place
cell inputs. In the existing models, the network parameters
are preset, so the firing field of generated grid cell cannot
adapt to the environment. In this paper, the input

correlation with Mexican hat model is spontaneously gen-
erated by the place cell inputs. This method is discussed in a
separate paper which has been accepted.

The visual grid cell and self-motion information are
combined to generate the united grid cell through genetic
algorithm. The firing field of visual grid cell which is
regarded as the sample determines the firing parameters of
generated united grid cell. In the brain, grid cells exist in the
form of module, and the ratio of firing field spacing between
any adjacent modules is almost constant. In this paper, the
firing fields of generated united grid cells do not show such
characteristics, which indicates that the generation of grid
cells requires other information sources in addition to the
place cell inputs. To generate grid cells based on multiple
information sources will be one of our next research
contents.

The ARTMAP network is a supervised ART network. It
assigns each input to a unique category by gradually in-
creasing the matching parameters of ART, network. In this
paper, we simplify the ARTMAP network so as to make
fuzzy ART network have supervised learning ability. Dif-
ferent from the adjustment method of matching parameter
of ARTMAP network, the model in this paper gradually
reduces the matching parameter, so that each type of visual
place cell in the sampling region of genetic algorithm can
generate unique united place cell. Meanwhile, the learned
matching parameter is used for classification in the other
types to generate united place cells, which makes the place
cell distribution near the boundaries extend to the whole
exploring space.

The spatial representation based on grid cells and place
cells only implements the positioning. The cognitive map
required by intelligent navigation should contain the relative
relationship between independent locations and provide
accurate path information for the autonomous movement of
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intelligent agents. Therefore, the cognitive map construction
and the intelligent navigation based on the cognitive map
will be the main content of our next research.
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