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ABSTRACT
Previous research has shown the potential value of Bayesian methods in fMRI
(functional magnetic resonance imaging) analysis. For instance, the results from
Bayes factor-applied second-level fMRI analysis showed a higher hit rate compared
with frequentist second-level fMRI analysis, suggesting greater sensitivity. Although
the method reported more positives as a result of the higher sensitivity, it was able to
maintain a reasonable level of selectivity in term of the false positive rate. Moreover,
employment of the multiple comparison correction method to update the default
prior distribution significantly improved the performance of Bayesian second-level
fMRI analysis. However, previous studies have utilized the default prior distribution
and did not consider the nature of each individual study. Thus, in the present study,
a method to adjust the Cauchy prior distribution based on a priori information,
which can be acquired from the results of relevant previous studies, was proposed and
tested. A Cauchy prior distribution was adjusted based on the contrast, noise strength,
and proportion of true positives that were estimated from a meta-analysis of relevant
previous studies. In the present study, both the simulated images and real contrast
images from two previous studies were used to evaluate the performance of the
proposed method. The results showed that the employment of the prior adjustment
method resulted in improved performance of Bayesian second-level fMRI analysis.

Subjects Neuroscience, Neurology, Radiology and Medical Imaging, Statistics
Keywords Bayesian analysis, Cauchy distribution, fMRI, Prior distribution, Meta-analysis, Bayes
factor

INTRODUCTION
fMRI (functional magnetic resonance imaging) has been widely used by neuroscientists
and psychologists who are interested in examining the neural-level mechanisms of
psychological and behavioral processes of interest that could not be well investigated by
traditional research methods in the field, such as surveys, observation, interviews, etc
(Logothetis, 2008; Han, 2016). fMRI shows localized increase of blood volume that can be
used as a proxy for neural-level functioning (Bandettini, 2012). With this information,
researchers are able to associate psychological and behavioral processes with localized
brain functioning by examining which brain regions are showing increased blood volume
during specific behaviors or mental processes (Logothetis et al., 2001). One of the major
methodological benefits of fMRI is that it allows us to observe the neural correlates of the
processes of interest in a non-invasive way, unlike other neuroscientific research methods
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(Logothetis, 2008). It also provides good spatial resolution, which is required for the
localization of the processes of interest at the neural level (Mulert et al., 2004). As a result,
fMRI methods have been employed in many subfields of psychology and neuroscience
ranging from cognitive psychology to social neuroscience (Han, 2016).

Notwithstanding the aforementioned benefits of fMRI methods, several fMRI re-
searchers have expressed their concerns regarding the performance of the methods,
such as thresholding with multiple comparison correction, implemented in widely-used
analysis tools, such as SPM, FSL, AFNI, etc (Han & Glenn, 2018; Han, Glenn & Dawson,
2019). For example,Woo, Krishnan & Wager (2014) and Eklund, Nichols & Knutsson
(2016) have shown that use of default analysis options provided in the tools can lead
to inflated false positives, which could be a significant issue in fMRI analysis involving
multiple simultaneous tests. As a possible alternative approach in fMRI analysis, Bayesian
analysis has been suggested in recent studies (Han & Park, 2018; Han, 2020b). Studies
have shown that the employment of Bayesian analysis in fMRI analysis, particularly
second-level analysis and meta-analysis (Han & Park, 2019), resulted in significantly
improved performance. They reported that compared with classical frequentist analysis
with multiple comparison correction, Bayesian analysis showed significantly improved
sensitivity while maintaining reasonable selectivity (e.g., false-positive rate< .05) when
voxelwise inference was performed.

In addition to this practical benefit, research has suggested the epistemological benefit
of use of Bayesian analysis as well. A widely used indicator for frequentist inference, a p-
value, in fact cannot be used to examine whether an alternative hypothesis of interest is
supported by data (Wagenmakers et al., 2018b). p-values are mainly about the extremity
of the distribution of observed data given a hypothesis, not about to what extent the data
supports the hypothesis (Cohen, 1994). Hence, p-values can only indicate whether a null
hypothesis can be rejected but not whether an alternative hypothesis can be accepted.
The limitations of frequentist analysis can also be problematic in fMRI analysis as well.
In many cases, researchers are interested in examining whether neural activity in voxels
is significantly different across different conditions (Han, 2020b). In other words, the
presence of a significant non-zero effect in voxels becomes the main interest. In this
situation, p-values can only provide information regarding whether a null hypothesis,
‘‘the effect in voxels of interest is zero,’’ can be rejected, not regarding whether an
alternative hypothesis, ‘‘there is a non-zero effect in voxels,’’ is supported by data and
thus can be accepted. Instead, the result from Bayesian analysis can directly suggest
whether the alternative hypothesis is more favored by evidence compared with the null
hypothesis that the most researchers are likely to be interested in Han, Park & Thoma
(2018). Thus, the aforementioned epistemological benefit of Bayesian analysis that it can
directly examine the alternative hypothesis and provide information about whether data
supports the hypothesis is applicable to fMRI analysis as well.

Bayesian analysis has been implemented in several tools for fMRI analysis (Han, in
press; Han & Park, 2018;Mejia et al., 2020). For instance, SPM provides options for
performing Bayesian analysis in its analysis modules (Han & Park, 2018). In addition,
several software tools have also been developed to implement more customized Bayesian
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analysis procedures. For example, BayesFactorFMRI provides options for performing
meta-analysis of statistics images created by previous fMRI studies and Bayes factor-
applied second-level analysis with multiple comparison correction with a graphical
user interface and multiprocessing (Han, in press). BayesfMRI implements the Bayesian
general linear model for fMRI data. In the present study, we will briefly review the
conceptual basis of Bayesian analysis, particularly use of Bayes factors for inference, and
consider how to improve its performance in the context of fMRI analysis (Mejia et al.,
2020).

Bayesian fMRI analysis using Bayes factors
Bayesian analysis is mainly concerned with discovering the posterior distribution of a
parameter of interest through the observation of collected data (Wagenmakers et al.,
2018b; Han, Park & Thoma, 2018). On the other hand, frequentist analysis is usually more
focused on examining the extremity of the observed data distribution given a hypothesis
about the parameter of interest, which has been indicated by a p-value (Cohen, 1994).
Unlike the frequentist approach, Bayesian analysis begins with a prior distribution of
the parameter of interest; this prior distribution can be informed by a priori information
(informative prior) or not (non-informative prior) (Stefan et al., 2019). This distribution
is updated through iterative observations of data. Let us assume that we are interested
in examining a hypothesis, H, with data, D (Marsman &Wagenmakers, 2017). Then, the
updating occurs based on Bayes’ Theorem:

P(H |D)=
P(D|H )P(H )

P(D)
(1)

where P(H |D) is a posterior distribution of H that is updated from a prior distribution
of H, P(H ), with P(D|H ), the probability of observing D given H, and P(D), a marginal
probability, which is a constant for normalization (Han & Park, 2018). While frequentist
analysis is more concerned about P(D|H ), the likelihood that the observed data is the case
given the hypothesis, Bayesian analysis can better inform us whether our hypothesis is
likely to be valid given the observed data, P(H |D), that we are more interested in the most
cases.

From a Bayesian perspective, testing an alternative hypothesis of interest (H1), such as
presence of a non-zero effect in a specific voxel (e.g., activity in condition A> condition
B), can be performed by comparing the posterior probability of the alternative hypothesis
and that of the respective null hypothesis (H0) (Han, 2020b). With Bayes’ Theorem in (1),
the comparison of these two posterior distributions can be done as follows:

P(H1|D)
P(H0|D)

=

P(D|H1)P(H1)
P(D)

P(D|H0)P(H0)
P(D)

=
P(H1)
P(H0)

×
P(D|H1)
P(D|H0)

(2)

The second term in the right-hand side of (2), P(D|H1)
P(D|H0)

, is a Bayes Factor (BF) that
indicates the ratio of the amount of evidence supporting H1 versus H0. In this case, the
calculated BF can be written as BF10. In the same way, if the null hypothesis, H0, becomes
the main hypothesis of interest, then BF01 =

P(D|H0)
P(D|H1)

that indicates the ratio of evidence
supporting H0 versus H1 could be examined.
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A BF quantifies to what extent the present evidence supports an alternative hypothesis
(H1) versus a null hypothesis (H0) (in the case of BF10) or vice versa (in the case of
BF01) (Kass & Raftery, 1995). BF10 greater than 1 indicates that the evidence favorably
supports an alternative hypothesis while if it is smaller than 1, that indicates that evidence
favors a null hypothesis (Wagenmakers et al., 2018a). For instance, BF10 = 10 indicates
that evidence supports H1 ten times more strongly than H0. According to the general
guidelines, BF10 ≥ 3 indicates presence of evidence positively supporting H1 versus H0,
BF10 ≥ 6 indicates presence of strong evidence, and BF10 ≥ 10 indicates presence of very
strong evidence. If BF10 is smaller than 3, then the evidence is deemed to be anecdotal,
not decisive (Kass & Raftery, 1995).

One of the most fundamental epistemological benefits of using BFs in lieu of p-values
in inference is that use of BFs allows us to more directly examine an alternative hypothesis
(Wagenmakers et al., 2018b; Han, Park & Thoma, 2018). Let us assume that we intend to
test whether a specific voxel reported a significant non-zero effect. In this case, H0 is about
absence of a non-zero effect while H1 is about presence of a non-zero effect. In most
cases, we are more interested in testing the presence of the non-zero effect (H1) instead
of the absence of the effect (H0). Unfortunately, p-values are mainly concerned about
P(D|H ), the probability of observed data given the hypothesis. Thus, significant p-values,
such as p< .05, can only inform us about the extremity of the data distribution given the
hypothesis and whether H0 is likely to be rejected. In other words, p-values could not be
used to make the decisions about whether H1 should be accepted in lieu of H0 that most
of us are usually interested in our experiments. Instead, BFs are based on P(H |D), the
probability of the hypothesis given observed data, so BFs allow us to directly examine to
what extent our hypothesis of interest, H1 is supported by data compared with H0. The
previous studies that attempted to employ BFs in fMRI analysis also pointed out that BFs
can be used to more directly test whether voxels show significant activity H1 instead of
merely testing H0 (Han & Park, 2018; Han & Park, 2019; Han, 2020b).

Importance of prior distribution selection
Although BFs possess the aforementioned practical benefits in inference, their appropiate
use requires one fundamental issue to be addressed. Previous studies in Bayesian statistics
have shown that a change in the prior distribution, P(H ), could significantly alter the
resultant BF (Liu & Aitkin, 2008; Sinharay & Stern, 2002). In order to address this issue
and provide general guidelines for prior selection, several researchers have proposed use
of default prior distributions, such as the Cauchy distribution with a scale (σ ) 1

√
2
= .707

(Gronau et al., 2017; Rouder & Morey, 2012). Previous Bayesian fMRI analysis studies that
employed BFs also used such a default prior distribution (Han & Park, 2019; Han, 2020b).
However, given that BFs are sensitive to the change in the prior distribution, the use of the
default prior could not be ideal in all instances (Sinharay & Stern, 2002).

As a possible solution, several researchers have attempted to create a prior distribution
from the results of relevant previous studies (Van de Schoot et al., 2018; Zondervan-
Zwijnenburg et al., 2017). Given that the prior distribution is about the likelihood distri-
bution of the parameter of interest prior to observing data (Marsman &Wagenmakers,
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2017), which is based on our prior knowledge, according to its definition, it would be
plausible to utilize previous findings to formulate the distribution to address issues that
might emerge from arbitrary prior selection (Zondervan-Zwijnenburg et al., 2017). In the
fields of clinical psychology and data science, the performance of the prior distribution in-
formed by relevant previous studies and meta-analyses has been tested in several previous
studies (Van de Schoot et al., 2018; Avci, 2017; Zondervan-Zwijnenburg et al., 2017). They
have shown that the use of prior distributions that were properly designed with a priori
information resulted in better performance in terms of the smaller variability in predicted
trend lines and lower deviance information criterion, which indicates the production
of a better regression model, compared with when the default prior distributions were
used. The methodological implications of these previous findings suggest that use of an
informative prior distribution that is appropriately informed by findings from relevant
previous studies and meta-analyses can improve the performance of analysis and help us
feasibly address the aforementioned issue related to the selection of prior distributions
(Zondervan-Zwijnenburg et al., 2017; Van de Schoot et al., 2018).

Present study
To examine whether Bayesian analysis with a Cauchy prior distribution informed by
a priori information can also improve performance in fMRI research as shown in the
previous non-fMRI studies, outcomes from different analysis methods were compared
in the present study. The compared analysis methods included Bayesian analysis with the
Cauchy prior distribution informed by a priori information, Bayesian analysis with the
default Cauchy prior, and frequentist analysis with voxelwise family-wise error (FWE)
correction implemented in SPM 12.

In the present study, a computational method to adjust the scale of a Cauchy prior
distribution based on a priori information that can be extracted from relevant previous
fMRI studies, was proposed. Although several previous studies have employed BFs
in Bayesian fMRI analysis (Han & Park, 2018; Han, 2020b; Han, in press), they relied
upon the default Cauchy prior distribution, so it would be necessary to consider how to
properly determine the prior distribution based on information. Thus, how a Cauchy
prior distribution should be adjusted based on results from previous studies and meta-
analyses was considered. The proposed method was used to adjust the Cauchy prior
distribution, which was employed in voxelwise Bayesian second-level fMRI analysis
with BFs, by adjusting its scale, σ , with a priori information. Then, whether use of the
adjusted Cauchy prior distribution with the adjusted σ resulted in the improvement
of performance in terms of sensitivity and selectivity was examined. For the planned
performance evaluation, three different sets of fMRI images, one consisting of images
created by simulations and two consisting of real brain activity contrast images from
previous fMRI studies, were analyzed.
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Figure 1 Example of Cauchy prior distributions.
Full-size DOI: 10.7717/peerj.10861/fig-1

METHODS
Use of a priori information from previous studies to adjust prior
distributions
In this section, I will consider how to determine an appropriate prior distribution for
Bayesian fMRI analysis based on a priori information. In particular, I will focus on
Bayesian analysis using BFs for inference based on observed data. Given that a change
in the selected prior distribution can significantly alter the resultant BFs in inference
(Liu & Aitkin, 2008; Sinharay & Stern, 2002), it is necessary to carefully consider how to
choose an appropriate prior distribution. Hence, based on the idea that use of a priori
information from relevant previous studies in designing a prior distribution produced
better analysis outcomes (Van de Schoot et al., 2018; Zondervan-Zwijnenburg et al., 2017), I
will explore how to apply such an approach in the context of fMRI analysis in the present
study.

The previous studies that used BF-based Bayesian fMRI analysis have utilized a Cauchy
prior distribution (Han, 2020b; Han, in press). The Cauchy distribution has been widely
used as a prior distribution in BF-applied Bayesian analysis in the field (Gronau et al.,
2017; Rouder & Morey, 2012). This distribution is determined by two parameters, a center
location (x0) and scale (σ ). x0 determines where the peak of the distribution will be
located. σ determines the width of the distribution; an increase in σ results in a wider
distribution (Sahu et al., 2019). For illustrative purposes, Fig. 1 demonstrates several
Cauchy distributions with different x0s and σ s.

For general purposes, such as t -tests and ANOVA, Gronau et al. (2017) proposed
the default Cauchy prior distribution. The default Cauchy prior distribution uses σ =
1
√
2
= .707 (Gronau et al., 2017). This prior distribution has been widely used in tools
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that implement BF-applied Bayesian analysis, such as JASP and BayesFactorFMRI (Han,
in press;Marsman &Wagenmakers, 2017). Although this has become a well-recognized
default prior distribution in the field, given that use of an informative prior distribution
informed by relevant a priori information resulted in better analysis outcomes (Van de
Schoot et al., 2018; Zondervan-Zwijnenburg et al., 2017), it would be worth considering
how to adjust a Cauchy prior distribution informed by such information. Thus, as a
possible solution, a method to adjust σ based on the results of relevant previous fMRI
studies, particularly their meta-analysis, was developed and tested in the present study.
Once we meta-analyze statistics image files that were created by the previous studies with
the image-based meta-analysis method, information required for the prior adjustment
can be acquired. For instance, if we are interested in comparing neural activity between
two conditions of interest, the meta-analysis of relevant previous studies can inform us
regarding the difference in activity across conditions found in the previous studies.

Again, assume that we are interested in testing whether there is a significant difference
in neural activity between two conditions with a BF in our planned analysis. Then, we will
examine the resultant BF10 that indicates to what extent the collected data supports our
alternative hypothesis, H1, that there is a significant difference in neural activity between
conditions of interest versus the null hypothesis, H0. In order to calculate BF10 in this
case, we need to start with defining the prior distribution, P(H0). It would be possible to
approximate the shape of the distribution if we have a priori information. If we intend to
acquire the information from the aforementioned meta-analysis, then we can utilize these
three types of information: first, the difference in neural activity across two conditions or
contrasts; second, noise strength; and third, the proportion of significant voxels.

The aforementioned contrast directly influences the overall shape of the prior dis-
tribution, P(H0), particularly in terms of its width. Consider two hypothetical cases.
When the contrast value reported from the meta-analysis is large, we are likely to expect
that we observe a large contrast and more significant voxels from the planned analysis.
On the other hand, if the meta-analysis reported a small contrast value, then it could
be predicted that a small contrast and less significant voxels are likely to be found from
the planned analysis. Given that these expectations constitute our prior brief and then
the basis of the prior distribution, the prior distribution is likely to be strongly centered
around x0 = 0 with a steep peak (e.g., Cauchy(x0 = 0,σ = .25) in Fig. 1) when the
estimated contrast value is small. If the expected contrast value is greater, then the peak
at x0 = 0 should be less steep and the overall distribution should be more dispersed (e.g.,
Cauchy(x0 = 0,σ = 2) in Fig. 1). Similarly, noise strength can also influence the overall
shape of the prior distribution. As the estimated noise strength increases, the expected
effect size decreases when a difference (or contrast) is set at a constant value (e.g., Cohen’s
D= mean difference

standard deviation). Thus, the prior distribution has a steeper peak at x0 = 0 as the noise
strength estimated from the meta-analysis increases given that the estimated effect size is
inversely proportional to the noise strength and we expect to see fewer significant voxels
at the end. Finally, the proportion of significant voxels that survived thresholding in the
prior studies also influences the prior determination process. If there were more voxels
that showed significant non-zero effects (e.g., activity in condition A> condition B) and
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survived thresholding, more significant effects are expected to be found in the planned
analysis. Accordingly, the prior distribution to be used is likely to show a less steep peak at
x0= 0 in this case compared with when the proportion of significant voxels is smaller.

Consider how to adjust σ in a Cauchy prior distribution based on the aforementioned
a priori information, the contrast (C), noise strength (N ), and proportion of significant
voxels (R). C is the contrast in terms of the difference in mean activity strength between
significant versus non-significant voxels. N is the strength of noise, such as the standard
deviation of the reported activity strength in voxels. R represents the ratio of significant
voxels out of all analyzed voxels; for instance, R= 1.60% means that 1.60% of all analyzed
voxels were significant in the example. Based on the information, it is possible to estimate
the expected effect in each of the potentially significant voxels. This value becomes greater
as C increases but becomes smaller as N increases. Also, if more voxels were found to
be significant in the prior analysis, in other words if R is greater, then we can expect the
expected effect value to become greater. Hence, the expected effect value can be estimated
as:

X =
C
N
R (3)

Cauchy prior distribution adjustment
In general, comparing activity in voxels between two conditions is the main objective
in fMRI analysis. In many cases, researchers are interested in whether the activity in a
task condition is significantly greater than that in a control condition. To adjust a prior
distribution in these cases, the estimated X from (3) can be used to determine x in a
probability distribution as a candidate for a threshold. Once we consider the cumulative
probability of a prior distribution, we may assume that the cumulative probability
between−∞ and X , Pr[−∞≤ x <X ], becomes a specific amount, P . For instance, once
we assume that P = 95%, then at X , the cumulative probability becomes Pr[−∞≤ x <
X ] =

∫ X
−∞

f (x)dx = 95%. Based on these assumptions, we can set a specific P for the
prior distribution to be used. The percentile, P , in the scale adjustment process can be
estimated as:

P =
∫ X

−∞

f (x)dx (4)

where f (x) is a Cauchy distribution, Cauchy(x0 = 0,σ ), with σ to be determined. This P
determines the shape of the Cauchy prior distribution. If X is constant, then the greater P
results in a smaller σ and a Cauchy distribution with a steeper peak at x0. Once we expect
that more incidences are situated< X (greater P), then there should be more incidences
at x0 (greater probability density) where the peak is. For instance, let us compare two
cases, P = 95% and P = 80% (see Fig. 2 for an illustration). As demonstrated in the
figure, setting P = 95% resulted in the Cauchy distribution with the steeper peak at x0 =
compared with setting P = 85% when X = .032.

Based on the determined P and X , with (4), we can numerically search for σ in order
to adjust the Cauchy prior distribution. Here is one illustrative example. Let us consider
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Figure 2 Cauchy prior distributions with different Ps.
Full-size DOI: 10.7717/peerj.10861/fig-2

a case when 100,000 voxels are analyzed. To acquire information to calculate X , it is
required to know C , N , and R. Let us assume that a meta-analysis of relevant previous
studies indicated that a total of 1,600 voxels were active, while the difference between
the mean activity strength between significant versus non-significant voxels was 1.0, and
the standard deviation of the activity strengths, the noise strength, was .50. In this case,
C = 1.0, N = .50, and R= 1,600

100,000 = 1.60%. Based on these assumptions, X = C
N R=

1.0
.501.60%= .032. If we intend to find a Cauchy distribution scale σ that suffices P = 95%,
then we need to find a σ that suffices:

95%=
∫ .032

−∞

Cauchy(x0= 0,σ )dx

Once we numerically search for a σ that suffices in the equation above, then we can
find that σ ≈ .0051 in this case. By using the same approach, we can calculate σ s for
different Ps, such as 80%, 85%, and 90%. When we calculate the aforementioned σ s, they
become .023, .016, and .010, respectively. When all other parameters, C , N , and R, are the
same, the Cauchy prior distribution with the adjusted σ becomes more centered around
zero with a steeper peak as P increases. Figure 2 demonstrates the different Cauchy
prior distributions with different Ps when the parameters used in the prior example
were applied. In general, as P increases, the resultant Cauchy distribution becomes
more concentrated around zero. In general, use of a narrower Cauchy prior distribution
centered around zero with the steeper peak resulting from a greater P is likely to produce
a more stringent result in terms of fewer voxels that survived thresholding.
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Adjusting a cauchy prior distribution with information from
meta-analysis of relevant previous fMRI studies
With (3) and (4), it is possible to adjust σ to generate a customized Cauchy prior distri-
bution if prior information for C , N , and R is available. For instance, if we meta-analyze
relevant previous studies with resultant images from the studies, we can estimate the
proportion of voxels that survived thresholding (R), the mean activity strength difference
in significant voxels (positives) versus non-significant voxels (negatives) (C), and the
overall noise strength in terms of the standard deviation or activity strengths (N ).

From the meta-analysis, C can be estimated by comparing the mean of the activity
strength in significant voxels that survived thresholding versus that in non-significant
voxels. When the activity strength difference in each significant voxel i is Dv1i , that of each
non-significant voxel j is Dv0j , the number of significant voxels is nv1 , and that of non-
significant voxels is nn0 , C can be estimated as follows:

C =

∑
Dv1i
nv1∑
Dv0j
nv0

(5)

N can be estimated from the standard deviation of the activity strengths in the whole
image, i.e., SD(Dv), when Dv is the activity strength difference in each of all voxels in
the result of the meta-analysis, including both significant and non-significant voxels.
Finally, R, indicating the ratio of the significant voxels in the whole resultant image, can
be calculated as follows:

R=
nv1

nv1+nv0
(6)

Once all these parameters are determined, with (3), X can be calculated. A specific P
value can be chosen, but in this study, I will test the performances of P = 80%,85%,90%,
and 95%. With X and P , σ of the adjusted Cauchy prior distribution to be used for
analysis can be found from (4) numerically. Then, the adjusted Cauchy(x0 = 0,σ ) can
be used as the prior distribution in further fMRI analysis.

Performance evaluation with simulated images
To examine the performance of the adjusted prior distribution, analysis of simulated
images was conducted, as in Han (2020b). A series of images with different proportions
(.01% to 25.60%) of true positives was generated. For instance, in the case of the simu-
lated image with 25.60% true positives, the image contained sphere-shaped true positives
and the total number of voxels that contained the true positives was 25.60% of the whole
image. The intensity of the voxels with true positives was 1, while all other voxels without
true positives were coded as 0. As a result, the contrast of the simulated active vs. inactive
voxels was set to 1 (C = 1) in the present study. A total of twelve simulated images with
twelve different true positive proportions, R = .01%, .02%, .05%, .10%, .20%, .40%,
.80%, 1.60%, 3.20%, 6.40%, 12.80%, and 25.60%, were generated. Examples of the
generated images (R= .10%, .20%, .40%, .80%) are presented in the left hand side of
Fig. 3 (Left).

Han (2021), PeerJ, DOI 10.7717/peerj.10861 10/27

https://peerj.com
http://dx.doi.org/10.7717/peerj.10861


Figure 3 Examples of the created simulated images (C = 1.00, R = .10%, .20%, .40%, .80%). Note.
Left: original simulated images (without the random noise). Right: images with the added random noise,
N (.00,.50).

Full-size DOI: 10.7717/peerj.10861/fig-3
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As a way to examine whether the tested analysis methods were reliable in second-level
fMRI analysis, false positive (FPR) and hit rates (HR) were used as performance indicators
(Han & Park, 2018; Han, 2020b). The FPR indicates how many voxels are found to be
significant after thresholding despite the voxels are not true positives. The HR refers
to the extent to which an analysis method can properly detect truly significant voxels
after thresholding. A better performing analysis method reports a lower FPR, which is
related to Type I error, and a higher HR, which is related to Type II error. To examine
FDPR and HR, noise-added images were analyzed and the analysis results were compared
with the original simulated images containing true positives. In the present study, a
series of noise-added images were generated by adding the random noise following
Gaussian distribution, N (0,.50), to the original images (See the right hand side of Fig. 3
for examples). For each of the aforementioned twelve proportion conditions, noise-
added images were created with four different sample sizes, n= 8,12,16, and 20. For each
proportion and sample size condition, ten different sets of images were created to repeat
testing. For instance, in the case of the proportion condition, R= .01%, ten sets of noise-
added images generated for each of four different sample size conditions.

For the evaluation for performance, FDPR and HR were used in the present study.
With the original and noise-added images, FPR and HR can be calculated as follows (Han
& Park, 2018; Han, 2020b):

FPR=
nFalsePositive
nNoisePositive

(7)

HR=
nTruePositive

nOriginalPositive
(8)

where nFalsePositive is the number of voxels that are reported to be significant from analysis
but not actually positive in the original image; nNoisePositive is the number of voxels that
are reported to be significant from analysis; nTruePositive is the number of voxels that are
reported to be significant from analysis and also actually positive in the original images;
and nOriginalPositive is the number of voxels that are actually positive in the original image.
For the interpretation of the evaluation results, the analysis method that reported lower
FPR and higher HR was deemed as the better method. FPR was utilized as a proxy for
selectivity and HR was utilized as a proxy for sensitivity.

The noised-added images were analyzed with the Bayesian second-level analysis with
adjusted Cauchy prior distributions generated by the method explained previously.
One-sample Bayesian t -tests were performed with Python and R codes modified from
BayesFactorFMRI (Han, in press) (see https://github.com/hyemin-han/Prior-Adjustment-
BayesFactorFMRI for the source code and data files). The resultant images were thresh-
olded at BF ≥ 3 for evaluation (Kass & Raftery, 1995; Han, Park & Thoma, 2018). In
addition, the multiple comparison-corrected default Cauchy prior distribution, which
had σ = .707 before correction, was also employed. The multiple comparison-corrected
default Cauchy prior distribution was generated with the method proposed by Han
(2020b) and De Jong (2019), which adjusts σ based on the number of voxels to be tested.
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The use of the corrected default Cauchy prior was intended to examine whether the
proposed method for prior adjustment can produce relatively improved performance.
Similarly, the resultant images were also thresholded at BF ≥ 3. Simultaneously, the same
images were also analyzed with the frequentist analysis method with the voxelwise FWE
correction implemented in SPM 12 for the performance comparison (Han & Glenn,
2018). The images were entered into the second-level analysis model for one-sample t -
tests in SPM 12. Then, the results were thresholded at p< .05 (voxelwise FWE corrected).

Performance evaluation with concrete examples: working memory
fMRI
In addition to the examination of the performance with the simulated data, the perfor-
mance of the Bayesian fMRI analysis method was also tested with real case examples of
two working memory fMRI datasets. The performance was evaluated in terms of the
extent to which the result of the Bayesian analysis and thresholding overlapped with
the results from the large-scale meta-analyses of relevant previous fMRI studies (Han
& Glenn, 2018; Han, Glenn & Dawson, 2019). The working memory fMRI datasets were
analyzed with the proposed Bayesian analysis method with the prior adjustment. σ for the
prior adjustment was determined with meta-analysis of relevant previous studies.

For the second-level fMRI analysis for performance evaluation, contrast images in the
working memory fMRI datasets were used. The contrast images that contained results
from the first-level (individual-level) analysis of fMRI images from the working memory
experiments were obtained from publicly available fMRI datasets. The images in the first
dataset were generated from the analysis of fMRI images acquired from fifteen partic-
ipants. In the original study, DeYoung et al. (2009) examined the neural activity while
participants were solving three-back working memory task problems. The contrast images
at the individual level were obtained by calculating the difference between the neural
activity during the control condition and that during the task condition (Task−Control)
for each participant. Further details regarding the data acquisition and analysis processes
are described in DeYoung et al. (2009). The fifteen contrast images are available via a
NeuroVault repository by Kragel et al. (2018), https://neurovault.org/collections/3324/
(Study7 files). Each downloaded contrast image contained the contrast of the neural
activity in the working memory task condition versus the control condition.

The second dataset consisted of contrast images collected from thirteen participants.
This dataset was collected in a previous study done by Henson et al. (2002) that compared
neural activity in the memory recall task versus control conditions. Similar to DeYoung
et al. (2009), one contrast image was generated for each participant. Further details about
the experiment and analysis procedures are available in Henson et al. (2002). The contrast
images were downloaded from the SPM tutorial dataset repository (https://www.fil.
ion.ucl.ac.uk/spm/download/data/face_rfx/face_rfx.zip; files under ‘‘cons_can’’ folder).
Because the files were in the ANALYZE format, fslchfiletype was performed to convert the
files into the NIfTI format.

Bayesian second-level analysis was performed with the aforementioned contrast
images containing results from first-level (individual-level) analyses in the two previous
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Table 1 Previous fMRI studies included in the meta-analysis.

Authors Year Sample
size

Compared task conditions NeuroVault
Collection/Image
ID

Quinque et al. 2014 18 (Remembered + forgotten) vs. null events 145/781
Kiyonaga et al. 2017 28 Hard vs. easy search 1354/19037
Demetriou et al. 2018 14 2-back vs. 0-back working memory tasks 1922/29310
Demetriou et al. 2018 14 2-back vs. 0-back working memory tasks 1922/29328
Egli et al. 2018 1,369 2-back vs. 0-back working memory tasks 2621/50291
Stout et al. 2017 81 2-face vs. 1-face working memory tasks 2884/53141

working memory fMRI studies (DeYoung et al., 2009; Henson et al., 2002). Similar to
the case of the analysis of the simulated images, a one-sample t -test was performed (see
https://github.com/hyemin-han/Prior-Adjustment-BayesFactorFMRI for the source
code and data files). While conducting Bayesian second-level fMRI analysis, the Cauchy
prior was adjusted with information from image-based meta-analysis of statistical images
containing either t - or z-statistics reported from previous fMRI studies of working
memory. The meta-analyzed statistics images were downloaded from NeuroVault, an
open online repository to share fMRI statistics images (Gorgolewski et al., 2015). The
descriptions of the individual studies included in the meta-analysis are presented in
Table 1. The meta-analysis was performed with the results from six analyses reported in
five previous studies (Kiyonaga, Dowd & Egner, 2017; Quinque et al., 2014; Demetriou et
al., 2018; Egli et al., 2018; Stout et al., 2017). Bayesian meta-analysis of the statistics images
from the previous studies was performed with BayesFactorFMRI (Han, in press).

From the meta-analysis, the parameters required to adjust σ were calculated. The
proportion of voxels found to be significant in terms of BF ≥ 3 was R= 12.92%. The
mean activity strength in the significant voxels was .61 and that in the non-significant
voxels was .06, so C = .55. Finally, the noise strength was calculated from the standard
deviation of the activity strength in all analyzed voxels, so N = .33. With these parameters,
the calculated σ s for the adjusted Cauchy prior distributions when P = 80%,85%,90%,
and 95% were .16, .11, .07, and .03, respectively. Bayesian second-level analysis was
performed with the module for one-sample t -tests implemented in BayesFactorFMRI
(Han, in press). For evaluation with FDPR and HR, resultant images were thresholded
at BF ≥ 3 (Han, Park & Thoma, 2018; Kass & Raftery, 1995). The thresholded results
were stored in binary images; each voxel in the images indicated whether the voxel was
significant (1) or not (0) after thresholding.

Furthermore, as was done with the simulated images, the downloaded images were
also analyzed with the corrected default Cauchy prior distribution and frequentist FWE
correction implemented in SPM 12. Bayesian second-level analysis with the corrected
default Cauchy prior was performed by BayesFactorFMRI (Han, in press). The resultant
images were thresholded at BF ≥ 3. In addition, similar to the aforementioned Bayesian
second-level analysis, SPM 12 was used to perform a one-sample t -test at the group level.
Once the analysis process was completed, the resultant statistics image was thresholded at
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p< .05 with voxelwise FWE correction implemented in SPM 12. For the evaluation of the
performance, the thresholded results were stored in binary images as done previously.

The performance in this case was evaluated in terms of the quantified overlap between
the resultant thresholded images and the results of large-scale meta-analysis of the
relevant previous fMRI studies. In the present study, an overlap index, which ranges from
0 (no overlap) to 1 (complete overlap), was calculated by using the formula proposed by
Han & Glenn (2018). An overlap index between the original and target images, I , can be
calculated as follows:

I =
2 |Vovl ||Vovl |
|Vorg ||Vtar |

|Vovl |
|Vorg |
+
|Vovl |
|Vtar |

(9)

where Vovl is the number of voxels that were significant in both original and target images,
Vorg is that of the significant voxels in the original image, and Vtar is that of the significant
voxels in the target image. For instance, if 800 voxels were significant in both images,
while a total of 1,600 voxels were significant in the Bayesian analysis result image (original
image) and 2,000 voxels were significant in the meta-analysis result image (target image),
I can be calculated as:

I =
2 |Vovl ||Vovl |
|Vorg ||Vtar |

|Vovl |
|Vorg |
+
|Vovl |
|Vtar |

=
2 800
1600

800
2000

800
1600+

800
2000

= .44

In the present study, the resultant images from the performed analyses were used as the
original images to be examined and the images that were generated from the large-scale
meta-analyses were used as the target images. For the evaluation, images generated from
meta-analyses of previous fMRI studies of working memory have been used as the target
images in the present study. First, statistics images that reported results from relevant
prior studies were downloaded from NeuroVault and were meta-analyzed with the
Bayesian fMRI meta-analysis tool in BayesFactorFMRI (Han & Park, 2019; Han, in press).
Second, a resultant image from the coordinate-based activation likelihood estimation
meta-analysis of neuroimaging data was employed. Activation foci information was
acquired from BrainMap using Sleuth that enables users to explore the large-scale
database containing coordinate information in previously published fMRI papers (Laird,
Lancaster & Fox, 2005). The keyword ‘‘working memory’’ was used to search for the
previous studies relevant to the present study. Once the activation foci information was
acquired, the information was entered into GingerALE for meta-analysis (Eickhoff et al.,
2009; Eickhoff et al., 2012; Turkeltaub et al., 2012). The resultant image from GingerALE
reported the voxels showed significant common activity in the working memory task
conditions when the cluster-forming threshold p< .001 and cluster-level FWE threshold
p< .01 were applied. Third, the result of the meta-synthesis of previous fMRI studies
about working memory was also used. An image was obtained from NeuroSynth (Yarkoni
et al., 2011), an online tool for meta-synthesis of neuroimaging studies, with the keyword
’’working memory.’’ The downloaded image reported voxels that showed significant
activity when the likelihood of activity in ’’working memory’’ given that in all possible
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task conditions, P (working memory | all conditions), was examined. Fourth, a result
from the automated meta-analysis of neuroimaging studies implemented in NeuroQuery
was utilized (Dockès et al., 2020b). NeuroQuery ‘‘is focused on producing a brain map that
predicts where in the brain a study on the topic of interest is likely report observations
(Dockès et al., 2020a).’’ A NeuroQuery map was created with the keyword ‘‘working
memory’’ and downloaded.

Vovls were calculated with the thresholded images from our analyses (original images)
and the aforementioned four meta-analysis results (target images). For the original
images, thresholded images generated by BayesFactorFMRI (for Bayesian analysis) and
SPM 12 (for frequentist analysis) were employed. Four different meta-analysis result
images were used for the target images. While interpreting the resultant Vovl , the higher
value was assumed as the indicator for the better performance.

RESULTS
Performance evaluation with simulated images
We examined the FPRs and HRs across different conditions with the simulated images
that contained sphere-shaped true positives. Figure 4 demonstrates how the FDPRs
Left; A to D) and HRs (Right; E to H) changed with the change in the proportion of the
true positives (R) across different sample sizes (n) and analysis methods. In the case of
subfigures reporting FPRs, black horizontal lines that represent FPR= .05 were added for
reference.

In the cases of the FPRs (the left hand side of Figs. 4A–4D), the classical frequentist
FWE reported the lowest rates, which were always lower than the criterion level, .05, in
all instances. In general, the FPRs resulting from Bayesian analysis became lower as the
sample size, N , increased. The FPRs resulting from Bayesian analysis with the default
Cauchy prior distribution monotonically decreased as the proportion of true positives,
R, increased. A similar pattern was found from Bayesian analysis with the adjusted prior
distributions. However, FPRs in these cases showed the second peaks around R= 6.40%
to 25.60%. FPRs decreased as the higher, more stringent P , was applied

HRs (the right hand side of Figs. 4E–4H) increased as the sample size, N , increased.
In all instances, HRs resulting from the classical frequentist FWE and Bayesian analysis
with the default Cauchy prior distribution did not change significantly across different
Rs. When Bayesian analysis with the adjusted priors was performed, HRs increased as R
increased. The lower, more lenient P resulted in a relatively higher HR when the other
parameters were the same.

Performance evaluation with concrete examples: working memory
fMRI data
The analysis results from different methods are presented in Fig. 5 (analysis of DeYoung
et al., 2009) and Fig. 6 (analysis of Henson et al., 2002). Similar to the cases of the analyses
of simulated images, first, the classical frequentist voxelwise FWE correction resulted in
the least significant voxels, which represent the stringency of the thresholding methods.
Second, Bayesian analysis with the default Cauchy prior distribution after correction
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Figure 4 False positive and hit rates evaluated with the simulated images. . (A-D) False positive rates
with different sample sizes (N = 8, 12, 16, 20). (E) to (H) Hit rates with different sample sizes (N =
8,12,16,20).

Full-size DOI: 10.7717/peerj.10861/fig-4

produced the less significant voxels than Bayesian analysis with the adjusted Cauchy
prior distributions. Third, fewer voxels were significant as the higher P was employed in
Bayesian analysis with the adjusted Cauchy prior distributions.

For the evaluation, we examined the indices of overlap between the resultant images
and meta-analysis images as references. The overlap indices resulting from the com-
parisons are reported in Table 2 (analysis of DeYoung et al., 2009) and Table 3 (analysis
of Henson et al., 2002). In the comparisons with all different types of meta-analysis
images, Bayesian analysis with the adjusted Cauchy prior distributions showed better
outcomes compared with Bayesian analysis with the default Cauchy prior distribution
after correction as well as classical frequentist voxelwise FWE correction.
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Figure 5 Results of analysis of the working memory fMRI images with different methods (DeYoung
et al., 2009).Note. Red: significant voxels in each thresholding condition (A) Classical frequentist voxel-
wise FWE. (B) Bayesian analysis with the corrected default Cauchy prior. (C) Bayesian analysis with the
adjusted Cauchy prior with P = 80% (D) P = 85%. (E) P = 90%. (F) P = 95%.

Full-size DOI: 10.7717/peerj.10861/fig-5

DISCUSSION
In the present study, we developed and tested a method to create a Cauchy prior distribu-
tion for Bayesian second-level fMRI analysis by adjusting its distribution scale parameter,
σ , with information acquired from relevant previous studies. The performance of the
method was tested by comparing it with that of classical frequentist voxelwise FWE
correction (Han & Glenn, 2018) and that of Bayesian analysis with the default Cauchy
prior distribution with multiple comparison correction (Han, 2020b; De Jong, 2019). The
performance evaluation was conducted with both the simulated images and real image
datasets, the working memory fMRI images (DeYoung et al., 2009; Henson et al., 2002).
We demonstrated that it would be possible to adjust σ based on a priori information,
which can be retrieved from analysis, particularly meta-analysis, of relevant previous
studies. The required information includes the proportion of significant voxels in the
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Figure 6 Results of analysis of the working memory fMRI images with different methods (Henson et
al. 2002).Note. Red: significant voxels in each thresholding condition (A) Classical frequentist voxelwise
FWE. (B) Bayesian analysis with the corrected default Cauchy prior. (C) Bayesian analysis with the ad-
justed Cauchy prior with P = 80% (D) P = 85%. (E) P = 90%. (F) P = 95%.

Full-size DOI: 10.7717/peerj.10861/fig-6

whole image (R), the contrast in terms of the difference between the mean activity in
significant voxels versus non-significant voxels (C), and the noise strength, such as the
standard deviation of the activity strengths of voxels, (N ).

When the performance was evaluated with the simulated images, in all instances,
Bayesian analysis in general showed the better sensitivity in terms of the HR compared
with classical frequentist analysis. This result was consistent with a previous study that
examined the performance of Bayesian analysis with the corrected default Cauchy prior
distribution (Han, 2020b). Although the classical frequentist voxelwise FWE correction
reported the lowest FPR below .05, its HR was always significantly lower than the HR of
Bayesian analysis. With a relatively larger sample size (n ≥ 12), Bayesian analysis with
the adjusted Cauchy prior distribution reported a desirable level of FPR, FPR< .05. The
reported FPR was lowest when P = 95% was employed. On the other hand, the reported
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Table 2 Overlap indices resulting from the comparisons betweenmeta-analysis images and thresh-
olded images (DeYoung, 2009).

Bayesian
meta-analysis

brainmap+GingerALE NeuroSynth NeuroQuery

Bayesian: 80% .23 .25 .20 .16
Bayesian: 85% .23 .26 .21 .16
Bayesian: 90% .22 .27 .24 .18
Bayesian: 95% .22 .27 .24 .18
Bayesian: Default .09 .14 .17 .13
Classical .00 .00 .00 .00

Notes.
Rows indicate different analysis methods applied. Columns indicate different types of meta-analyses used for comparisons.

Table 3 Overlap indices resulting from the comparisons betweenmeta-analysis images and thresh-
olded images (Henson, 2002).

Bayesian
meta-analysis

brainmap + GingerALE NeuroSynth NeuroQuery

Bayesian: 80% .12 .09 .05 .06
Bayesian: 85% .12 .09 .05 .06
Bayesian: 90% .12 .08 .05 .05
Bayesian: 95% .12 .08 .04 .05
Bayesian: Default .08 .06 .04 .05
Classical .01 .01 .00 .02

Notes.
Rows indicate different analysis methods applied. Columns indicate different types of meta-analyses used for comparisons.

HR increased as the more lenient P , such as 80%, was employed. In order to examine the
relative superiority and inferiority of each method, I will refer to these criteria:
1. FPR should be lower than .05.
2. When 1 is satisfied, HR should be .75 or higher
3. If there is no case that satisfies both 1 and 2, compare HRs between the cases that

satisfy at least 1.
Based on these criteria, the performance of each analysis method in each condition,

in terms of the sample size (n) and proportion of the a priori true positives (R), was
evaluated and presented in Fig. 7 (A to D according to n). For this purpose, the simulated
images were analyzed and tested. As shown, in all cases except one case when n= 12 (B)
and R = .01%, Bayesian analysis was superior to classical frequentist voxelwise FWE
correction because it showed the relatively higher HR even when n and R were small.
When Bayesian analysis was conducted with versus without the adjustment of σ in the
Cauchy prior distribution, the application of the prior adjustment resulted in better
performance, particularly when the proportion of the a priori true positives (R) was small.
When R was small, the application of the default Cauchy prior distribution resulted in an
increased FPR greater than .05, so it would not be suitable to control for false positives
when the true positives are assumed to be rare in the analyzed images. In addition, the
difference in the employed Ps produced the difference in the performance outcomes. In

Han (2021), PeerJ, DOI 10.7717/peerj.10861 20/27

https://peerj.com
http://dx.doi.org/10.7717/peerj.10861


Figure 7 Comparison of different methods based on the three evaluation criteria. (A) N = 8. (B) N =
12. (C) N = 16. (D)N = 20. Black: FPR ≥ .05. Blue: FPR < .05 and HR ≥ .75. Cells with numbers: cases
when FPR < .05 but HR < .75. The numbers indicate the relative superiority of each method. 1 indicates
the best method within the given n and R.

Full-size DOI: 10.7717/peerj.10861/fig-7

general, as mentioned previously, the lower P resulted in the higher HR; however, when
n and R were small, the employment of low P , such as P = 80% or 85% tended to result
in the unacceptable FPR, FPR≥ .05. In those cases with the small n and R, the relatively
better results were reported when P = 95% was applied. In several instances with n≥ 12
(B) and small R (e.g., .05%≥ R≥ .20% when n= 12 and R≤ .02% when n= 16), better
outcomes were achieved with P = 90% than P = 95% due to the higher HR; however, this
trend diminished as R increased.

In addition, use of the adjusted Cauchy prior distribution can improve performance
in terms of the overlap with results from large-scale meta-analyses when the real image
datasets are analyzed. The method was tested with the working memory fMRI datasets
containing fifteen contrast image files from DeYoung et al. (2009) and Henson et al.
(2002). The performance of each analysis method was tested by examining the extent
to which the results of the analyses overlapped the results of large-scale meta-analyses
conducted with Bayesian image-based meta-analysis (Han & Park, 2019), GingerALE
(Eickhoff et al., 2009; Eickhoff et al., 2012; Turkeltaub et al., 2012), NeuroSynth (Yarkoni et
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al., 2011), and NeuroQuery (Dockès et al., 2020b). In all cases, Bayesian second-level fMRI
analysis performed with the adjusted Cauchy prior distribution reported higher overlap
indices than either Bayesian analysis performed with the corrected default Cauchy prior
distribution or classical frequentist voxelwise FWE correction. This result suggests that
the proposed method for the prior adjustment may improve performance even when real
image files, not hypothetical simulated image files, are analyzed.

In the present study, a method to determine σ for the adjustment of the Cauchy prior
distribution in Bayesian second-level fMRI analysis was proposed and tested. If prior
information about estimated true positives is available, σ can be determined and the prior
distribution can be adjusted accordingly as suggested. In general, similar to the case of
Bayesian analysis with the corrected default Cauchy prior distribution (Han, 2020b), the
proposed method resulted in significantly better sensitivity in terms of HR compared
with frequentist voxelwise analysis with FWE correction, which has been reported to
be very selective but very conservative (Lindquist & Mejia, 2015). In addition, when the
adjusted Cauchy prior was used, the reported performance was better than when the
default Cauchy prior corrected for multiple comparisons was used, particularly when the
sample size and the proportion of true positives were small. This result is consistent with
previous non-fMRI studies that compared the performance of the default prior versus
that of the prior informed by relevant previous literature (Van de Schoot et al., 2018; Avci,
2017; Zondervan-Zwijnenburg et al., 2017). Given these results, the proposed method for
the adjustment of σ and the Cauchy prior distribution will be able to contribute to the
improvement of the performance of Bayesian analysis in fMRI research. Because one
benefit of employing Bayesian analysis is that it is possible to use information retrieved
from relevant previous studies to properly design the prior distribution to be used in
the current research project, the present study would provide useful insights about how
to feasibly apply the aforementioned idea in Bayesian fMRI analysis. In addition, as the
source code files based on BayesFactorFMRI were shared via GitHub (https://github.com/
hyemin-han/Prior-Adjustment-BayesFactorFMRI), an open repository, fMRI researchers
who intend to use the proposed method will be able to easily test it.

The application of Bayesian analysis with an adjusted prior distribution can contribute
to solving a contemporary statistical issue about reliability in fMRI analysis. There have
been increasing concerns regarding whether fMRI research can show acceptable reliability
and validity (Zuo, Xu & Milham, 2019; Elliott et al., 2020). For instance, a recent study
reported that the analyses of large-scale fMRI datasets showed poor test-retest reliability
(Elliott et al., 2020). Given that one of major sources of the poor reliability and validity
is the random noise (Zuo, Xu & Milham, 2019), the method proposed in the present
study can potentially provide researchers with one possible way to alleviate the issue.
As shown in the analyses of simulated images, Bayesian analysis with an adjusted prior
demonstrated relatively consistent outcomes in terms of FPRs and HRs even with the
presence of the random noise. Future studies should test whether the proposed method
can actually improve the reliability of fMRI analysis within the context of task-based fMRI
in addition to second-level fMRI analysis, which has been examined in the present study.
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However, several limitations in the present study warrant further investigation. First,
the same adjusted Cauchy prior distribution is to be applied in all voxels as a global prior,
so it could not take into account any voxel-specific or local-level factors in the prior
adjustment process. Because the provision of a simple and feasible method for prior
adjustment with minimal a priori information was the main purpose in the present study,
a more sophisticated method that allows the consideration of voxel-specific or local-
level aspects should be examined in future research. Second, because we set one of the
parameters required for σ determination, P , prior to the analysis, it may cause the issue
of arbitrary prior determination. Although P = 95% showed the best performance in
the most cases, further research should be done to explore the best way to systematically
determine P . Third, for optimal determination of parameters based on meta-analysis,
image-based meta-analysis instead of coordinate-based meta-analysis, which is more
frequently utilized in the field, should be performed. This could be a potentially signif-
icant issue due to the lack of open statistical images files for image-based meta-analysis
available to the public. NeuroVault is one of the repositories to share such image files
(Gorgolewski et al., 2015), but the limited availability of statistical images resulting from
diverse experiments should be addressed in the long term.
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