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Egr2 and 3 control inflammation, but maintain
homeostasis, of PD-1high memory phenotype CD4 T cells
Alistair LJ Symonds1,* , Wei Zheng2,* , Tizong Miao1, Haiyu Wang2, TieShang Wang2, Ruth Kiome3, Xiujuan Hou2 ,
Suling Li3 , Ping Wang1

The transcription factors Egr2 and 3 are essential for controlling
inflammatory autoimmune responses of memory phenotype (MP)
CD4 T cells. However, the mechanism is still unclear. We have now
found that the Egr2+ subset (PD-1high MP) of MP CD4 T cells ex-
presses high levels of checkpoint molecules (PD-1 and Lag3) and
also markers of effector T cells (CXCR3 and ICAM-1). Egr2/3 are not
required for PD-1high MP CD4 cell development but mediate a
unique transcriptional programme that effectively controls their
inflammatory responses, while promoting homeostatic prolifer-
ation and adaptive responses. Egr2 negative PD-1high MP CD4 T
cells are impaired in homeostatic proliferation and adaptive
responses against viral infection but display inflammatory re-
sponses to innate stimulation such as IL-12. PD-1high MP CD4 T
cells have recently been implicated in rheumatoid arthritis
pathogenesis, and we have now found that Egr2 expression is
reduced in PD-1high MP CD4 T cells from patients with active
rheumatoid arthritis compared with healthy controls. These
findings demonstrate that Egr2/3 control the inflammatory re-
sponses of PD-1high MP CD4 T cells and maintain their adaptive
immune fitness.
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Introduction

Checkpoint molecules such as PD-1 and Lag3 on T cells are im-
portant for the control of autoimmune pathology (Zhang & Vignali,
2016). Antigen persistence, such as in chronic infections and tu-
mours, can induce PD-1 and Lag3 expression which can lead to
exhaustion of effector T cells (Wherry, 2011). In addition to its role in
exhaustion, PD-1 is expressed in memory phenotype (MP), but not
naı̈ve, CD4 T cells in the steady state and plays an important role in
peripheral tolerance and the prevention of autoimmunity in mouse
models (Lin et al, 2007; Thangavelu et al, 2011; Pauken et al, 2015).
Lag3 is also expressed in MP CD4 T cells and is involved in regulation

of homeostasis (Nakachi et al, 2017). However, despite the sup-
pressive function of the PD-1–PD-L1 pathway on TCR-mediated
proliferation, recently it has been discovered that PD-1high MP
CD4 T cells are pathogenic in Rheumatoid Arthritis (RA) and sys-
temic lupus erythematosus (SLE) patients and are not only in-
flammatory but also promote the responses of autoimmune B cells
(Rao et al, 2017; Bocharnikov et al, 2019; Caielli et al, 2019; Zhang et al,
2019), indicating that regulatory mechanisms in these cells control
their homeostasis in the steady state.

The transcription factors Egr2 and 3 are expressed in MP CD4 T
cells in the steady state and defects in these two molecules in T
cells lead to inflammatory activation and the development of
autoimmune symptoms (Zhu et al, 2008; Li et al, 2012; Morita et al,
2016). Although they were initially implicated in inhibition of T-cell
proliferation (Harris et al, 2004; Safford et al, 2005), Egr2/3 are not
generic inhibitors of T-cell proliferation but are required for clonal
expansion of effector T cells in response to viral infection (Miao
et al, 2017). Furthermore, Egr2 and 3 do not directly inhibit the
proliferation of tolerant T cells, but effectively control inflammatory
responses of both effector and tolerant T cells (Omodho et al, 2018).
We found that Egr2/3 are only expressed in a subset of MP CD4 T
cells, but the phenotypes and function of Egr2/3 expressing MP CD4
T cells are largely unknown.

Here, we show that Egr2/3 are stably expressed in a subset of MP
CD4 T cells which express high levels of PD-1 and Lag3 (PD-1high MP
CD4 T cells) as well as activation markers. Egr2/3 are not required
for the development of PD-1high MP CD4 T cells but instead are
essential for their homeostatic proliferation as well as control of
their inflammatory function in the steady state. These functions of
Egr2/3 in PD-1high MP CD4 T cells are required for the maintenance
of a diverse repertoire of MP T cells, which is important for adaptive
responses against viral infection. Egr2 regulates the expression of
genes in PD-1high MP CD4 T cells involved in proliferation, meta-
bolism, and homeostasis as well as inflammation. In the absence of
Egr2 and 3, PD-1high MP CD4 T cells displayed impaired homeostatic
proliferation and adaptive responses but skewed TCR repertoires
and innate-like inflammatory function. We also found that Egr2 is
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expressed in PD-1high MP CD4 T cells in human peripheral blood and
its expression is impaired in patients with active RA. Thus, the
homeostasis of PD-1high MP CD4 T cells, regulated by Egr2/3, is
important for both the control of inflammatory autoimmune dis-
eases and efficient adaptive immune responses.

Results

The transcription factors Egr2 and 3 are stably expressed in a
subset of MP CD4 T cells

Egr2/3 have been found to be expressed in MP CD4 T cells (Zhu et al,
2008; Li et al, 2012). In mice with defects in Egr2/3 in T cells, MP CD4 T
cells accumulate and are inflammatory (Li et al, 2012). However, the

phenotype of Egr2/3 expressing MP CD4 T cells in the steady state is
unknown. We found that only a subset of MP T cells expressed Egr2
(Fig 1A). We analysed the phenotype of Egr2+ and Egr2− MP CD4 T
cells and found that Egr2+ MP CD4 T cells expressed high levels of
the checkpoint molecules PD-1 and also Lag3, as well as markers
associated with effector-like T cells (CCR5, CXCR3, and ICAM-1) (Fig
1B). We term these cells as PD-1+ or PD-1high MP CD4 T cells. To
determine the stability of Egr2 expression in these cells, naı̈ve T
cells and Egr2− and Egr2+ MP T cells were isolated from GFP-Egr2
knock-in mice (CD45.2) and adoptively transferred into separate
wild-type mice (CD45.1). 3 wk after transfer, naı̈ve T cells and Egr2−

MP T cells remained Egr2−, whereas Egr2+ MP T cells largely retained
Egr2 expression (Fig 1C and D). Therefore, in contrast to transient
expression in effector T cells in response to viral infection (Miao
et al, 2017), Egr2 expression is maintained in PD-1high MP CD4 T cells.

Figure 1. Egr2 expression is maintained in a subset of
memory phenotype (MP) CD4 T cells.
(A) CD44 and GFP-Egr2 expression in gated CD4 T cells
from spleens and lymph nodes of GFP-Egr2 knock-in
and CD2-Egr2/3−/− mice. (B) Analysis of the indicated
phenotypic markers in naı̈ve, Egr2+ MP, Egr2− MP, and
Egr2/3−/− MP CD4 cells from GFP-Egr2 and CD2-Egr2/3−/−

mice. (C, D) Naı̈ve (CD44loCD62L+), Egr2− MP (GFP-
Egr2−CD44hiCD62L−), and Egr2+ MP CD4 (GFP-
Egr2+CD44hiCD62L−) T cells were isolated from GFP-Egr2
knock-in mice (CD45.2) and adoptively transferred
into separate wild-type mice (CD45.1). 3 wk after
transfer, GFP-Egr2 expression in recipient mice was
analysed. (A, B, C) are representative of three
independent experiments. Data in (D) are the mean ±
SD from groups of four recipient mice from one
experiment and was analysed with a Kruskal–Wallis
test, followed by a Conover test with Benjamini–Hochberg
correction. N.S., not significant, *P < 0.05, **P < 0.01.
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Interestingly, all CD44high MP CD4 T cells were PD-1high in CD2-Egr2/3−/−

mice, whereas the proportions of FoxP3+ Tregs were similar to GFP-
Egr2 knock-in mice (Fig 1B), indicating that Egr2/3 are not required
for the development of PD-1high MP CD4 T cells, but control their
homeostasis and function.

Egr2/3 are essential for the homeostatic proliferation of PD-1high

MP CD4 T cells

To analyse the effect of Egr2/3 on the homeostasis of PD-1highMP CD4 T
cells, chimeric mice reconstituted with a mixture of bonemarrow from
GFP-Egr2 knock-in (CD45.1) and CD2-Egr2/3−/− (CD45.2) mice were
established allowing the development of Egr2+ and Egr2/3−/− PD-1high

MP cells in the same environment. Naı̈ve, Egr2+PD-1high MP
(Egr2+CD44highPD-1high), Egr2−MP (Egr2−CD44highPD-1low), and Egr2/3−/−

PD-1highMP (Egr2/3−/−CD44highPD-1high) CD4 T cells from chimeraswere
analysed for Ki67, a proliferation marker. Similar, low percentages of
Ki67-positive cells were found among naı̈ve T cells of GFP-Egr2 knock-
in and CD2-Egr2/3−/− origin (Fig 2A). Nearly half of Egr2+PD-1high MP
cells were Ki67+, whereas the percentages of Ki67+ cells were lower in
Egr2−PD-1lowMP andmuch lower in the Egr2/3−/− PD-1highMP populations
(Fig 2A and B). To analyse homeostatic proliferation, Egr2+PD-1high MP
and Egr2−PD-1low MP CD4 T cells of GFP-Egr2 knock-in (CD45.1) origin,
and Egr2/3−/− PD-1high MP CD4 cells of CD2-Egr2/3−/− (CD45.2) origin

were isolated from the chimeras. Cells were labelled with Cell-
Trace Violet before adoptive transfer into wild-type (CD45.1/2)
mice. Egr2+PD-1high MP cells were highly proliferative with more
than 75% of cells having divided at least once, whereas more than
half of Egr2−PD-1low MP cells had not divided and those that had
underwent fewer divisions than Egr2+PD-1high MP cells (Fig 2C). In
contrast, Egr2/3−/− PD-1high MP cells hardly proliferated, withmore than
three-quarters of cells not undergoing any homeostatic proliferation
in recipient mice (Fig 2C). The results demonstrate that Egr2/3 support
the homeostatic proliferation of PD-1high MP cells in the steady state.

Egr2/3 regulate genes required to maintain the homeostasis of
PD-1high MP CD4 T cells

To understand themechanisms of Egr2 and Egr3 function in PD-1high

MP T cells, we analysed the target genes of Egr2 in CD4 T cells and
the transcriptomes of Egr2+PD-1high MP, Egr2−PD-1low MP, and Egr2/
3−/−PD-1high MP CD4 cells from GFP-Egr2 knock-in and CD2-Egr2/3−/−

mice at 7 wk of age. At this time point, T cells from CD2-Egr2/3−/−

mice have not developed into pathogenic cells and do not express
inflammatory cytokines, such as IFN gamma (IFNγ, or activation
markers, such as CD69 (Li et al, 2012).

We focussed on comparing GFP-Egr2+ MP to GFP-Egr2− MP and
GFP-Egr2+ MP to Egr2/3−/− MP T cells (Tables S1 and S2). Of those

Figure 2. Egr2 and 3 maintain the homeostatic
proliferation of PD-1high memory phenotype (MP)
CD4 T cells.
Chimeric mice were generated by reconstitution with
mixed BM from GFP-Egr2 knock-in (CD45.1) and CD2-
Egr2/3−/− (CD45.2) mice. (A, B) Ki67 and CD44 expression
in gated naı̈ve, GFP-Egr2− MP, GFP-Egr2+PD-1high MP, and
Egr2/3−/−PD-1high MP CD4 T cells from spleens and
lymph nodes of chimeric mice 8–12 wk after
reconstitution. (C)MP CD4 T cells (CD62L−CD44hi) of GFP-
Egr2 knock-in (CD45.1) and CD2-Egr2/3−/− (CD45.2)
origin were isolated from chimeric mice and mixed in
equal numbers before labelling with CellTrace Violet.
The labelled cells were adoptively transferred into
wild-type recipients (CD45.1/2). 3 wk after transfer,
CellTrace Violet was analysed on gated GFP-Egr2+

PD-1high, GFP-Egr2−PD-1low (both CD45.1), and Egr2/3−/−

PD-1high (CD45.2) donor cells. (A, C) are representative
of three independent experiments. Data in (B) are the
mean ± SD from groups of five recipient mice from
one experiment and were analysed with Kruskal–Wallis
tests, followed by Conover tests with Benjamini–Hochberg
correction. N.S., not significant, *P < 0.05, **P < 0.01.
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genes that were differentially expressed in either comparison,
around a third were changed in both comparisons. Differentially
expressed genes associated with T-cell biology included those
involved in DNA repair (e.g., Ung, Mgmt, and Apex1), cell survival and
growth (such as Myb, Rel, Eomes, Gfi1, Bcl6, and Id3), metabolism
(such as Scd1, Scd2, and solute channels) and homeostasis (such as
P2rx7, Il2, and Il2ra), which were up-regulated in GFP-Egr2+ PD-1high

MP cells, and also those involved in inflammatory responses (such
as Runx2, Tbx21, Ahr, Rorc, Il18r1, Il18rap, Icam1, Il23r, Il17re, Il12rb2,
Csf2rb2, and chemokines or chemokine receptors), which were
down-regulated (Fig 3A). A gene set enrichment analysis type ap-
proach indicated that pathways involved in proliferation and
metabolism, such as Myc targets, Ras signalling, and Heme
metabolism, were increased in GFP-Egr2+ MP T cells, compared with

either GFP-Egr2− MP or Egr2/3−/− MP T cells, whereas pathways in-
volved in inflammation, such as allograft rejection and IFN response,
were reduced (Fig 3B). Compared with GFP-Egr2− cells, Egr2/3−/− MP
cells also had reduced expression of additional genes involved in cell
growth and homeostasis (such as E2f1, Cdk1, Runx1, Tgfb1, and Lif) and
increased expression of further inflammatory genes (such as Il21,
Il1r2, and additional chemokine receptors), indicatingmore profound
homeostatic defects. Overall, these results show that despite their
common expression of high levels of PD-1, Egr2/3−/− MP and GFP-
Egr2+ MP T cells are distinct, with Egr2+ MP T cells being more pro-
liferative and less inflammatory than either Egr2− or Egr2/3−/− MP
cells. In summary, Egr2 and Egr3 regulate the expression of genes
involved in proliferation and metabolism while suppressing the
expression of inflammatory pathways in PD-1high MP CD4 T cells.

Figure 3. Egr2 and 3 reciprocally regulate
homeostatic and inflammatory programmes in
memory phenotype (MP) T cells.
Naı̈ve (CD62L+CD44lo) and GFP-Egr2− MP and GFP-Egr2+

MP from GFP-Egr2 knock-in and naı̈ve and MP Egr2/
3−/− from CD2-Egr2/3−/− mice were analysed by RNA-
seq. (A) Unsupervised hierarchical clustering of
selected genes showing expression patterns in
naı̈ve, GFP-Egr2−, GFP-Egr2+, and Egr2/3−/− MP T cells.
Selected genes relevant to MP T cell function are
indicated. (B) Gene set enrichment analysis of
Hallmark gene sets (Liberzon et al, 2015) for GFP-Egr2+

versus Egr2/3−/− MP cells (left) and GFP-Egr2+ versus
GFP-Egr2− MP cells (right). Mean and 95% confidence
intervals for selected pathways, colour coded to
indicate Benjamini–Hochberg corrected P-values, are
shown. The RNA-seq data are from three biological
replicates, each with cells pooled from 10 mice, for
each group.
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To investigate the target genes of Egr2, naı̈ve CD4 T cells were
isolated from GFP-Egr2 knock-in mice and stimulated in vitro with
anti-CD3 and anti-CD28 to induce GFP-Egr2 expression before GFP-
Egr2-chromatin immunoprecipitation-sequencing (ChIP-seq) analysis.
We found that the anti-Egr2 antibody used for ChIP-seq in previous
reports (Zheng et al, 2013; Du et al, 2014) was highly cross-reactive,
and we could not get consistent results from replicated experi-
ments in CD4 T cells (Fig S1). Taking advantage of our GFP-Egr2
knock-in model, we used the GFP-Trap ChIP method which pro-
duced high quality Egr2 ChIP from repeated experiments as indi-
cated by enrichment of known target genes such as Nab2 and
Tcf7 (Fig S1). To define high confidence peaks, we used the irre-
producible discovery rate (IDR) method (Landt et al, 2012) to
identify peaks detected in replicates. The enriched motif identified
in these peaks (Fig 4A) was highly consistent with the Egr2-binding

consensus sequence defined previously (Sham et al, 1993; Swirnoff
& Milbrandt, 1995). Most of the validated Egr2 target genes in
previous reports, such as Fasl, Nab2, Dgkz, Tcf7, and Bcl6, were
among the target genes detected (Rengarajan et al, 2000; Zheng
et al, 2013; Du et al, 2014; Ogbe et al, 2015; Miao et al, 2017). Egr2
predominantly interacted with gene promoters (Fig 4B), and target
genes associated with T-cell function were mostly involved in pro-
liferation, metabolism, and regulation of inflammation (Fig 4C). About
a quarter of genes that were differentially expressed between GFP-
Egr2+ PD-1high MP CD4 T cells and either GFP-Egr2− or Egr2/3−/− MP CD4
T cells were target genes of Egr2 (Fig 4D). Many of the genes that are
functionally associated with proliferation defects and high inflam-
mation of Egr2/3−/− PD-1high MP CD4 T cells such as P2rx7, Myc, Il2ra
(down-regulated in Egr2/3−/− MP cells), and Icam1 (up-regulated in
Egr2/3−/− MP cells) are Egr2 targets (Fig 4E and F).

Figure 4. Egr2 binds to regulatory regions of genes
involved in homeostasis and control of
inflammatory responses of Egr2+ memory phenotype
(MP) T cells.
CD4 T cells from GFP-Egr2 knock-in mice were
stimulated for 24 h in vitro with anti-CD3 and anti-CD28
to induce GFP-Egr2 expression and then used for GFP-
Egr2-ChIP-seq. (A) Most significant motif enriched in
Egr2 ChIP-seq peaks (P = 1 × 10^1465). (B) Distribution of
Egr2 binding sites in the genome. (C) Functional analysis
of the genes bound in Egr2 ChIP-seq using the
Hallmark gene sets (Liberzon et al, 2015). (D) Proportion
of differentially expressed genes in RNA-seq (Fig 3) that
are bound by Egr2; “+ versus −/−” and “+ versus −”
indicate the GFP-Egr2+ MP versus Egr2/3−/− MP and
GFP-Egr2+ MP versus GFP-Egr2−MP comparisons in RNA-
seq, respectively. (E) Volcano plot of RNA-seq data
for GFP-Egr2+ MP versus Egr2/3−/− MP cells, with
positive and negative log2 fold changes indicating
higher expression in GFP-Egr2+ or Egr2/3−/− cells,
respectively. Selected genes bound in GFP-Egr2-ChIP-
seq are indicated. (F) ChIP-seq peaks (third track for
each gene) associated with the indicated genes,
together with RNA-seq reads from GFP-Egr2+ and Egr2/
3−/−MP cells (top two tracks), compared with signal from
Input chromatin (fourth track). The ChIP-seq data are
from three independent IPs each from an independent
biological replicate.
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These data show that Egr2/3 are essential for regulating genes
involved in proliferation and homeostasis of PD-1high MP T cells.

Egr2/3 regulate the fitness of PD-1high MP CD4 T cells for adaptive
immune responses

To assess Egr2/3 function in regulation of adaptive responses of MP
CD4 T cells, we used an OT-II retrogenic model (Holst et al, 2006b;
Miao et al, 2017) to generate MP T cells that have not encountered
antigen in the steady state. Before reconstitution, a mixture of bone
marrow from wild-type (CD45.1), and CD2-Egr2/3−/− (CD45.2) mice
was transduced with retrovirus carrying OT-II TCR genes and a GFP
reporter gene as described (Miao et al, 2017) (Fig S2A). The OT-II
expressing T cells were analysed by I-Ab-OVA329-337 tetramer (Fig
S2B). 8 wk after reconstitution, OT-II cells of both genotypes were
detected in chimeric mice (Fig S2B). A proportion of OT-II T cells of
both wild-type and Egr2/3−/− origin developed into CD44high MP
cells in the steady state (Fig 5A and B). To assess the homeostasis of
MP OT-II T cells of wild-type and Egr2/3−/− origin, MP CD4 T cells
were isolated and equal numbers of wild-type (CD45.1) and Egr2/
3−/− (CD45.2) cells were combined, before adoptive transfer into
wild-type recipients (CD45.1/2). 24 h after transfer, the numbers of
wild-type and Egr2/3−/− MP OT-II (Fig 5C and D) cells were similar.
However, 3 wk after transfer, the numbers of Egr2/3−/−MP cells were
significantly reduced compared to wild-type counterparts (Fig 5C
and D). The expression of Egr2 regulated genes (Myb, Tcf7, P2rx7, and
Icam1) by MP OT-II cells 3 wk after transfer showed reduced

expression of Myb, Tcf7, and P2rx7 and increased expression of
Icam1 in Egr2/3−/− MP cells compared with wild-type counterparts
(Fig 5E). These results indicate that the homeostatic maintenance of
antigen-inexperienced PD-1high MP T cells is regulated by Egr2/3.

To assess the function of Egr2/3 in adaptive immune responses
of antigen-inexperienced PD-1high MP T cells, a mixture of wild-type
and Egr2/3−/− PD-1high MP OT-II cells was transferred as above and
recipient mice were infected with OVA-vaccinia virus 24 h later as
described in our report (Miao et al, 2017). 7 d after infection, wild-
type donor cells had expanded, whereas the expansion of Egr2/3−/−

donor cells was impaired (Fig 5F and G). Consistent with this, Ki67
positive cells were significantly reduced in Egr2/3−/− donor cells
compared with wild-type counterparts (Fig 5H and I). IFNγ was
produced by a proportion of wild-type cells consistent with pre-
vious findings (Román et al, 2002; Foulds & Shen, 2006; Miao et al,
2017). Interestingly, although Egr2/3−/− OT-II PD-1high MP cells failed
to expand in response to viral infection, more of them produced
IFNγ than their wild-type counterparts (Fig 5J and K). These results
demonstrate the importance of Egr2/3 in adaptive responses of
PD-1high MP T cells to pathogens.

Reduced repertoire diversity of MP CD4 T cells from
CD2-Egr2/32/2 mice

MP T cells in the periphery are largely maintained by homeostatic
cytokines, such as IL-7 (Boyman et al, 2007). We found that CD127
levels were similar between GFP-Egr2+ and Egr2/3−/− MP T cells (Fig

Figure 5. Antigen-inexperienced memory phenotype
(MP) T cells are intrinsically regulated by Egr2 and 3
for efficient adaptive immune responses.
Mixed BM OT-II TCR retrogenic chimera models were
created by adoptive transfer of an equal number of
OT-II retrovirus transduced BM cells from wild-type
(CD45.1) and CD2-Egr2/3−/− (CD45.2) mice. (A, B) 8 wk
after BM reconstitution, OT-II (I-Ab-OVA329-337+ CD4+)
wild-type (CD45.1) and Egr2/3−/− (CD45.2) cells from
spleens and lymph nodes of chimeras were analysed
for expression of CD62L and CD44. (C, D, E, F, G, H, I, J,
K) GFP+CD62L−CD44hi MP OT-II cells were isolated from
the chimeras and equal numbers of wild-type (CD45.1)
and Egr2/3−/− (CD45.2) MP OT-II cells were adoptively
transferred into wild-type mice (CD45.1/2). (C, D) The
percentages (C) and absolute numbers (D) of donor
cells of each genotype were assessed 24 h or 3 wk
after transfer. (E) RT-PCR of the indicated genes in
isolated OT-II wild-type or Egr2/3−/− donor cells 3 wk
after transfer. (F, G, H, I, J, K) 7 d after transfer, a group
of recipient mice were infected with OVA-vaccinia virus
i.p. and the percentage (F) and absolute number (G) of
wild-type and Egr2/3−/− donor cells were analysed
before and 7 d after infection. (H, I, J, K) 7 d after
infection, Ki67-positive (H, I) and IFNγ-producing (J, K)
OT-II cells were analysed. (A) is representative of 15
recipient mice. (C, E, F, H, J) are representative of two to
three experiments with similar results. Data in (B, D, G, I,
K) are the mean ± SD of five recipient mice and were
analysed with Mann–Whitney two-tailed tests. N.S., not
significant, *P < 0.05, **P < 0.01.
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6A and B), indicating that the impaired homeostatic proliferation of
Egr2/3−/− MP T cells is not due to lack of IL-7Rα. We also examined
expression of CD5, the levels of which are associated with TCR
affinity for self-peptide MHC complexes (Kawabe et al, 2017). CD5
expression was similar in naı̈ve T cells from GFP-Egr2 knock-in and
CD2-Egr2/3−/− mice (Fig 6A and B). Around a quarter of Egr2− MP T
cells were CD5high, whereas this was increased to around a third in
the Egr2+ MP population (Fig 6A and B). In contrast, more than half of
Egr2/3−/− MP T cells expressed high levels of CD5 (Fig 6A and B),
indicating that these cells may be auto-reactive.

Homeostatic proliferation maintains the repertoire diversity of T
cells which is important for sustaining adaptive immunity especially
after thymic involution (Qi et al, 2014; Lanzer et al, 2018). To assess
whether the alteredhomeostatic proliferation of Egr2/3−/−MPcells CD4
T cells changes their repertoire diversity, we analysed the TCR rep-
ertoires of total MP (CD25−CD62L−CD44hi) CD4 T cells fromwild-type and
CD2-Egr2/3−/− mice. TCRVβ, TCRJβ, and CDR3-encoding junctional se-
quences were compared from three independent replicate experi-
ments. Naı̈ve TCRβ repertoire diversity was similar between wild-type
and Egr2/3−/− naı̈ve CD4 T cells (Fig 6C). MP CD4 T cells from wild-type
mice had reduced TCRβ repertoire diversity compared with naı̈ve
counterparts (Fig 6C), which is consistentwith previous reports (Qi et al,
2014). However, the repertoire diversity of Egr2/3−/− MP CD4 cells was
profoundly reduced compared with wild-type MP T cells (Fig 6C),

indicating that the impaired homeostatic proliferation of Egr2/3−/− MP
CD4 altered their diversity. Analysis of clonal frequency plotted against
clonal rank showed a significant enrichment of a few clones in Egr2/
3−/−MP T cells (Fig 6D). The increased proportion of CD5high cells among
Egr2/3−/− MP CD4 T cells (Fig 6A and B), and auto-reactive T cells and
autoimmune disease in CD2-Egr2/3−/− mice (Li et al, 2012; Morita et al,
2016) suggests that these enriched clones may have high affinity for
self-antigen.

Egr2/3 control inflammatory responses of PD-1high MP T cells

Despite high PD-1 expression, Egr2/3−/− MP CD4 T cells are highly
inflammatory leading to the development of autoimmune disease
(Li et al, 2012; Morita et al, 2016). Egr2/3 are only expressed in
PD-1high MP CD4 T cells (Fig 1A and B). To investigate whether Egr2/3
control the inflammatory responses of PD-1high MP T cells to in-
flammatory cytokine stimulation, Egr2+PD-1high MP, Egr2−PD-1low MP,
and Egr2/3−/− PD-1high MP CD4 T cells from GFP-Egr2 knock-in and
CD2-Egr2/3−/− mice were stimulated in vitro with IL-12. Very few
Egr2+PD-1high MP cells produced IFNγ in response to IL-12 stimu-
lation, whereas IL-12 elicited IFNγ production by a small proportion
of Egr2−PD-1low MP cells (Fig 7A and B). However, IFNγ producing
Egr2/3−/− PD-1high MP CD4 T cells were significantly increased in
response to IL-12 (Fig 7A and B). T-bet has been reported to play an

Figure 6. Reduced repertoire diversity of CD2-Egr2/
32/2 memory phenotype (MP) T cells.
(A, B) Naı̈ve and GFP-Egr2+, GFP-Egr2−, and Egr2/3−/−MP
T cells from GFP-Egr2 knock-in and CD2-Egr2/3−/− mice
were analysed for CD127 and CD5 expression. (C, D)
CD4 naı̈ve and MP T cells were isolated from wild-type
(WT) and CD2-Egr2/3−/− mice and their TCRβ repertoires
analysed. (C) Repertoire diversity was estimated
using the Shannon entropy index normalized by the
total number of unique amino acid clonotypes. Samples
were downsampled to the size of the smallest
repertoire 100 times and the Shannon entropy index
calculated for each. The median of the 100 diversity
estimates for each sample is plotted. (D) Rank
frequency distribution of MP and naı̈ve T cell
clonotypes from wild-type and CD2-Egr2/3−/− mice.
Clonotype frequency was estimated using the three
replicates for each condition using the Chao1
estimator. Clonotype rank against frequency in the
repertoire is shown. The TCR-seq data are from three
biological replicates, each with cells pooled from 10
mice, for each group. Data in (A) are representative of
three independent experiments. Data in (B) are the
mean ± SD from groups of mice and were analysed with
Kruskal–Wallis tests, followed by Conover tests with
Benjamini–Hochberg correction. N.S., not significant,
*P < 0.05, **P < 0.01.
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important role in innate-like inflammatory responses of CD4 PD-1high

MP T cells (Kawabe et al, 2017) and Egr2/3 are repressors of T-bet
function (Singh et al, 2017). The percentage of T-bet+ MP CD4 T cells
was higher in Egr2−PD-1low MP cells than Egr2+PD-1high MP T cells from
GFP-Egr2 knock-in mice (Fig 7C). However, T-bet expression was
significantly increased in Egr2/3−/− PD-1high MP CD4 T cells (Fig 7C).
Thus, increased T-bet levels and/or activity in the absence of Egr2/3
may play a key role in inflammatory responses of Egr2/3−/− PD-1high

MP T cells and in the development of inflammatory autoimmune
diseases.

Defective expression of Egr2 in PD-1high MP CD4 T cells from RA
patients

It has recently been found that PD-1high MP CD4 T cells accumulate
in joint synovial tissue and in the peripheral blood of patients with
active RA and SLE (Rao et al, 2017; Bocharnikov et al, 2019; Caielli
et al, 2019; Zhang et al, 2019). The phenotype, inflammatory activation,
and cytokine profile of these PD-1high MP CD4 T cells from synovial

tissues resembles PD-1high MP CD4 T cells from CD2-Egr2/3−/− mice
(Figs 1B and 3A). Therefore, we assessed the expression of Egr2 in
PD-1high MP CD4 T cells from the peripheral blood of patients with
active RA (Table S3). PD-1high MP CD4 T cells (PD-1highCD45RA−) were
detected in both healthy controls and patients (Fig 8A) and most
PD-1high MP CD4 T cells were CXCR3+CXCR5− (Fig S3A). PD-1high MP CD4 T
cells were increased in patients compared with healthy controls (Fig
8A and B), consistent with previous findings (Rao et al, 2017; Zhang
et al, 2019). Egr2 was expressed in a proportion of PD-1high MP T cells in
healthy controls but was significantly reduced in patients with active
RA (Fig 8A and B). Taken together with our findings from mice, this
suggests that Egr2 and/or Egr3 are intrinsic regulators of PD-1high MP
CD4 T cells tomaintain their homeostasis and to prevent autoimmune
inflammation in the steady state.

We previously found that Egr2/3 can suppress the activity of the
Th1 transcription factor T-bet (Singh et al, 2017). Granzyme B and
T-bet expression were increased in Egr2/3−/− in PD-1high MP CD4 T
cells (Figs 3A and 7C and D). These two molecules are highly
expressed in PD-1high MP CD4 T cells from joint synovial tissue of

Figure 7. Egr2 and 3 control IFNγ production by CD4
memory phenotype (MP) T cells in response to IL-12
stimulation.
(A, B) GFP-Egr2+CD4+CD25−CD62L−CD44hi and GFP-
Egr2−CD4+CD25−CD62L−CD44hi MP T cells were isolated
from GFP-Egr2 knock-in and CD4+CD25−CD62L−CD44hi MP
T cells were isolated from CD2-Egr2/3−/− mice and
stimulated in vitro with 100 ng/ml IL-12 for 24 h before
analysis of GFP-Egr2 and IFNγ by flow cytometry.
(C, D) Naı̈ve and GFP-Egr2+, GFP-Egr2− and Egr2/3−/− MP T
cells from GFP-Egr2 knock-in and CD2-Egr2/3−/− mice
were analysed for GFP-Egr2 and T-bet expression. Data
are representative of three to four experiments. Data in
(B, D) are the mean ± SD of four samples and were
analysed with Kruskal–Wallis tests, followed by Conover
tests with Benjamini–Hochberg correction. N.S., not
significant, *P < 0.05, **P < 0.01.
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arthritis patients (Rao et al, 2017). Although overall there was not a
significant difference between patients and controls in the pro-
portions of PD-1high MP CD4 T cells expressing T-bet and Granzyme B
(Fig S3B), in patients in which more than 10% of PD-1high MP CD4 T
cells expressed T-bet, we found that more T-bet+ and Granzyme B+

cells were detected in Egr2− PD-1high MP CD4 T cells than in Egr2+

PD-1high MP CD4 T cells (Fig 8C and D). This may require further
investigation to assess the pathological impact of these cells. The
reduced expression of Egr2 coupled with increased T-bet and
Granzyme B expression in PD-1high CD4 T cells may serve as one of
the molecular signatures for active arthritis.

Discussion

Checkpoint molecules are expressed in effector or effector phe-
notype T cells in both acute and chronic infections which is im-
portant to limit immunopathology and can also lead to exhaustion
(Wherry, 2011; Zhang & Vignali, 2016). Recently, it has been shown
that a subset of MP CD4 T cells express high levels of PD-1 (PD-1high

MP) and have pathological function in the development of RA and
SLE (Rao et al, 2017; Bocharnikov et al, 2019; Caielli et al, 2019; Zhang
et al, 2019). We have now shown that Egr2 is highly expressed in
PD-1high MP CD4 T cells in both mice and humans in the steady
state. Egr2 plays an essential role to support homeostatic prolifer-
ation and control the inflammatory function of these cells by reg-
ulating genes in Myc, mTORC, IL-2 signalling, andmetabolic pathways
as well as genes linked to allograft rejection and IFN-mediated
inflammation in a reciprocal fashion. In the absence of Egr2/3,
PD-1high MP CD4 T cells are highly inflammatory but have impaired
homeostasis and T-cell function, a phenotype discovered recently
in SLE and arthritis (Rao et al, 2017; Tilstra et al, 2018; Arazi et al,

2019). Together with the defective expression of Egr2 in PD-1high MP
CD4 T cells from peripheral blood of patients with active RA, our
findings indicate that Egr2 and/or 3 are essential regulators for
the control of inflammatory function and homeostatic fitness of
PD-1high MP CD4 T cells.

PD-1 controls the proliferation and autoimmune responses of
CD4 T cells (Okazaki et al, 2013). The checkpoint molecule Lag3 also
has an inhibitory function in T cells (Okamura et al, 2009). They both
can be induced in effector T cells in acute viral infection as well as
in chronic infection and cancer. We and others found that PD-1 is
highly expressed in a subset of MP CD4 (PD-1high MP) T cells under
steady state conditions (Fig 1B) (Rao et al, 2017; Bocharnikov et al,
2019; Caielli et al, 2019; Zhang et al, 2019). In SLE and RA, PD-1high MP
CD4 T cells accumulate and are inflammatory (Rao et al, 2017;
Bocharnikov et al, 2019; Caielli et al, 2019; Zhang et al, 2019). We have
now demonstrated that Egr2 is highly expressed in PD-1high MP CD4
T cells in the steady state. In addition to high levels of PD-1, Egr2+

and Egr2/3−/−MP T cells express many of the samemarkers, such as
CXCR3, that have been described in pathogenic PD-1high MP T cells in
disease (Rao et al, 2017; Bocharnikov et al, 2019; Caielli et al, 2019).
We have now discovered that the homeostasis and inflammatory
activity of PD-1high MP CD4 T cells is regulated by Egr2/3 in the
steady state. Egr2/3 are not required for the development of the
PD-1high MP CD4 T cell population but support their homeostatic
proliferation and control their inflammatory function.

We and others previously showed that Egr2/3 deficiency results
in accumulation of hyper-activated inflammatory MP CD4 T cells
leading to severe autoimmune responses (Li et al, 2012; Morita et al,
2016). We have also previously observed that Egr2−/− MP CD4 T cells
in old CD2- Egr2−/− mice, which are also prone to develop auto-
immunity (Zhu et al, 2008; Miao et al, 2013), have increased ho-
meostatic proliferation (Zhu et al, 2008). In contrast, we have now
demonstrated that the homeostatic proliferation of Egr2/3−/− MP

Figure 8. Egr2 expression is reduced in PD-1high CD4
memory phenotype T cells from patients with
active rheumatoid arthritis.
(A, B) CD3+CD4+ cells from PBMCs of healthy controls
and rheumatoid arthritis patients were analysed for
PD-1 and CD45RA expression by flow cytometry (A top
panel) and the proportion of PD-1highCD45RA− cells was
quantified (B, left panel). Egr2 and T-bet expression
by these gated PD-1highCD45RA− cells was then
analysed by flow cytometry (A, bottom panel) and the
proportion of Egr2+ cells was quantified (B, right
panel). (C, D) Patients in which more than 10% of
PD-1highCD45RA− cells were T-bet positive were gated
on Egr2− and Egr2+ cells and analysed for T-bet and
Granzyme B expression. Healthy controls in (C) are
presented for comparison. Data in (B, D) are the mean ±
SD and were analysed with Mann–Whitney two-
tailed tests. N.S., not significant, *P < 0.05, **P < 0.01.
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CD4 T cells from healthy chimeric mice is impaired (Fig 2), indicating
that Egr2/3−/− MP CD4 T cells have an intrinsic homeostatic defect.
This altered homeostasis of Egr2/3−/− PD-1high MP CD4 T cells results
in a skewed MP T cell repertoire with reduced diversity and oli-
goclonal expansion of MP CD4 T cells with high affinity for self-
antigens as indicated by high levels of CD5. Collectively, these data
demonstrate that the maintenance of homeostasis is not only
important to preserve a diverse T-cell repertoire but also for
controlling the expansion of auto-reactive MP CD4 T cells.

Although Egr2+ and Egr2/3−/− PD-1high MP CD4 T cells have a
similar cell surface phenotype, Egr2/3−/− PD-1high MP CD4 T cells
have an altered expression profile with increased Il21, Il10, Tbx21,
Gzmb, and Cx3cr1 and decreased Myc, P2rx7, Il2, and Bcl6. This
expression profile partially resembles that found in PD-1high MP CD4
T cells from joint synovial tissue of RA patients (Rao et al, 2017;
Zhang et al, 2019) and includes expression of Il21 and Il10 which are
important for extrafollicular B-cell helper function by PD-1high MP T
cells in autoimmunity (Bocharnikov et al, 2019; Caielli et al, 2019),
indicating the importance of Egr2 and/or 3 in the control of the
inflammatory function of PD-1high MP CD4 T cells. We have now
demonstrated that Egr2 expression is impaired in PD-1high MP CD4 T
cells from patients with active RA compared with healthy controls.
Although the mechanisms responsible for the down-regulation of
Egr2 expression in PD-1high MP CD4 T cells in RA are unknown, we
have found that Egr2 expression in CD4 T cells is induced by TCR
stimulation and suppressed by inflammatory cytokines such as
IFNγ (Singh et al, 2017), suggesting that the inflammatory condition
in patients may repress Egr2 expression in PD-1high MP CD4 T cells
which is yet to be investigated.

Egr2/3−/− PD-1high MP CD4 T cells express high levels of che-
mokine receptors, such as CXCR3, consistent with previous reports
for MP T cells (Sallusto et al, 1998). Whether these cells have high
propensity for tissue migration and whether this is important for
the development of autoimmunity in CD2-Egr2/3−/−mice remains to
be investigated.

In addition to the control of inflammatory molecules, molecules
such as Myc, P2rx7, and Eomes are regulated by Egr2/3 in PD-1high

MP CD4 T cells. These molecules have been found to be important
for the homeostatic proliferation of pathogen specific memory T
cells (Intlekofer et al, 2005; Bianchi et al, 2006; Borges da Silva et al,
2018). We and others have previously demonstrated that Egr2/3
underpin TCR-mediated proliferation in response to antigen stim-
ulation by promoting expression of regulators of proliferation and
enhancing AP-1 signalling (Li et al, 2012; Du et al, 2014; Miao et al, 2017).
The similar transcriptional profiles and impairments in proliferation
seen in both Egr2/3−/− PD-1high MP CD4 T cells and Egr2/3−/− effector T
cells responding to viral infection indicates a general function of
Egr2/3 is to support T-cell proliferation.

T-bet is a Th1 regulator and has been found to be highly
expressed in PD-1high MP CD4 T cells in the inflamed joints of RA
patients (Rao et al, 2017). However, we did not find statistical dif-
ferences in T-bet expression in PD-1high MP CD4 T cells from pe-
ripheral blood between healthy controls and RA patients. This is
most likely due to the fact that high levels of T-bet expression were
only detected in PD-1high MP CD4 T cells from one third of patients.
However, among patients with a high proportion (>10%) of T-bet+

PD-1high MP CD4 T cells, T-bet expression was higher in Egr2− than

Egr2+ PD-1high MP CD4 T cells. In addition, we previously found that
Egr2/3 are suppressors of T-bet function (Singh et al, 2017). Whether
suppression of T-bet function in PD-1high MP CD4 T cells is part of the
mechanism for Egr2 to control inflammatory autoimmunity in
humans is yet to be investigated.

The checkpoint molecule Lag3 is also highly expressed in Egr2+ MP
CD4 T cells. Egr2 has been reported to be associated with the function
of Lag3+ regulatory T cells (Okamura et al, 2009). However, similar to
PD-1, Egr2 is not required for the expression of Lag3. The increased
expression of PD-1 and Lag3 in Egr2/3−/− MP CD4 T cells is associated
with inflammatory responses indicating that the control mechanisms
mediated by Egr2 that regulate inflammatory autoimmune responses
differ from those mediated by checkpoint regulators.

Egr2/3 not only control inflammation but also support the ho-
meostatic proliferation of PD-1high MP CD4 T cells and their fitness
for adaptive responses to viral infection demonstrating an im-
portant function of PD-1high MP CD4 T cells in adaptive immunity.
Our findings indicate that disorders of homeostasis of PD-1high MP
CD4 T cells can result in both inflammatory autoimmunity and
impaired adaptive responses against pathogens. Impaired T-cell
receptor–mediated proliferation and hyper-inflammation of MP
CD4 T cells have also been found in SLE and RA patients (Cope, 2004;
Crispin et al, 2017) further indicating that maintenance of MP T-cell
homeostasis is essential for both preventing autoimmunity and
supporting adaptive immune responses. The impaired expression
of Egr2 in PD-1high MP CD4 T cells from patients with active RA
supports the notion that Egr2/3-mediated homeostatic mecha-
nisms play an important part in control of autoimmune responses.

Our findings demonstrate that the Egr2/3-mediated programme is
required for the homeostatic fitness of PD-1high MP CD4 cells both to
enable their participation in adaptive responses and control auto-
immune inflammation, which suggests that modulation of the Egr2/3
programme may provide a new avenue for immune modulation
therapy for cancer, chronic infections, and autoimmune diseases.

Materials and Methods

Mice

GFP-Egr2 (CD45.2) and CD2-Egr2/3−/− (CD45.2) mice were reported
previously (Li et al, 2012; Miao et al, 2017). C57BL/6 (CD45.1) and
C57BL/6 (CD45.2)mice were purchased from Charles River and crossed
to generate CD45.1/2 mice expressing both allelic variants. All mice
analysed were 7–8 wk of age unless otherwise stated. No animal was
excluded from the analysis, and the number of mice used was
consistent with previous experiments using similar experimental
designs. All mice were maintained in the Biological Services Unit,
Brunel University, and used according to established institutional
guidelines under the authority of a UK Home Office project license.

Antibodies and flow cytometry

FITC or PE or APC or eFluor450 antibodies to CD4 (clone GK1.5); APC-
eFluor780-anti-CD45.1 (clone A20), PEcy7 or APC-anti-IFNγ (clone
XMG1.2); PE-antibody to CD3 (clone 145-2C11), APC-anti-CD54 (ICAM-1)
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antibody (clone KAT-1), and PerCP-Cy5.5-CXCR3 (clone CXCR3-173);
PE- or PEcy7- or APC-anti-CD25 (clone PC61.5), PE- or PEcy7-anti-
CD62L (clone MEL-14), PE- or eFluor450-anti-Ki-67 (clone SolA15), and
PE- or APC-antibody to CD45.2 (clone 104); APC or PEcy7-antibodies to
CD44 (clone IM7); PE-anti-FOXP3 (clone FJK-16s); APC-anti-T-bet (clone
4B10); and APCor PE-anti-CTLA-4 (cloneUC10-4B9)were obtained from
eBioscience. PE-anti-mouse CD223 (LAG-3) antibody (clone C9B7W), PE
or APC/Cy7-anti-mouse CD279 (PD-1) antibody (clone 29F.1A12), PE-
anti-mouse CD5 antibody (clone 53-7.3), BV510-anti-CD44 antibody
(clone IM7), PerCP-Cy5.5-anti-CD45.1 antibody (clone A20), APC-anti-
CCR5 (clone HM-CCR5) and APC-anti-CD127 (IL-7Rα) (clone A7R34), and
Zombie NIR were from BioLegend. APC-labelled MHC/peptide tetra-
mers consisting of H-2 I-Ab MHC molecules bearing OVA329-337 or CLIP
(control tetramer) were obtained from the National Institutes of
Health Tetramer Core facility (Emory University). For staining of human
cells, Alexa Fluor 700 anti-CD3 (Cat. no. 317340 clone OKT3), BV510
conjugated anti-CD45RA (Cat. no. 304142 clone HI100), FITC anti-
Granzyme B (Cat. no. 515403 clone GB11), BV605 labelled anti-CXCR3
(Cat. no. 353728 clone G025H7), BV711 anti-HLA-DR (Cat. no. 307644
clone L243), and PE-Cy7 anti-PD-1 (Cat. no. 367414 clone NAT105) were
purchased from BioLegend, whereas Alexa Fluor 647 anti-T-bet (Cat.
no. 561267 clone O4-46), BV421 anti-CD4 (Cat. no. 566392 clone SK3),
and BUV395 anti-CD25 (Cat. no. 564034 clone 2A3) were obtained from
BD Biosciences. Rabbit anti-Egr2 (Cat. no. ET7108-57 clone JG78-39) was
purchased from HuaAn Biotech, whereas PE conjugated F(ab9)2-goat
anti-rabbit IgG secondary antibody was from eBioscience. Ghost dye
780was obtained from TonboBiosciences. For flow cytometry analysis,
single-cell suspensions were analysed on an LSRII, LSRFortessa, or
Canto (BD Immunocytometry Systems), and the data were analysed
using FlowJo (Tree Star). Cell sorting was performed on a FACSAria
sorter with DIVA option (BD Immunocytometry Systems).

Cell isolation and stimulation

Naı̈ve CD4+ T cells were purified by negative selection using a MACS
system (Miltenyi Biotec) or isolated by sorting CD4+CD25−CD44lowCD62L+ T
cells by FACS. MP T cells were isolated by sorting CD4+CD25−CD44highCD62L−

cells. GFP-Egr2− and GFP-Egr2+ MP T cells were isolated by sorting
GFP-Egr2−CD4+CD25−CD44highCD62L− and GFP-Egr2+CD4+CD25−CD44highCD62L−

cells, respectively. Purified CD4+ T cells were stimulated with plate-
bound anti-CD3 at 5 μg/ml (BD Biosciences) and anti-CD28 (2 μg/ml;
BD Biosciences) antibodies for 24 h before harvest. MP CD4 T cells were
stimulated with 100 ng/ml mouse recombinant IL-12 (BioLegend) for
24 h, or left unstimulated, before analysis of IFNγ-producing cells by
intracellular cytokine staining.

For analysis of Egr2, FoxP3, or T-bet expression, the cells were
processed using the Foxp3 staining kit (eBioscience). For analysis of
cytokine producing cells, the cells were stimulated with 50 ng/ml
PMA and 200 ng/ml ionomycin in the presence of Golgistop (BD
Biosciences) for 3 h before analysis of cytokine producing cells
using the Foxp3 staining kit (eBioscience) and flow cytometry.

Proliferation

CD44highCD4 cells of GFP-Egr2 knock-in (CD45.1) and CD2-Egr2/3−/−

(CD45.2) origin isolated from chimeric mice were mixed at a 1:1 ratio
and labelled with CellTrace Violet according to the manufacturer’s

instructions (Invitrogen). The cells were adoptively transferred to
wild-type (CD45.1/2) recipients. Donor cells were analysed by flow
cytometry 3 wk after transfer.

TCRβ sequencing

TCRβ sequencing libraries were generated from three replicate
samples of FACS-sorted naı̈ve and MP CD4 T cells from wild-type
and Egr2/3−/− mice at 10 wk of age using the SMARTer Mouse TCR
a/b Profiling Kit according to the manufacturer’s instructions
(Clontech). The libraries were sequenced with an Illumina MiSeq
platform using a 2 × 300 bp paired-end kit. Base calls, demulti-
plexing and adapter trimming were performed with Illumina
software. Optical duplicates were removed from fastq files using
the clumpify function in the BBMAP toolkit (Bushnell, 2018), and
sequences were aligned to the IGMT, the international ImMuno-
GeneTics information system http://www.imgt.org (founder and
director: Marie-Paule Lefranc, Montpellier, France), database of
mouse TCRβ genes using the MiXCR algorithm (Bolotin et al, 2015).
TCRβ sequences with two or fewer differences with a Phred quality
score of 20 or more in all nucleotides were merged into clonotypes
using MiXCR and imported into R (R Core Team, 2017) using the tcR
package (Nazarov et al, 2015). TCRβ repertoire diversity was visu-
alized using the Shannon entropy normalized to the total number
of clonotypes as described (Yohannes et al, 2017). Rank abundance
plots were generated using the R package alakazam (Gupta et al,
2015). Briefly, this uses the Chao1 estimator to estimate unseen
clonotype numbers with the three replicates for each condition
combined. The resulting clonotype estimates are then ranked in the
order of clonal size and rank versus clonal size plotted.

Quantitative real-time PCR

Total RNA was extracted from cells using Trizol (Invitrogen) and
reverse transcribed using random primers (Invitrogen). Quantita-
tive real-time PCR was performed on a Rotor-Gene system (Corbett
Robotics) using SYBR green PCR master mix (QIAGEN). The primers
used are as follows: Myb: sense 59-CTGAAGATGCTACCTCAGACCC-39 and
antisense 59-TCCCGATTTCTCAGTTGGCG-39; P2rx7: sense 59-GACGCTGTGT-
CCTGAGTATCC-39 and antisense 59-GTCATATGGAACACACCTGCC-39; Tcf7:
sense 59-CCCAGCTTTCTCCACTCTACG-39 and antisense 59-CTGTG-
AACTCCTTGCTTCTGGC-39; Icam1: sense 59-GAGCCAATTTCTCATGCC-
GC-39 and antisense 59-AGCTGGAAGATCGAAAGTCCG-39; and Gapdh:
sense 59-TGCACCACCAACTGCTTAGC-39 and antisense 59-GGC-
ATGGACTGTGGTCATGAG-39.

The data were analysed using the Rotor-Gene Software. All
samples were run in triplicate, and relative mRNA expression levels
were obtained by normalizing against the level of Gapdh from the
same sample under the same program using: relative expression =
2^(CTgapdh − CTtarget).

RNA-seq analysis

RNA was isolated and purified using TRIzol reagent (Life Tech-
nologies). RNA concentration and integrity were assessed using
Qubit with an RNA HS reagent kit (Thermo Fisher Scientific) and an
Agilent 2100 Bioanalyzer (Agilent Technologies), respectively. Only
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RNA samples with RNA integrity values above 7.0 were considered
for subsequent analysis. mRNA from T cells from independent
biological replicates was processed for directional mRNA-seq li-
brary construction using the KAPA mRNA HyperPrep Kit (Roche
Sequencing Solutions) according to the manufacturer’s protocol.
We performed 43-nt paired-end sequencing using an Illumina
NextSeq 500 platform. Base calls, demultiplexing and adapter
trimming were performed with Illumina software. The short se-
quenced reads were mapped to the mm10 build of the mouse
reference genome using the spliced aligner Hisat2 (Kim et al, 2015).
Intermediate processing steps to remove secondary alignments
and pairs where only one read was mapped were performed using
SAMtools (Li et al, 2009), whereas optical duplicates were removed
with Picard (Broad Institute, 2016). We used several R/Bioconductor
(R Core Team, 2017) packages to identify genes differentially expressed
between GFP-Egr2+ and GFP-Egr2− or Egr2/3−/− T cells. Briefly, the
number of reads mapped to each gene on the basis of the UCSC
refGene database (available from https://genome.ucsc.edu/) were
counted, reported, and annotated using the BiocParallel, Rsamtools,
GenomicAlignments, GenomicFeatures, and org.Mm.eg.db packages
(Lawrence et al, 2013; Carlson, 2017; Morgan et al, 2017a, 2017b). To
identify genes differentially expressed between groups, we used the R/
Bioconductor package edgeR (Robinson et al, 2010). Briefly, count data
were first normalized and dispersion estimated before a negative
binomial model was fitted with significance assessed by a quasi-
likelihood F-test (Lun et al, 2016). Resulting P-values were adjusted for
multiple testing using the Benjamini–Hochberg procedure. Genes with
an adjusted P-value less than or equal to 0.05 and an absolute fold
change greater than or equal to 1.5 were considered differentially
expressed.

For the heat map, a variance stabilizing transformation from the
DESeq2 and vsn packages (Huber et al, 2002; Love et al, 2014) was
applied to the dataset and selected genes were “row-centred” by
subtraction of the mean expression level for each gene before
hierarchical clustering and visualization with the ComplexHeatmap
package (Gu et al, 2016).

For functional annotation, the msigdbr package (Dolgalev, 2018)
was used to obtain Mouse Entrez Gene IDs corresponding to the
Broad Institute Hallmark gene sets (Liberzon et al, 2015). For Gene
Set Enrichment-type analysis, data were processed using the voom
with quality weights methodology in the limma package (Liu et al,
2015; Ritchie et al, 2015) to generate normally distributed data and
then mean ±95% confidence intervals and enrichment P-values for
each gene set were calculated using the qusage package (Yaari et
al, 2013). For the volcano plots the Benjamini–Hochberg corrected
P-values and log2 fold changes, calculated from the edgeR data, the
total dataset was plot using the ggplot2 package (Wickham, 2016)
and then selected genes were highlighted.

ChIP and ChIP-seq assays

ChIP-seq assays were performed according to published methods
(Kidder & Zhao, 2014). Briefly, 5 × 107 CD4 cells from GFP-Egr2 mice were
stimulated with anti-CD3 and anti-CD28 for 24 h. The cells were then
cross-linked with 1% formaldehyde for 10 min at room temperature.
After quenching of formaldehyde with 125 mM glycine, chromatin
was sheared by sonication with a Bioruptor Pico sonication system

(Diagenode). The fragmented chromatin was around 200–500 bp as
analysed on agarose gels. After preclearing, chromatin (500 μg) was
subjected to immunoprecipitation with GFP-Trap MA (Chromotek), or
anti-Egr2 polyclonal antibody (Covance), or Ig as negative control,
bound to blockedprotein Gbeads at 4°C overnight. DNAwas purifiedby
phenol chloroform extraction and concentration was measured by
Qubit with a dsDNA HS assay kit (Thermo Fisher Scientific).

For validation of a successful IP, ChIP DNA was used as template
for PCR amplification in triplicate with specific primers flanking
the Egr2 binding sites (Miao et al, 2017). The primers used are as
follows: Nab2 sense 59-GAGAGGCTGCTGTGGAGACT-39 and antisense
59-GTACGTGGGCGCAGAGAG-39; Tcf7 sense 59-CAACGCATGTGATCACC-
CACC-39 and antisense 59-TCCTGAAAGAAGAGGCGTCCG-39. Data are
expressed as the percentage of input DNA recovered.

For ChIP-seq, libraries from three independent IPs were gen-
erated using the NEBNext Ultra II DNA Library Prep kit according to
the manufacturer’s instructions. We performed 75 bp single-end
sequencing using an Illumina NextSeq 500 platform. Base calls,
demultiplexing, and adapter trimming were performed with Illu-
mina software. The short sequenced reads were mapped to the
mm10 build of the mouse reference genome using Bowtie2
(Langmead & Salzberg, 2012). Intermediate processing steps to
remove secondary alignments and alignments with a MAPQ < 30
were performed using SAMtools (Li et al, 2009), whereas duplicates
were removed with Picard (Broad Institute, 2016). To generate high
confidence peaks, the IDR methodology (Li et al, 2011; Landt et al,
2012) was used using spp (Kharchenko et al, 2008) for cross-
correlation analysis and peak calling and IDR version 2 for sub-
sequent analysis. Peaks were annotated using the ChIPpeakAnno
and ChIPseeker packages (Zhu et al, 2010; Yu et al, 2015), whereas
functional enrichment was performed using a hypergeometric test,
as implemented in the clusterProfiler package (Yu et al, 2012), with
Broad Institute Hallmark gene sets (Liberzon et al, 2015). Motif
analysis was performed using homer (Heinz et al, 2010). ChIP-seq
and RNA-seq tracks were generated using deeptools (Ramı́rez et al,
2016) and visualized using IGV (Thorvaldsdóttir et al, 2013).

Bone marrow chimeras and OT-II retrogenic mice

Bone marrow was collected from CD2-Egr2/3−/− (CD45.2+) or GFP-
Egr2 (CD45.1+) mice. For each chimera, 10 × 106 cells of a 1:1 mixture
of CD2-Egr2/3−/− and GFP-Egr2 bone marrow cells were transferred
intravenously into lethally irradiated (two doses of 550 rad) wild-
type C57BL/6 (CD45.1/2) recipients. For OT-II retrogenic mice, the
OT-II-2A.pMIG II construct, a kind gift from Dario Vignali (plasmid
#52112; Addgene; http://n2t.net/addgene:52112; RRID:Addgene_52112),
(Holst et al, 2006a, 2006b), was transfected into Phoenix cells
(Clontech) as described (Zhu et al, 2008). Bone marrow cells iso-
lated from CD2-Egr2/3−/− and wild-type C57BL/6 mice were cultured
with IL-3, IL-6, and SCF (BioLegend) and transduced with retroviral
supernatant from transfected Phoenix cells by spin transduction as
described (Holst et al, 2006a; Bettini et al, 2013). The transduced
cells were analysed for expression of GFP by flow cytometry. If more
than 5% of cells were GFP+, the cells were transferred into lethally
irradiated (two doses of 550 rad) wild-type C57BL/6 recipients as
described (Holst et al, 2006a; Bettini et al, 2013). Recipient mice were
allowed 8–12 wk for reconstitution.
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Adoptive transfer

Wild-type OT-II (CD45.1+GFP+CD4+CD44high) and Egr2/3−/− OT-II
(CD45.2+GFP+CD4+CD44high) MP cells were isolated from OT-II ret-
rogenic mice by FACS, and expression of OT-II TCR was confirmed by
staining with APC-labelled I-Ab-OVA329-337 tetramer. 3 × 105 wild-type
and 3 × 105 Egr2/3−/− retrogenic OT-II MP cells were mixed and
adoptively transferred to C57BL/6 mice (CD45.1/2). In half of the
recipient mice, the donor cells were quantified and phenotypically
analysed 24 h or 3 wk after transfer. For the other half, the recipient
mice were infected i.p. with 2 × 105 PFU of vaccinia virus (OVA-VVWR)
as described in our report (Miao et al, 2017). 7 d after infection,
donor cells were quantified and phenotypically analysed.

Human study
Research involving human subjects was performed according to the
guidelines from the Local Ethical ReviewCommittee, Dong Fanghospital,
Beijing Chinese Medicine University through approved protocols with
appropriate informed consent obtained. Patients with RA fulfilled the
ACR 2010 RA classification criteria. C-reactive protein level and medi-
cation usage were obtained by review of digital medical records (Table
S1). Biological therapy was defined as the use of anti-TNF, abatacept,
rituximab, tocilizumab, or tofacitinib. All blood samples were obtained
from RA patients seen at the Dong Fang hospital Arthritis Center, Dong
Fang hospital, Beijing Chinese Medicine University. Blood samples were
acquired before initiation of a new biological therapy or within 1 wk of
starting methotrexate. Peripheral blood mononuclear cells (PBMCs)
were isolated from blood using Ficoll-Paque (Sigma-Aldrich) according
to the manufacturer’s protocol. All blood CD4+ T cell analyses focussed
on CD45A− memory (MP) CD4 T cells which includes both resting and
activated MP cells. The non-inflammatory healthy controls were staff at
Dong Fang hospital, Beijing Chinese Medicine University.

Statistics
To analyse the statistical significance of differences between
groups, two-tailed Mann–Whitney tests using the R package coin
(Hothorn et al, 2008) or Kruskal–Wallis tests followed by pairwise
comparisons using Conover tests, as implemented in the R package
PMCMRplus (Pohlert, 2018), with Benjamini–Hochberg correction for
multiple comparisons were used as indicated. Student’s unpaired
two-tailed t tests were used for in vitro experiments. Differences
with a P-value < 0.05 were considered significant.

Data Availability

RNA-seq and ChIP-seq data are available from ArrayExpress under ac-
cession numbers E-MTAB-7795 and E-MTAB-7797, respectively, whereas
TCR-seq data are available from the European Nucleotide Archive under
study number PRJEB33211.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202000766.
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