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Abstract: Polyvinyl alcohol (PVA) is a non-toxic biosynthetic polymer. Due to the hydrophilic
properties of the PVA, its utilization is an easy tool to modify the properties of materials inducing
increased hydrophilicity, which can be noticed in the surface properties of the materials, such as
wettability. Based on this motivation, we proposed to obtain high-performance composite materials
by a facile synthetic method that involves the cross-linking process of polyvinyl alcohol (PVA)
with and aldehyde-functionalized polysulfone(mPSF) precursor, prior to incorporation of modified
MWCNTs with hydrophilic groups, thus ensuring a high compatibility between the polymeric and
the filler components. Materials prepared in this way have been compared with those based on
polyvinyl alcohol and same fillers (mMWCNTs) in order to establish the influence of the polymeric
matrix on the composites properties. The amount of mMWCNTs varied in both polymeric matrices
between 0.5 and 5 wt%. Fourier transformed infrared with attenuated total reflectance spectroscopy
(FTIR-ATR) was employed to confirm the changes noted in the PVA, mPSF and their composites.
Hemolysis degree was investigated in correlation with the material structural features. Homogenous
distribution of mMWCNTs in all the composite materials has been confirmed by scanning electron
microscopy. The hydrophilicity of both composite systems, estimated by the contact angle method,
was influenced by the presence of the filler amount mMWCNTs in both matrices (PVA and mPSF).
Our work demonstrates that mPSF/mMWCNTs and PVA/mMWCNTs composite could be used as
water purification or blood-filtration materials.

Keywords: multiwall carbon nanotubes; modified polysulfone; polyvinyl alcohol; composite; mor-
phology; water sorption; blood compatibility

1. Introduction

Development of materials as porous polymeric membranes to be used in some par-
ticular applications (blood filtration, water purification, etc.) rely on different preparation
techniques [1,2], which are well-controlled. It is important to know how the targeted
liquid will act on the surface of the obtained material. Recently, the fabrication processes
of materials with controlled wettability have been widely exploited [3,4]. The choice in
adjustment of the polymers surface in terms of wettability [5,6] is often employed. To this
is added equally the design of a specific architecture possessing adequate functionalities
and a good permeability, essential for blood filtration membranes [7,8]. Different physical
(plasma treatment, physical coating, immobilization of nanoparticles) and chemical (re-
action between the newly introduced surface functional groups, photoinitiation, redox)
approaches for surface modification have been reported [9]. Relevant work describing the
implementation of a new method to prepare composites with a complex structure was
reported by Donchak and co-workers [10], who have chosen to introduce amino groups
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on the surface of MWCNTs, which were later reacted with the carboxylic groups of the
polymeric matrix, improving the tensile strength and the elasticity of the composites.

In another approach, Melnyk and co-workers [11] described an optimized procedure
to prepare cross-linked hydrogel membranes based on poly(vinylpyrrolidone)-graft-poly(2-
hydroxyethylmethacrylate) designed for drug delivery systems.

One of most representative class of materials recognized for their specific applica-
tions in membranes for blood purification is polysulfones (PSFs) [12], even if they are
hydrophobic and manifest a lack of compatibility with blood [13–17]. To improve their
biocompatibility, especially preventing the occurrence of coagulation cascade and throm-
bosis phenomena [18,19], different approaches had been investigated. One of them is
functionalization of polysulfones with quaternary ammonium groups to obtain hemocom-
patible polymeric membranes with higher porosity and hydrophilicity [20]. An increased
biocompatibility with blood was reported by Qi et al. [21], who incorporated antioxidant
compounds (resveratrol). The reported membranes showed a high efficiency in blood
filtration (about 90.33% urea, 89.50% creatinine, 74.60% lysozyme, and 90.47% BSA) and in
reducing of the oxidative stress. In another approach, Zhong et al. [22] reported polysulfone-
block-poly(ethylene glycol) (PSF-b-PEG) ultrafiltration membranes for hemodialysis by
non-solvent induced phase separation (NIPS) method in the absence of any additives.
Another synthetic polymer that received attention as possible blood-filtration material is
polyvinyl alcohol (PVA) [23,24], which possesses required characteristics for biomedical
applications such as mechanical strength, biocompatibility, and non-toxicity [25].

The embedding of different fillers [26] in polymer matrices to obtain composite mem-
branes is another way to improve separation properties of membranes. Among them,
carbon nanotubes (CNTs), a class of materials with tubular structures, received great in-
terest. In this respect, composites based on multiwall carbon nanotubes (MWCNTs) seem
to have a multitude of practical uses [27–29]. Despite different opinions of the researcher
regarding the toxicity of CNTs, the composite membranes based on MWCNTs proved their
utility in medicine in cancer treatment [30], bio-sensing [31], hyperthermia induction [32],
antibacterial therapy [33], bone tissue engineering [34], and blood-contacting devices [35];
in respirators, allowing the free exchange of air and CO2 and preventing the transmission
of viruses and bacteria; in drug delivery of small molecules, proteins, or nucleic acids;
and in protein purification and selective permeation [36]. MWCNTs have a hydrophobic
nature. Surface charge influences the biological performance [37], so their applications
as biomaterials demand surface functionalization. As a consequence, the solubility in
solvents and their biocompatibility are improved [38]. Detailed information regarding
biocompatibility of functionalized MWCNTs (denoted here mMWCNTs) can be found
in the literature [39]. Much less discussed and evaluated is the hemocompatibility of
mMWCNTs. These represent a mandatory requirement for materials, as tests referring to
hemocompatibility can prove either their failure or their success in biomedical applications.
The surrounding tissue is perturbed by the implanted “foreign” biomaterial. Therefore,
implanted blood-contacting devices may produce thrombo-inflammation. It has been
demonstrated that materials having hydrophilic surfaces are resistant to blood protein
adsorption [40]. The advantage conferred by the surface functionalization of MWCNTs
shows a decrease intoxicity and improvement of antifouling properties [41]. Literature data
revealed the utilization of carbon nanotubes in microfluidic devices with higher efficiency
(80%) in plasma separation from blood. The intrinsic porosity of CNTs of approximately
93% resulted from the inter-tubular distances lower than 90 nm [42]. Electroanalytical
devices based on multi-walled carbon nanotubes also proved to be efficient in rapid de-
tection and L-tyrosine monitorization in tyrosinemia diagnosis, with a high degree of
reusability (97%) [43] and in blood glucose in humans with a higher selectivity than the
grapheme-based biosensors, with MWCNTs being a superior electrode material [44].

CNTs are also used as carriers in drug delivery systems. Functionalized MWCNTs
conjugated with inorganic nanoparticles (iron oxide) or biological molecules (biotin) have
been investigated for doxorubicin loading and release. CNTs can be intravenously adminis-
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tered, showing some cytotoxic and genotoxic side effects, producing increased intracellular
ROS species, DNA damage, and some inflammation at concentrations up to 50 µg/mL [45].
Pulmonary inhalation of MWCNTs has also altered rat heart rate variation, affecting the ner-
vous system [46]. In-depth studies have shown, however, that a specific functionalization
of MWCNTs was beneficial in permeation of the blood-brain barrier. The cell viability tests
proved that these mMWCNTs were safe; no cytotoxic effects were reported. On the con-
trary, they showed the ability to function as central nervous system-targeting drug release
materials [47]. The main advantage is related to their unique and controlled structure and
intrinsic porosity, which can be promoted in preparation of stable drug delivery systems
and blood devices. Another strong point is that MWCNTs can be easily functionalized
and compatibilized with different functional groups/substrates, so they are accessible
in different applications. In addition, their embedding in polymeric matrices proved to
increase the thermal stability, flexibility, and stability of materials.

The advantage of the composites used as membrane separation materials in blood pu-
rification processes relies on their high permeability, easy fabrication, good biocompatibility,
fast adsorption rate, and high adsorption capacity of nanomaterials [48].

Based on the literature background, the current paper aims to obtain and character-
ize new composite materials for applications in water purification membranes or blood-
contacting materials. Our strategy is based on original aspects that arise from the chemical
modification of the PSF (mPSF) by introduction of PVA segments as side chains. With this
procedure, we expect to improve the wettability and porosity of the prepared materials.
Moreover, the properties of these membranes were further enhanced by the addition of
multiwall carbon nanotubes that were chemically functionalized with -OH groups. For
comparison purposes, the PVA/mMWCNTs nanocomposite system was also analyzed.
All tested composite materials were evaluated in terms of wettability, water sorption
properties, and hemocompatibility. These new materials open new perspectives for im-
proving the performance of current membranes used for water purification membranes or
blood filtration.

2. Experimental
2.1. Materials

Commercial multi-walled carbon nanotubes (MWCNTs, 95% purity, PD15L5-20) with
an outer diameter of 15 ± 5 nm and a length of 5–20 µm were purchased from NanoLABInc
(Waltham, MA, USA) and used as received.

Polysulfone (Udel 3500P, Aldrich, Schnelldorf, Germany), p-formaldehyde (95%,
Aldrich, Schnelldorf, Germany), chlorotrimethylsilane (99%, Aldrich, Schnelldorf,
Germany), tin (IV)chloride (99%, Aldrich, Schnelldorf, Germany), poly(vinyl alcohol) (PVA)
(viscosity-average molecular weight 77,000–79,000 g/mol, DH = 98%, Aldrich, Schnelldorf,
Germany), p-toluenesulfonic acid (pTSA, 97%, Aldrich, Schnelldorf, Germany), N-methyl-
2-pyrrolidone (NMP, Aldrich, Schnelldorf, Germany), chloroform, and sodium bicarbonate
(Chemical Company, Iasi, Romania) were used as received.

2.2. MWCNTs Modification and Composite Synthesis

To produce MWCNTs functionalized with hydroxyl groups (mMWCNTs), pristine
MWCNTs were reacted in a H2O2 solution, according to a reported method [49].

Chloromethylated polysulfone (ClMePSF) was prepared according to existing lit-
erature data [36,50] through an approach described below. Subsequently, aldehyde-
functionalized polymer (APSF) was obtained by direct-oxidation of ClMePSF in DMSO, in
the presence of NaHCO3, according to [51] (Scheme 1).
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Scheme 1. Schematic representation of synthetic pathways for preparation of mPSF polymer.

Chloromethylated polysulfone (PSF-ClMe): In a typical reaction, polysulfone (5 g) was
dissolved in chloroform (200 mL) in a round bottom flask equipped with a magnetic stirrer,
reflux condenser, and thermometer. The solution was heated at 50 ◦C under nitrogen
atmosphere and then p-formaldehide (3 g), chloromethylsilane (14 mL), and thin (IV)
chloride (0.6 g) were added to the polymer solution. After 50 h at 50 ◦C, the mixture
was poured into methanol and the solid product washed well with methanol and dried
at 60–65 ◦C. The degree of substitution of –CH2Cl groups was evaluated using 1H-NMR
spectroscopy and was estimated at around 1.2. Subsequently, aldehyde-functionalized
polymer (APSF) was obtained by direct-oxidation of PSF-ClMe in DMSO, in the presence of
NaHCO3, according to [51] (Scheme 1). A typical synthesis, PSF-ClMe (5 g) was dissolved
in DMSO (120 mL), and sodium bicarbonate (2.1 g) was added. The reaction mixture was
maintained at 130 ◦C for 12 h, and then poured into water.

By acetalization of PVA with APSF in NMP, mPSF was obtained. The PSF-PVA mixture
was defined as mPSF, and the mass ratio of APSF:PVA was 1:1. APSF (0.3 g) and PVA
(0.3 g) were dissolved in NMP individually to form a solution of 6.5%. The two solutions
were then mixed together at room temperature, and, subsequently, pTSA was added
and heated at 60 ◦C for 8 h. The mPSF membranes were prepared by solution casting
method as follows: To a solution of mPSF (0.6 g) in NMP (8 mL), an appropriate amount
of mMWCNTs was added to obtained mPSF/mMWCNTs composition of 0.1, 1, 3, and
5% (Figure 1). The mixtures were sonicated at 60 ◦C for 30 min to form a black viscous
homogeneous solution, then were cast on the glass plates and dried at 80 ◦C for 12 h. The
obtained mPSF membranes were then thoroughly washed with water and dried at 80 ◦C
for other 8 h.
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Figure 1. Structure of mPSF/mMWCNTs composite.

2.3. Methods

Attenuated total reflectance–Fourier transform infrared spectroscopy (ATR–FTIR) mea-
surements were carried out on a Bruker Vertex 70 spectrometer (Bruker Optics, Ettlingen,
Germany) equipped with a ZnSe crystal. The spectra were recorded in ATR (attenuated to-
tal reflectance) mode in the 4000–600 cm−1 range, with a resolution of 4 cm−1 and 32 scans,
at room temperature.

The static contact angle experiments were performed on KSV CAM 200 goniometer
at room temperature (25 ◦C). The sessile-drop method involved the utilization of two test
liquids (water and ethylene glycol) that were handled with separate testing syringes to
avoid cross-contamination. A liquid droplet of 1 µL was formed at the end of the syringe
and carefully deposited onto the surface of prepared film samples, and then the image of
droplet was taken by a coupled device camera in order to measure the contact angle. Tests
were repeated three times on different surfaces.

To obtain the surface tension parameters, the Fowkes method/model [52] was em-
ployed as shown in Equations (1) and (2):

(1 + cos θ)·γlv
2

=
√

γd
sv·γd

lv +
√

γ
p
sv·γ

p
lv (1)

γsv = γd
sv + γ

p
sv (2)

where θ is the contact angle formed by a liquid on the solid surface samples and γp
lv,

γd
lv, γp

sv, and γd
sv are the polar and dispersed components of the liquid and solid phases,

respectively.
Solid-liquid interfacial tension (γsl) is defined in Equation (3):

γsl =

(√
γ

p
l −

√
γ

p
s

)2
+

(√
γd

l −
√

γd
s

)2
(3)

The spreading coefficient, Sc, is defined by Equation (4):

Sc = γs − γsl − γl (4)

Water adsorption/desorption isotherms of all composite systems were registered
using a Dynamic Vapor Sorption (DVS)Analyzer (IGAsorp, Hiden Analytical, Warrington,
UK) equipped with an ultrasensitive microbalance to measure the weight changes when the
relative humidity is varied. Before sorption experiments, the samples were dried at 25 ◦C
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in flowing nitrogen (250 mL/min) until equilibrium at RH < 1%. The relative humidity
(RH) was then slowly increased from 0 to 90%, in 10% humidity steps, with every step
having a pre-established equilibrium time between 40 and 60 min. The sorption equilibrium
was obtained for each step. After that, the RH was decreased and desorption isotherms
were registered.

The Brunauer–Emmett–Teller (BET) kinetic model [53] was applied to calculate the
surface area and monolayer of the synthesized materials according to Equation (5):

W =
Wm·C·RH

(1 − RH)·(1 − RH + C·RH)
(5)

where W is the weight of sorbed water, Wm is weight of water forming a monolayer, C is
the sorption constant, and RH is the relative humidity.

The surface morphology of the materials was examined by using a scanning electron
microscope (SEM) type Quanta 200 (FEI), operating at 20 kV with secondary electrons
in low vacuum mode, the magnification being indicated on each micrograph. The SEM
micrographs were performed on uncoated samples fixed on aluminum stubs.

2.4. Hemolysis Assay

The compatibility of the obtained films with human red blood cells (RBCs) and their
potential effects on erythrocyte lysis were evaluated by the hemolysis test using a spec-
trophotometric method adapted from Chhatri et al. [54] and Rata et al. [55].To perform
this test, a healthy, non-smoking volunteer was selected from whom 5 mL of blood was
collected, after prior institutional ethical approval and adequate informed consent. The
blood was centrifuged at 3000 rpm for 5 min and washed several times with normal saline
solution (0.9% NaCl) to remove plasma and to obtain erythrocytes. The purified erythro-
cytes were re-suspended in normal saline to obtain 25 mL of erythrocyte suspension. All
the investigated films had a spherical shape with a diameter of 5 mm and were transferred
into Eppendorf tubes, over which 0.5 mL of erythrocytes suspension and 0.5 mL of normal
saline solution were added. Positive control samples, with 100% lysis, were prepared by
adding 0.5 mL of 2% Triton X-100 solution over 0.5 mL of erythrocyte suspension. Neg-
ative control samples, with 0% lysis, were prepared by adding 0.5 mL of saline solution
over 0.5 mL of erythrocyte suspension. The samples were incubated at 37 ◦C for 3 h and
gently shaken once every 30 min to ensure continuous contact between the films and the
blood. After the incubation time, the samples were centrifuged at 3000 rpm for 5 min, and
100 µL of supernatant was incubated for 30 min at room temperature to allow oxidation of
hemoglobin. The absorbance of oxyhemoglobin in supernatants was measured spectropho-
tometrically at 540 nm using a Nanodrop One UV-Vis Spectrophotometer. All samples
were analyzed in triplicate.

The percentage of hemolysis was calculated using Equation (6):

Hemolysis (%) =
Abssample − Absnegative control

Abspozitive control − Absnegative control
×100 (6)

Membrane materials were classified into three categories based on their hemolytic
index as follows: (1) hemolytic materials which show hemolysis (%) > 5%; (2) slightly
hemolytic materials with hemolysis (%) between 2% and 5%; (3) non-hemolytic materials
with hemolysis (%) < 2% (American Society for Testing and Materials 2000) [56].

3. Results and Discussion
3.1. ATR–FTIR Characterization of Polymeric Matrices

The IR data of the polymeric matrices and composites are summarized in Table 1.
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Table 1. Assignments of the IR characteristicbands of thePVA, APSF, mPSF, PVA/mMWCNTs, and
mPSF/mMWCNTs composites.

Assignment PVA APSF mPSF
PVA/mMWCNTs mPSF/mMWCNTs

0.5% 1% 2.5% 5% 0.5% 1% 2.5% 5%

υ(O–H) 3350 - 3340 3320 3320 3320 3320 3340 3340 3340 3340

δ(O–H) +
(C-O-H)bending

1668
1490
1330

-
1663
1490
1330

1506
1435
1305

1506
1435
1305

1506
1435
1305

1506
1435
1305

1506
1429
1298

1506
1429
1298

1506
1429
1298

1506
1429
1298

δ(O–H)out-of-plane 654 - 654 660 660 660 660 687 687 687 687

υ(C–H)aliphatic
2920
2856

2920
2875

2920
2856

2924
2850

2924
2850

2924
2850

2924
2850

2924
2858

2924
2858

2924
2858

2924
2858

υ(C–H)aromatic -
3100
3070
3030

3100
3070
3030

- - - -
3100
3070
3030

3100
3070
3030

3100
3070
3030

3100
3070
3030

δ(C–H) 1427 1430 1427
1106 1429 1429 1429 1429 1430 1430 1430 1430

(C–H)scissoring 1440 1440 1440 1435 1435 1435 1435 1487 1487 1487 1487

(C–H)twisting 1300 1300 1300 1298
830

1305
830

1305
830

1305
830

1300
837

1300
837

1300
837

1300
837

(C–H)rocking 1237 1237 1237 1247 1247 1247 1247 1240 1240 1240 1240

υ(C=O)acetate
1733
1670 1730 1724

1670
1713
1657

1713
1657

1713
1657

1713
1657

1729
1713

1729
1713

1729
1713

1729
1713

υ(C=O)aldehyde - 1696 1693
1663 - - - - 1654 1654 1654 1654

υ(C-O) 1059 1148
1106

1190
1148

1092
1140
984

1092
1140
984

1092
1140
984

1092
1140
984

1096
1032
1012

1096
1032
1012

1096
1032
1012

1096
1032
1012

υ(C-C-O) 829 - 829 913 913 913 913 834 834 834 834

υ(C=C) - 1650–1427 1650–1427 - - - - 1654–1407 1654–1407 1654–1407 1654–1407

υ(C=C-CH-)
δ(C=C-CH-)in-plane

δ(C=C-CH-)out-of-plane

-
1585

850–720
700–580

1585
850–720
700–580

- - - -
1586

800–700
700–580

1586
800–700
700–580

1586
800–700
700–580

1586
800–700
700–580

υasymmetric(SO2) - 1383
1290

1383
1290 - - - - 1373

1298
1373
1298

1373
1298

1373
1298

υsymmetric(SO2) 1170
1148

1170
1148 - - - - 1170

1148
1170
1148

1170
1148

1170
1148

υ(C–S-) - 726 726 - - - 712 712 712 712

The IR absorptions of PVA and mPSF-based matrices in the 4000–2500 cm−1 region
are generally due to O-H and C-H vibrations. The O-H stretching produces a broad band
at about 3350 cm−1 and is the result of the presence of intermolecular and intramolecular
hydrogen bonding. The precise position of the O-H band is dependent on the strength of
the hydrogen bonds within the matrix (Figure 2a). The band is blue shifted at 3340 cm−1 in
the spectrum of mPSF matrix as a result of the H-bond interactions between PVA and APSF.

The bands at 2920 cm−1 and 2856 cm−1 are assigned to the asymmetric and symmetric
C-H stretching vibrations within PVA, APSF, and mPSF matrices, whereas the bands at
3100 cm−1, 3070 cm−1, and 3030 cm−1 are due to the aromatic C-H stretching vibrations in
the structure of APSF and mPSF (Figure 2a).

In the 1800–600 cm−1 spectral region of the polymeric matrices, strong characteristic
peaks for PVA at 1733 cm−1 and 1670 cm−1 are due to the incompletely hydrolyze of PVA
(the C=O vibrations from acetate groups) [57], 1696 cm−1 characteristic for aldehyde CH=O
group in the APSF matrix, as well as other specific bands for C-O stretching vibration band
in the structure of poly(vinyl acetate) mPSF matrix 1190–1148 cm−1. The complete transfor-
mation of the carbonyl CH=O group into the acetal was evidenced by the disappearance of
the band at 1696 cm−1 in the spectrum of APSF. In addition, acetals have a characteristic
strong band at 1106 cm−1 due to a C-H deformation vibration being perturbed by the
neighboring C-O groups (Figure 2b).
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Aromatic C=C stretching vibrations occur in the region 1650–1427 cm−1, and the
skeletal vibrations due to the conjugation can be seen at 1585 cm−1.

The bands observed at 1383–1290 cm−1 and 1170–1148 cm−1 are due to the asym-
metric and symmetric stretching vibrations of the SO2 group overlapped with the C-O
stretching vibrations.

Other bands refer to the in-plane O-H deformation vibration coupled with C-H/
C-O wagging vibration (1440–1260 cm−1) and C-H rocking vibrations and aromatic ring,
whereas the bands at 850–720 and 700–580 cm−1 refer to the =C-CH- in-plane deformation
vibration, phenoxy (Ph-O) band, and C-H out-of-plane and ring deformation vibrations [58].

3.2. ATR–FTIR Characterization of Composites

The O-H region of the composites reveal an increase in the filler concentration of
the O-H groups by increasing of the concentration of mMWCNTs as compared with the
polymeric matrix (Figure 3a). The interaction of the mMWCNTs with the polymeric matrix
through H bonding is highlighted by the blue shift of the band at 3350 with 30 cm−1.

As depicted in Figure 3b, all spectra show two absorption bands at 1733 and 1668 cm−1,
which are attributed to C=O of acetate groups present in the PVA matrix. For the PVA/
mMWCNTs composites system, the absorption due to the carbonyl groups is detected
at 1657 cm−1, whereas that assigned to the acetate is detected at 1713 cm−1, indicating a
physical bonding through H-bonds of the functionalized mMWCNTs with the polymeric
matrix. More than that, a decreasing in the absorption band at 1657 cm−1 with an increase
of the mMWCNTs concentration can be observed, which indicates that the mMWCNTs have
been successfully embedded in the polymeric matrix (Figure 3b). In the 1600–1200 cm−1

spectral range of the PVA/mMWCNTs composite, the bands at 1506 cm−1, 1435, and
1305 cm−1 assigned to the O-H deformation vibration and bonded OH groups indicated
the successful incorporation of the MWCNTs (Figure 3c).

In the 1200–600 cm−1 spectral range, a new band at 1140 cm−1 appears in the spectra
of mMWCNTs composites, being assigned to the PVA (C-O crystallinity) [59], whereas
the bands at 1060 cm−1, 984 cm−1, and 913 cm−1 attributed to the C-O stretching are
diminished in the spectra of composites (Figure 3d).

For the mPSF/mMWCNTs composites, the absorption peak assigned to –OH stretch-
ing at 3340 cm−1 indicated the presence of the hydroxyl groups, whose concentration
increases as compared with the matrix (Figure 4a). Characteristic peaks for C=O stretching,
C=C stretching, and O-H deformation vibrations are also detected at 1729 cm−1, 1713 cm−1,
and 1654 cm−1, respectively (Figure 4b).
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In the 1500−600 cm−1 range, the mPSF/mMWCNTs composites have very similar
absorption bands: 1487 cm−1(O-H deformation vibration coupled with C-O and C-H
wagging vibration), 1429 cm−1 and 1407 cm−1 (C-C stretching in aromatic rings), 1373 cm−1

(C-SO2-C asymmetric stretching), 1298 cm−1 (S-O stretching), 1240 cm−1 (C-O-C symmetric
stretching) (Figure 4c), 1148 cm−1 (C-SO2-C symmetric stretching), 1104 cm−1, 1096 cm−1,
1032 cm−1, 1012 cm−1, and 834 cm−1 (aliphatic C-O-C, aromatic C-H bending and rocking),
750–650 cm−1 (C-H out-of-plane deformation vibrations) (Figure 4d), proving that after
embedding the mMWCNTs in the matrix, the chemical structure of the mPSF did not
change [60].

The differences in composition of the PVA and mPSF matrices before and after em-
bedding of mMWCNTs were highlighted by using the method of IR spectral subtraction of
the spectra, and the results are indicated in Figure 5. In this case, the resulting subtraction
spectrum will correspond to the difference between the spectrum of the initial matrix and
the spectrum of the composites. Spectra were processed by using Bruker OPUS 6.5 software.
It can be seen that the main differences between the initial matrix and composites consist of
the characteristic bands of O-H groups (O-H stretching at about 3300 cm−1 and 1643 cm−1,
O-H deformation vibration at 1510 cm−1, 1306 cm−1, 930 cm−1, and 814 cm−1) (Figure 5).
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3.3. Wettability and Surface Free Energy Analysis

In bio-applications, surface characteristics of polymeric materials are considerably
influenced by the hydrophobic/hydrophilic balance. Contact angle analysis was performed
in order to determine the surface tension of the pure polymer matrices and of the OH
modified MWCNTs (mMWCNTs) composites. In addition to this, the wettability properties
of the materials, here under study, affect water sorption and hemocompatibility. Table 2
presents experimental data regarding contact angles measured on the surface of prepared
matrices and corresponding composites. The standard deviations (SD) were calculated
from the values measured in three different positions on the surface region of each sample
material. Values are given in Table 2. For all samples, standard deviations are below 2◦. It
was observed that majority of the probes present low SD indicating more homogenous sur-
faces. As a consequence, low local heterogeneities exist. For mPSF/mMWCNTs composites
(5 wt%), the increased SD is attributed to an increasing amount of surface inhomogeneity.
In this situation, the surface hydroxyl group density decreases [61]. An opposite trend was
observed for the last measurement in the system PVA/mMWCNTs.
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Table 2. The measured values of contact angles (θ) for PVA, mPSF, and corresponding mMWCNTs
composite systems.

Materials
Contact Angle Values (◦)

Water Ethylene Glycol

PVA 68 ± 0.25 48 ± 0.54
mPSF 95 ± 0.30 67 ± 0.83

Filler amount (wt%) PVA/mMWCNTs composite system

0.5 66 ± 0.47 34 ± 0.41
1 64 ± 0.98 43 ± 0.70

2.5 58 ± 1.53 40 ± 1.81
5 77 ± 0.49 48 ± 0.77

Filler amount (wt%) mPSF/mMWCNTs composite system

0.5 62 ± 1.12 36 ± 0.54
1 68 ± 0.62 42 ± 0.65

2.5 80 ± 0.43 53 ± 1.19
5 82 ± 0.75 51 ± 0.89

A lower water contact angle indicates a more hydrophilic material surface. As showed
in Table 2, the pure PVA matrix has a relatively hydrophilic behavior (θ < 90◦). Because
PVA is a hydrophilic polymer, it is expected that such properties will be maintained when
it is used to functionalize polysulfone (denoted here mPSF). However, polysulfone has
a hydrophobic character (θ > 90◦). The influence of H-bonding interactions onto the
surface hydrophobicity of the materials was deeply investigated by Nakamura et al. [62].
Based on this study and also on FTIR spectra, the hydrophobicity of the mPSF sample is
attributed to the formation of intermolecular hydrogen bonding interactions between OH
groups of the PVA and APSF moieties. The surface wettability is known to be strongly
affected by the surface chemistry of the carbon-based materials [63,64]. The necessity to im-
prove the interfacial polymer-filler interactions led to the development of several chemical
routes of MWCNTs functionalization [65,66]. In this study, the matrix was compatibilized
with the filler by its functionalization with hydrophilic OH groups. It is observed that
PVA/mMWCNTs composite system presents a gradual decrease in the water contact angle
with the increase percent of the filler amount (0.5, 1, and 2.5 wt%),leading to an improve-
ment of the surface hydrophilicity. This behavior could be associated to the increase in
surface polarity (γp

s ) as there are fewer polar groups in PVA to interact with those of the
modified filler, so more polar groups from mMWCNTs remain available on the composite
film surface.

In contrast, the mPSF/mMWCNTs nanocomposites display an easy increase in water
contact angle after more filler addition in the system. The new mPSF matrix has more polar
groups that can interact with the hydroxyls of the filler. For this reason, upon reinforcement,
fewer polar groups remain at the sample surface. This could explain the contact angle
data for this composite system that reflect an easy increase in surface hydrophobicity
upon mMWCNTs addition up to 2.5 wt%. In the case of all composites containing 5 wt%
mMWCNTs, the water contact angle is suddenly increasing. At this composition, the
introduced filler particles begin to agglomerate and interact not only by van der Waals
forces, but also by means of hydrogen bonding, leaving unavailable polar groups at the
sample surface.

The contact angle and wettability analyses provide important information regarding
the applicability of materials in surface related applications. According to the work of
Khan et al. [67], the problem of hydrophilicity of PVA-based materials for biomedical
purposes was analyzed. They show that filtration of biological fluids should have an
absorbency level from 70 to 100 water contact angle.

Table 3 illustrates the calculated data regarding the polar and disperse surface tension
components of all the studied samples. For the PVA/mMWCNTs composite system, it
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is observed that the polar component is gradually increasing as the mMWCNTs percent
increases (0.5, 1, and 2.5 wt%), whereas the dispersive component decreases. For the
other composite system (mPSF/mMWCNTs), the polar component is slightly decreased as
compared to the dispersive one. However, for both types of composites containing 5 wt%
mMWCNTs, a significant increase in the surface dispersive character as supported by the
water contact angle data was observed.

Table 3. Surface free energy and their components (mN/m) of all pure materials and their corre-
sponding composites withmMWCNTs.

Materials γd
sv γ

p
sv γt γsl Sc

PVA 14.1 20.72 34.82 7.54 −45.52
mPSF 26.69 1.63 28.32 34.73 −79.21

Filler amount
(wt%) PVA/mMWCNTs composite system

0.5 24.87 15.29 40.16 10.54 −43.18
1 14.32 23.60 37.92 5.99 −40.87

2.5 10.96 31.73 42.69 4.12 −34.23
5 25.67 8.60 34.27 17.87 −56.4

Filler amount
(wt%) mPSF/mMWCNTs composite system

0.5 18.276 22.071 40.347 6.13 −38.583
1 19.85 16.75 36.6 9.34 −45.54

2.5 23.397 8.151 31.55 18.40 −59.65
5 29.60 5.06 34.65 24.53 −62.68

γt = total surface free energy, γd
sv = dispersive or non-polar component, γ

p
sv = polar

component, γsl = solid-liquid interfacial tension, Sc = spreading coefficient.
The hydrophobic/hydrophilic nature of the synthesized materials can be further

analyzed by calculating several parameters that are derived from surface tension polar and
disperse components (Equations (1)–(3)).

Table 3 contains the calculated values of the γsl and Sc parameters. As in the case of
water contact angle data and surface tension parameters, the interfacial surface tension
ranges similarly with reinforcement degree of mMWCNTs. The spreading coefficient (Sc)
describes the mechanisms related to wetting of a liquid when placed on the solid surface
of the polymer, reflecting the thermodynamic stability of a liquid layer in contact with
the solid material. For positive values of Sc, the surface presents preponderant adhesive
character so the fluid spreading is taking place (complete wetting);conversely for negative
values of this parameter, the cohesive properties prevail and partial wetting is noticed.
For all samples, the spreading coefficient presents negative values, indicating prevalent
cohesion interactions at the interface in detriment to water/sample adhesion interactions.

3.4. Adsorption Isotherms

Adsorption/desorption isotherms were registered to obtain information about the
water sorption behavior [68] for PVA, mPSF, and their corresponding mMWCNTs composite
systems. These results are shown in Figure 6.

According to IUPAC classification [69], the sorption/desorption curves exhibit a
type-IV shape for all studied materials. This is specifically for capillary condensation
and physical multilayer adsorption [70]. In addition, all of the samples display hysteresis
between sorption and desorption (classified as H2-typein combination with H3-type) [71,72]
being characteristic of porous solid structures [73]. The hysteresis of type H2 is due to
network effects [74] given by the complex pore structures existing in both types of composite
samples (PVA/mMWCNTs and mPSF/mMWCNTs) at low values of RH, where a low
water sorption is observed. An indicator of the presence of the macropores is given by
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the shape of the H3 hysteresis (up to 30 RH%) observed in all prepared materials. In
addition, the interspace between the different mMWCNTs filled into both matrices could
be responsible for this H3-type of hysteresis. Beyond 30 RH%, one may notice a sharp
increase in water sorption, for all nanocomposite systems. Unclosed hysteresis for the
first isotherms found for both nanocomposite systems show an irreversible adsorption of
water, which is similar to the work reported by Inagaki et al. [75]. As a consequence, the
rehydration of the sample surface takes place [75].
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Comparison of the DVS data obtained for the pure PVA and mPSF matrices reveal the
peculiarities of each polymer structure. In the case of PVA, the main chain is connected
to non-bulky side groups that enable a certain degree of intrinsic porosity. The latter
is considerable smaller compared to the porosity of mPSF, which has a rigid backbone
linked to bulky substituents. The differences in intrinsic porosities are reflected in distinct
sorption characteristics of the unfilled and corresponding reinforced samples. It was
reported that water absorbed in carbon filled materials follow the Dubinin–Serpinsky (D-S)
mechanism [76].

The structure of the material affects the water sorption behavior [77,78]. Table 4 dis-
plays the pore diameter and the BET analysis of the nanocomposites materials. Analyzing
the results, a gradual increase in the pore size diameter as the mMWCNTs filler amount
were added in the PVA matrix (from 0.5 to 2.5 wt%) was observed simultaneously with a
sharp decrease in the surface area for all the nanocomposite materials.

The enhancement of pore diameters is attributed to the combined effects given by
the nano-confinements and surface functionalization of the MWCNTs [79]. There are
some direct strategies to create porosity in the polymer composites. Some of these include
utilization of templates, etching and hydrolytic processes, polymeric blending, or intro-
duction/removal of ordered solid compounds intensively applied to obtain tailored pore
shapes and dimensions. The “reverse template” approaches led to regular and uniform size
pores with possibility to increase the pore diameter by variation in fillers size. Closely inter-
connected and regular pores in polysulfones have been achieved by introducing different
inorganic fillers (salts) into the polymer matrix [80].
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Table 4. The results of BET data for PVA, mPSF, and their corresponding composites.

Materials W (%) rpm (nm)
BET Data

Area (m2/g) Monolayer (g/g)

PVA 30.4038 1.54 394.995 0.1125
mPSF 16.3611 2.89 113.116 0.0322

Filler amount
(wt%) PVA/mMWCNTsnanocomposite system

0.5 20.5926 1.92 214.510 0.0611
1 17.9827 2.38 151.099 0.04304

2.5 21.4767 2.70 159.045 0.0453
5 16.323 2.61 125.222 0.0357

Filler amount
(wt%) mPSF/mMWCNTsnanocomposite system

0.5 15.1289 2.49 121.351 0.0346
1 14.9112 2.47 119.769 0.0341

2.5 11.0995 1.70 130.397 0.0371
5 12.9138 2.09 123.660 0.0352

However, an in-depth understanding on the dependence of the surface features with
the porosity of polysulfones embedding CNTs is still lacking. Reporting data showed that
these membranes are useful in selective separation processes of gases, ions, or molecules.
The modification of polysulfones induced an increased hydrophilicity and, as a result,
an increased antifouling behavior. Some of these membranes are successfully applied in
sea-water desalination, the CNTs incorporation proving a better flux, a high mechanical
strength, and acid resistance. Moreover, the composites membranes with CNTs showed a
high efficiency by phase inversion, being the preferred candidates for pressure retarded
systems and osmosis. [81].

In our samples, the decrease in BET area could be explained by the blockage of the
pore due to creation of polar OH groups formed on the surface of the MWCNTs material.
For the latest sample in the PVA/mMWCNTs composite system, an insignificant decrease
in the pore diameter was recorded. A different behavior was evidenced in the case of the
samples from the mPSF/mMWCNTs nanocomposite system. The decrease in pore size
diameter with the increase in filler amount of mMWCNTs into mPSF matrix associated with
the increase in the surface area was observed. However, there was no significant change in
pore diameter for both 0.5 and 1 wt% mMWCNTs filler embedding in mPSF matrix.

3.5. Morphological Analysis

Changing the mobility of the polymer chain will induce the modification of the
structural properties of the final nanocomposite [82]. Figure 7 displays the morphology
of the composite systems containing different amounts of mMWCNTs filler in the PVA
matrix. A uniform structure is observed for all the PVA/mMWCNTs composite systems.
This indicates that MWCNTs are spread homogeneously throughout the entire surface of
the material after their functionalization with polar groups (OH). The OH groups created
on the surface of MWCNTs interact very well with the OH groups of the PVA matrix (as
shown in the FTIR analysis), preventing their agglomeration into the matrix. The dark
spots observed on the SEM images are mMWCNTs.

Figure 8 shows the morphology of the composite system containing different amounts
of mMWCNTs filler in the mPSF matrix. Similarly, a more dense and compact morphol-
ogy with a homogenous distribution of mMWCNTs filler amount was shown for the
mPSF/mMWCNTs composite system. The pores clearly observed on the surface of the
materials indicate a porous material, which is necessary for the targeted application. This
is in accordance with the work reported by Wang [83]. The porous structure of this sample
was attributed to the compaction of the polymer network during the synthesis process.
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3.6. In Vitro Hemolysis Assay

Hemocompatibility of the materials constitutes an important feature for their use
in blood-contacting applications. The hemolysis assay was performed for the materials
containing 1 wt% and 5 wt% mMWCNTsin both the mPSF and PVA matrices. The test
results are shown in Figure 9 and were expressed as means ± SD (n = 3). It is observed that
all tested materials are non-hemolytic. For PVA/mMWCNTs nanocomposite systems, a
degree of hemolysis that varied between 1.2 and 1.75% was observed. These results were
attributed to the highly hydrophilic surface of the material, being well correlated with
the contact angle measurements discussed above. The mPSF/mMWCNTs nanocomposite
system having the highest filler loadings (5 wt%) in matrix showed a slightly hemolytic
behavior. These materials had a degree of hemolysis in the range 1.01–2.3%. As expected,
PVA-based systems have a lower degree of hemolysis. We can conclude that both systems
have a good compatibility with blood.
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4. Conclusions

New mPSF/mMWCNTs nanocomposite materials designed for water purification or
blood-contacting materials were prepared. The characteristics of the prepared materials
were compared with those of PVA/mMWCNTs composites. Important structural differ-
ences, mainly on O-H vibrations, in the composition of the PVA and mPSF matrices before
and after embedding of mMWCNTs fillers in different concentration were evidenced by
using the IR spectral subtraction of the spectra. An increased hydrophilicity of the materials
was observed after the incorporation of mMWCNTs into PVA and mPSF matrices. The
DVS analysis revealed that the water sorption behavior of the studied systems is affected
by the structure of the material. All of the systems presented a type-IV isotherm with
hysteresis between sorption and desorption (classified as H2-type in combination with
H3-type) in the case of both nanocomposite materials. SEM images showed more dense
and compact morphology with homogenous distribution of mMWCNTs filler amounts
into the mPSF matrix as compared with PVA/mMWCNTs materials. The presence of pores
onto the surface of the mPSF material indicated porous material, which is necessary for the
pursued applications. Hemolysis results showed that all tested materials are non-hemolytic,
concluding that both composite systems have a good compatibility with blood.
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