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Neurocognitive abilities constitute complex traits with consid-

erable heritability. Impaired neurocognition is typically ob-

served in schizophrenia (SZ), whereas convergent evidence

has shown shared genetic determinants between neurocognition

and SZ. Here, we report a genome-wide association study

(GWAS) on neuropsychological and oculomotor traits, linked

to SZ, in a general population sample of healthy young males

(n¼ 1079). Follow-up genotyping was performed in an identi-

cally phenotyped internal sample (n¼ 738) and an independent

cohort of young males with comparable neuropsychological

measures (n¼ 825). Heritability estimates were determined

based on genome-wide single-nucleotide polymorphisms

(SNPs) and potential regulatory effects on gene expression

were assessed in human brain. Correlations with general cogni-

tive ability and SZ risk polygenic scores were tested utilizing

meta-analysis GWAS results by the Cognitive Genomics Con-

sortium (COGENT) and the Psychiatric Genomics Consortium

(PGC-SZ). The GWAS results implicated biologically relevant

genetic loci encoding protein targets involved in synaptic neu-

rotransmission, although no robust individual replication was
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forWMperformance. Further, sustained attention/vigilance and

WMwere suggestively correlated with both COGENT and PGC-

SZ derived polygenic scores. Overall, these results imply that

common genetic variation explains some of the variability in

neurocognitive functioning among young adults, particularly

WM, and provide supportive evidence that increased SZ genetic

risk predicts neurocognitive fluctuations in the general popula-

tion. � 2015 The Authors American Journal of Medical Genetics Part B:

Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.
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INTRODUCTION

It is well documented that neurocognition represents a complex

heritable phenotypic construct with significant genetic influences

across the entire human lifespan [Deary IJ et al., 2012; Plomin R

and Deary IJ 2014]. High heritability has been observed in twin-

based studies for various neurocognitive traits, including episodic

memory, working memory and general cognitive ability [Ando J

et al., 2001; Haworth et al., 2010; Owens SF et al., 2011]. Similarly,

molecular genetic studies have predicted increased heritability

estimates for general cognitive ability in the general population

by considering the additive effects of thousands common genetic

markers in the human genome [Plomin R et al., 2013; Benyamin B

et al., 2014]. Due to the close relationship between neurocognitive

deficits and psychiatric illness, nationwide collaborative efforts

have joined forces in order to investigate the potential contribution

of common genetic variation to neurocognitive performance,

which may also lead to the identification of specific genetic loci

involved in psychiatric nosology [Donohoe G et al., 2013; Lencz T

et al., 2014].

Individuals with schizophrenia (SZ) underperform in a wide

range of neuropsychological and neurophysiological tasks com-

pared to the general population, making neurocognitive im-

pairment one of the core features of SZ psychopathology [Kahn

RS and Keefe RS 2013]. Substantial evidence indicates that these

deficits usually precede the onset of the full-blown clinical presen-

tation of the disease, implying that early cognitive deterioration

might represent an important risk factor or prodromal condition of

SZ [Kahn RS and Keefe RS 2013; Bora E and Murray RM 2013;

MeierMH et al., 2014]. In addition, family studies have shown that

the phenotypic relationship between SZ and neurocognition can be

attributed to shared genetic effects, which points towards a signifi-

cant overlap between the underlying genetic factors inducing both

cognitive deficits and increased SZ susceptibility [Toulopoulou T

et al., 2007, 2010]. This view is further supported by the neuro-

cognitive lag observed among children and adolescents reporting

psychotic experiences [Gur RC et al., 2014], whichmight reflect the

common genetically determined neurodevelopmental origin of

aberrant neurocognition and psychosis.

Our group and others have previously reported that commonSZ

risk genetic variants derived from large-scale genome-wide associ-

ation studies (GWAS), as well as variants within SZ candidate genes
are associated with neurocognitive weaknesses in clinical and non-

clinical populations [Burdick KE et al., 2006; Stefanis NC et al.,

2007; Greenwood TA et al., 2011; Hatzimanolis A et al., 2012;

Walters JT et al., 2013], suggesting that at least some of SZ risk

variants might have a significant impact on human cognition.

More recently, it has been shown that SZ risk genetic loci, when

analyzed as an aggregate polygenic risk score, predict alterations in

white matter brain volume, general cognitive ability and working

memory related prefrontal brain activation [Terwisscha van Schel-

tinga AF et al., 2012; McIntosh AM et al., 2013; Kauppi K et al.,

2014]. Several neuropsychological and neurophysiological traits

have been proposed as putative endophenotypes (or intermediate

phenotypes) for SZ, with potential value in genetic studies as an

alternative approach to help identify SZ susceptibility loci [Braff

DL et al., 2007; Thaker G, 2008; Greenwood TA et al., 2013,

Tamminga CA et al., 2014; Ivleva et al., 2014]. The attractiveness

of endophenotypes stems from the observation that these traits

are heritable, segregate in SZ families and likely possess a less

complex genetic architecture [Gottesman II and Gould TD 2003;

CannonTD andKellerMC2006].Over the past few years, genome-

wide association and linkage studies have identified genetic loci

associated with SZ candidate neurocognitive endophenotypes

[Almasy L et al., 2008; Greenwood TA et al., 2013; Papassotiro-

poulos A et al., 2013; Lencz T et al., 2014; Vaidyanathan U et al.,

2014].

In the present study, we aimed to uncover through genome-wide

association analyses novel common genetic variants associated

with candidate endophenotypes for SZ, in healthy young individ-

uals drawn from the general population. Independent replication

of the most compelling association results was attempted in two

additional samples and plausible functional properties of the

associated variants were tested on human brain gene expression.

Furthermore, heritability estimates were acquired by assessing the

cumulative additive effects of all genome-widemarkers. Finally, we

generated polygenic risk profile scores based on the results of a

general cognitive ability GWAS meta- analysis and the largest to

date GWAS meta-analysis for SZ from the Psychiatric Genomics

Consortium (PGC- SZ) [Ripke S et al., 2014], and examined their

contribution to the endophenotypes under investigation.

MATERIALS AND METHODS

Participants
A detailed description of the Athens Study of Psychosis Proneness

and Incidence of Schizophrenia (ASPIS) has been reported previ-

ously [SmyrnisN et al., 2007, 2011; StefanisNCet al., 2007]. Briefly,

the ASPIS examined randomly selected youngmale conscripts aged

18 to 24 years from the Greek Air Force in their first two weeks of

admission to the National Air Force Basic Training Center (Trip-

olis, Greece). All conscripts had received a standardized screening

interview by a team of military doctors of different specialties in

order to exclude serious medical conditions, including docu-

mented diagnosis of psychotic disorders and substance depen-

dence, and individuals with such conditions were not admitted for

military training. In all, 2029 eligible individuals provided a

mouthwash sample for DNA extraction and completed a battery

of computerized tasks measuring different aspects of neuropsy-
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chological and oculomotor performance. Written informed con-

sent was obtained from every individual before participating to the

study. The study protocol was approved by the University Mental

Health Research Institute (Athens, Greece) and the Johns Hopkins

University Institutional Review Boards.
Cognitive and Oculomotor Assessments
Detailed information on the phenotyping procedures of the ASPIS

has been described in previous reports [Smyrnis N et al., 2007;

Stefanis NC et al., 2007].Wemeasured sustained attention with the

Continuous Performance Task-Identical Pairs version (CPT-IP)

and short-term verbal and spatial workingmemory (WM)with the

N-back task (2-back version) [Smyrnis N et al., 2007]. Both

accuracy (d’ index) and speed of processing (mean reaction

time) outcomes were included in the analyses. In accordance

with our previous work, we a priori decided to exclude data

from further analyses if d’ index on CPT-IP and N-back was

<0 and if there were �3 unsuccessful trials (of 5) for verbal and

spatial 2-back tasks. Oculomotor performance was tested using

standardized tasks measuring antisaccade and smooth eye pursuit

eye movements [Smyrnis N et al., 2011; Kattoulas E et al., 2012].

The following oculomotor variables were included in our analyses:

antisaccade error rate, median reaction time of correct antisac-

cades, coefficient of variation of antisaccade reaction time and a

principal component analysis (PCA) factor extracting the common

variance of smooth eye pursuit gain measures (ratio of eye velocity

to target velocity). Reasoning ability (non-verbal IQ) was assessed

with the Raven’s progressive matrices [Raven J et al., 2004]. A

description of the phenotypic outcomes examined in the current

study is presented in Table I.
TABLE I. Description of the Phenotypic O

Phenotype Task Abbreviati

Reasoning ability

(non-verbal IQ)

Raven’s progressive matrices IQ

Sustained

attention/Vigilance

Continuous Performance Test,

Identical Pairs version

CPT

CPT-RT

Verbal working

memory

Verbal N-back (2-back) VNB

VNB-RT

Spatial working

memory

Spatial N-back (2-back) SNB

SNB-RT

Oculomotor

functioning

Antisaccade eye movements AER

ART

ACV

Smooth pursuit eye

movements (three constant

target speeds: 10, 20, and

30 deg/sec)

SPEM
Genotyping and Imputation
We selected for genome-wide genotyping a subsample of 1,216

individuals with the most complete data across all tasks (discovery

GWAS sample). Genotyping in the discovery ASPIS sample was

conducted on Genome-Wide Human SNP array 6.0 (Affymetrix,

Santa Clara, CA) at the Institute of GeneticMedicine, JohnsHopkins

University School of Medicine. Appropriate quality control (QC)

testing and SNPQCfilteringwas applied in PLINK [Purcell SM et al.,

2007], excluding single-nucleotide polymorphisms (SNPs)with a call

rate <97.5%, minor allele frequency <5% and Hardy-Wienberg

equilibrium P< 0.0001. Further, we used principal component anal-

ysis (PCA)as implemented inEIGENSTRAT[PriceALet al., 2006], to

both identify genetic outliers (>6 standard deviations on any of the

top ten principal components) and correct for any potential residual

population substructure. Batch-related genotyping errors were also

ruled out before analyses. Genotype imputationwas performedusing

IMPUTEv2 [Howie BN et al., 2009], with the 1,000 Genomes Project

panel as a reference (Phase I, Integrated release, version 3). After

rigorousQC and data cleaning processes, a total of 1,079 samples and

5,654,592 high quality autosomal SNPs were available for down-

stream genome-wide analyses. Further details on genotyping and

imputation procedures are provided in the Supplementary material.

Follow-up genotyping for top- associated SNPs selected for replica-

tion was performed using MassARRAY iPLEX Gold assays (Seque-

nom, San Diego, CA), following the manufacturer’s instructions.
Replication Samples
The remainder ASPIS subsample (N¼ 738) served as an internal

validation sample of GWAS results. The only difference between

the discovery and replication subsamples is that the former was
utcomes Analyzed in the Present Study

on Outcome

Box-cox transformed total score of correct responses

Accuracy index (d’); both correct responses and false alarms are

taken into account

Mean reaction time for correct responses

Accuracy index (d’); both correct responses and false alarms are

taken into account

Mean reaction time for correct responses

Accuracy index (d’); both correct responses and false alarms are

taken into account

Mean reaction time for correct responses

Antisaccade error rate

Mean reaction time for correct antisaccades

ART intra-subject coefficient of variation

PCA factor extracting the common variance of all three gain

measures (ratio of eye velocity to target velocity)
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selected to have the fewest missing phenotypic data, which we

found to correlate with superior performance in most tasks.

Additional replication was attempted in the Learning on Genetics

of Schizophrenia Spectrum (LOGOS) sample, an independent

cohort of healthy young male army conscripts described in detail

previously [Roussos P et al., 2011]. The LOGOS acquired the same

recruitment procedures as the ASPIS, assessing healthy male con-

scripts (age range 18–29) at a Greek Army Training Camp (Her-

aklion, Crete) on several neurocognitive phenotypes that resemble

the ones tested in the ASPIS. Available phenotypic scores on

sustained attention (RVP; Rapid Visual Information Processing),

spatial working memory (SWM) from the Cambridge Neuropsy-

chological Test AutomatedBattery (CANTAB) and theN-back task

were analyzed. As equivalent to the ASPIS phenotypic assessments,

we utilized RVP and N-back data on the number of correct

responses and reaction time. The total number of errors and a

measure of strategywere assessed in the SWMtest as outcomes. The

LOGOS cohort was genotyped on the HumanOmniExpress array

(Illumina, San Diego, CA) applying identical QC metrics.

GWAS Enrichment Analysis
We applied a permutation-based analytical strategy to determine

whether our strongest GWAS hits (PGWAS< 0.001) contain true-

positive association signals. Specifically, we randomly shuffled the

IDs of the individuals included in the GWAS within the file

containing the phenotypes and covariates, thus preserving the

correlations between covariates and phenotypes and the correla-

tions between genotypes, but randomizing the link between the two.

If 100 permutations approached an empirical P¼ 0.05 more per-

mutations, up to 3000, were run as needed to accurately determine

lower P-values. Genome- wide analysis was run on each permuted

data set with identical parameters as the original run, and all LD-

independent (r2< 0.2) significant SNPs at P< 0.001 were extracted

and counted. Empirical P-value for signal enrichment was calculat-

ed as the fraction of permutations that produced equal or larger

number of independent hits than the original data. The most likely

number of true signals in each phenotype was calculated as the

number of observed signals minus the average number observed

across permutations. The number of true signals at 95% confidence

was defined as the number of observed signals minus themaximum

number observed in less than 5% of permutations.

Human Brain Gene Expression
Postmortem human brain samples were acquired from theHarvard

Brain Tissue Resource Center and the National Institute of Child

Health and Development (NICHD) Brain and Tissue Bank for

Developmental Disorders. In total, we analyzed 162 samples dis-

sected from the superior temporal lobe (Brodmann area 22) and 88

prefrontal cortex samples from healthy donors. Quantitative real-

time PCR (qPCR) reactions were performed in triplicate following

standard procedures (details in Supplementary material).

Polygenic Score Analysis
Polygenic risk scores (PRS) based on the latest meta-analysis

GWAS results on general cognitive ability (Cognitive Genomics
ConsorTium, COGENT) and SZ (Psychiatric Genomics Consor-

tium, PGC-SZ) [Lencz T et al., 2014; Ripke S et al., 2014] were

generated following the procedure described by the International

Schizophrenia Consortium [Purcell SM et al., 2009]. SNPs were

filtered by applying seven P-value thresholds (PT< 0.0001, PT
< 0.001, PT< 0.01, PT< 0.05, PT< 0.1, PT< 0.3, PT< 0.5) to

PGC-SZ GWAS summary statistics (discovery sample). General

cognitive ability PRSs were generated based on the single P-value

threshold (PT< 0.001) that was reported by COGENT. PRS calcu-

lation in the ASPIS GWAS subsample (target sample) was per-

formed in PLINK using the “-score” option, after appropriate

linkage disequilibrium-based SNP pruning (r2< 0.2 within a

200 kb window), ensuring that only independent association sig-

nals are included. PLINK calculates a weighted risk score for each

individual, based on the number of risk alleles that the individual

carries at each SNP locus and the natural logarithm of the reported

odds ratio for that particular SNP in the reference GWAS (CO-

GENT or PGC-SZ). The sum of single scores across all genotyped

SNPs denotes the total PRS for each individual.
Statistical Analyses
To identify genetic outliers (>6 standard deviations on any of the

top ten principal components) and correct for any potential

residual population substructure, principal component analysis

was applied as implemented in EIGENSTRAT [Price AL et al.,

2006]. Association testing between phenotypic outcomes and

imputed genotype allelic dosages was performed by linear regres-

sion under an additive genetic model using SNPTESTv2 [Marchini

J and Howie B 2010], adjusting for age, years of education, and the

first principal component. Genome-wide Complex Trait Analysis

(GCTA) software which implements a restricted maximum likeli-

hood (REML) analysis was used to estimate the proportion of

phenotypic variance explained by all genome-wide SNPs (SNP-

heritability) [Yang J et al., 2011]. We tested for correlations

between phenotypes and polygenic risk scores by linear regression

in R (http://www.r- project.org/), utilizing the same covariates as

above. In this analysis, given the well-documented relationship

between poor neurocognitive performance and SZ development by

prior studies, one-sided P< 0.05 was used to declare significant

correlations. Statistical analyses of normalized log-transformed

qPCR gene expression measurements were also performed in R,

by fitting generalized linear models with age, sex, post-mortem

interval, and acquisition site as covariates.

RESULTS

GWAS Results and Replication
Genome-wide association analyses were performed in the discov-

ery ASPIS sample (N¼ 1,079) for the eleven neurocognitive and

oculomotor outcomes described in Table I. The corresponding

quantile-quantile plots for each outcome showed no inflation of

test statistics, with genomic inflation factor values �1.01

(Figure S1). A single SNP was associated with sustained atten-

tion/vigilance task accuracy index (CPT), exceeding the conven-

tional GWAS significance threshold (rs115501170 P¼5.2� 10�9,

b¼�0.43), with minor allele carriers exhibiting poorer perfor-

http://www.r- project.org/
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mance. This SNP is located within the first intron of theCNTNAP5

(contactin associated protein-like 5) gene, which belongs to the

neurexin family of neuronal cell-adhesionmolecules. However, the

above association failed to validate in the remainder ASPIS follow-

up sample (1-sided P¼ 0.183, b¼�0.06). For replication geno-

typing, we selected all SNPs with an association P<1� 10�6 in the

discovery GWAS sample, and those of the SNPs with a P<1� 10�5

located within or near genes encoding proteins with a known

function implicated in neuropsychiatric disorders by previous

studies and thus could be considered as strong candidates. A total

of 29 SNPs were tested in the ASPIS follow-up sample (n¼ 738),

which was ascertained in an identical manner with the discovery

sample but genotyped separately. A complete list of the above and

all other associated hits at P< 0.0001 with any outcome are

presented in Supplementary Tables S1, S2. Two SNPs associated

with verbal WM performance (VNB, VNB-RT) nominally repli-

cated (1-sided P< 0.05), whereas two additional SNPs showed a

trend association (1-sided P< 0.1).We note that none of the above

associations retained significance after correction for the number

of SNPs examined. Because of the significantly better performance

of the ASPIS discovery sub-sample compared to the replication

sub-sample in the majority of tasks (Supplementary Table S3),

likely attributable to our selection of individuals with most com-

plete data in the discovery sub-sample, we considered adjusting the

analysis for the most significantly different, the Raven’s matrices

score. We did not observe major changes in the results, yet the P-

value for the SNP associated with SNB (rs16823702), reached

uncorrected nominal significance (P¼ 0.049). Given the strong

correlation of SNB with Raven’s score however, this should be

interpreted with caution. Furthermore, external replication was

attempted in the LOGOS cohort (n¼ 825) for 13 SNPs (of the 29

SNPs) strongly associated with neuropsychological outcomes in

the ASPIS. No evidence for a robust replication was observed in the

LOGOS, besides a nominal association between verbal WM reac-

tion time (VNB-RT) and a marker located 134 kb upstream of LPP

(LIM domain containing preferred translocation partner in lipo-

ma) gene (rs66491174; 1- sided P¼ 0.02). The SNPs with a
TABLE II. Follow-Up Replication Analysi

Discovery GWAS sample

Outcome SNP ID Risk Allelea MAF PGWAS
VNB rs79739201 C 0.16 6.7E-07

VNB- RT rs815425 G 0.4 7.2E-06

VNB- RT rs66491174 C 0.13 4.7E-07

SNB rs16823702 G 0.14 2.9E-06

AER rs10168813 C 0.17 6.3E-06

na, not available.
aDenotes worse performance (i.e., lower accuracy, higher RT, higher antisaccade error rate).
bOne-sided replication P-values are shown.
cWithin range of LD (where any r2> 0.2 in 1000 genomes project).
dOpposite direction of SNP effect.
suggestive association in either of the two replication samples

are shown in Table II.
True Signals Among Highly Associated Genetic
Loci
We next sought to investigate whether true positive association

signals are present among the most strongly associated GWAS loci

(PGWAS< 0.001), using permutations as described in the methods.

Nine of the 11 sets of association signals corresponding to the 11

phenotypic outcomes showed more signals than the permutation

average. For four of these nine sets the number of signals was

reached in less than 5% of the permutations, providing 95%

confidence that real associations are among them (Table III).

The most striking were the signals observed for VNB and ACV

providing 418 and 448 signals respectively, which was never

observed in 3,000 permutated data sets (empirical P< 3.3� 10�4).

Ninety-five percent of permutations resulted in less than 379 and

387 signals respectively, indicating with 95% confidence that there

are at least 39 true signals for VNB (9.3%of signals) and 61 for ACV

(13.6% of signals).
SNP-Based Heritability
We estimated the heritability of the examined phenotypes based on

genome-wide SNP data (h2SNP) in unrelated individuals, using an

analytic methodology that has been proven successful in prior

studies of complex traits [Benyamin B et al., 2013; Lee SH et al.,

2013; Robinson EB et al., 2014]. Even though precise h2SNP
estimates could not be obtained, presumably because of the small

sample size and the increased standard errors [Visscher PM et al.,

2014], we found that a significant proportion of the phenotypic

variance for both verbal and spatialWM accuracy (VNB, SNB) can

be attributed to common genetic variation (P¼ 0.0003 and

P¼ 0.0004 respectively), with at least 38% of variance explained

by all genotyped SNPs. Lower h2SNP was observed for sustained

attention/vigilance (P¼ 0.03).
s Results of Single-SNP Associations

Replication samples

PASPIS
b N PLOGOS

b N Nearest genec

0.041 538 0.069d 825 intergenic

0.043 522 0.361 747 ERC2

0.226 523 0.019 732 LPP

0.055 588 na no genotype GRIK3

0.080 741 na no phenotype BIN1



TABLE III. Permutation-Based Enrichment Analysis for GWAS Top-Associated Genetic Loci

GWAS dataset Permuted datasets

Outcome Nobs Nexc/Nperm Pemp 50th PCTL Nobs-50th PCTL 5th PCTL Nobs-5th PCTL

IQ 391 11/1000 0.011 343 48 378 13

CPT 338 60/100 ns 342 - 375 -

CPT-RT 349 36/100 ns 340 9 375 -

VNB 418 0/3000 <0.001 344 74 379 39

VNB-RT 323 84/100 ns 347 - 378 -

SNB 370 7/100 ns 343 27 373 -

SNB-RT 354 33/100 ns 345 10 383 -

ERT 357 25/100 ns 343 14 382 -

ART 381 35/1000 0.035 345 36 378 3

ACV 448 0/3000 <0.001 352 96 387 61

SPEM 335 67/100 ns 345 - 382 -

Nobs, number of observed loci at GWAS P< 0.001.
Nexc, number of permutation where the number of loci at P< 0.001 exceeded Nobs.
Nperm, number of permutations performed.
Pemp, empirical P-value. Significant enrichment at P<0.05 is shown in bold.
PCTL, percentile, for example 5th PCTL is the number of loci with P< 0.001 in 5% of permutations.ns, not significant (Pemp> 0.05).
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Gene Expression Analysis
Three SNPs showing suggestive evidence of replication in the

follow-up ASPIS sample are located within brain-expressed genes

(ERC2, GRIK3, BIN1) and their protein products are involved in

neuronal processes (details in Supplementary material). As GWAS

hits are often expression quantitative trait loci (eQTLs) [Nicolae

DL et al., 2010], we asked whether this is also true for the above

variants. The correlation between genotype and the expression

levels of the respective gene transcripts was examined in the

temporal lobe (N¼ 162), the prefrontal cortex (N¼ 88), as well

as in the combined sample (N¼ 250), adjusting for brain region. In

all, no evidence for a significant eQTL was observed (all P> 0.1).
FIG. 1. General cognitive ability polygenic score correlation with

cognitive outcomes in the ASPIS. R2 (%) values are presented on

the y-axis as a measure of the phenotypic variance explained by

the computed polygenic score, applying a COGENT GWAS P-value

threshold PT< 0.001. Increasing score predicted better perfor-
Association With General Cognitive Ability
Polygenic Score
A single PRS was computed based on the reported top-associated

SNPs with general cognitive ability by COGENT (COGENT PT
< 0.001). We observed a significant correlation (1-sided P< 0.05)

with verbal and spatialWM accuracy and verbalWM reaction time

outcomes (VNB, SNB, VNB-RT) (Fig. 1). A near significant result

was noted for sustained attention/vigilance accuracy (CPT

P¼ 0.051). Of the top-ranked 1,455 COGENT SNPs with available

genotypes in the ASPIS, none reached significance with any of our

neurocognitive outcomes after a Bonferroni correction for multi-

ple testing. Similarly, no significant enrichment of nominally

associated SNPs was observed, compared to what is expected by

chance (binomial test P> 0.1).

mance in the ASPIS. IQ, Intelligence Quotient (non-verbal IQ);

CPT, Continuous Performance Test (accuracy); VNB, Verbal N-

back (accuracy); SNB, Spatial N-back (accuracy); COGENT,

Cognitive Genomics Consortium.

Polygenic Risk for SZ and Neurocognition
Given the reported shared genetic influences between SZ and

neurocognition, we tested the hypothesis that an increased poly-
genic risk score (PRS) for SZ, which defines the aggregate effect of

many risk alleles of small effect, would be correlated with poor

neurocognitive performance. In Table S3, we show the correlations

between the eleven phenotypic outcomes and SZ PRS generated at

different PGC GWAS P-value thresholds (PT). SZ PRS at PT< 0.5



FIG. 2. Correlation between SZ polygenic risk scores at different

PGC GWAS P-value thresholds (PT) with cognitive outcomes in

the ASPIS. R2 (%) values are presented. Increasing risk score for

SZ predicted worseperformance in the ASPIS. IQ, Intelligence

Quotient (non-verbal IQ); CPT, Continuous Performance Test-

(accuracy); VNB, Verbal N-back (accuracy); SNB, Spatial N-back

(accuracy); PGC, Psychiatric Genomics Consortium.
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was nominally associated (P< 0.05) with both sustained attention/

vigilance (CPT) and spatial WM accuracy (SNB) performance

(Fig. 2), suggesting a limited but significant genetic overlap with

SZ risk loci. A significant correlation was also noted for antisaccade

reaction time variability (ACV P¼ 0.002 at PT< 0.0001), however

not in the expected direction (high SZ PRS associated with lower

variability). Next, we individually tested for association all 128

genome-wide significant SNPs reported by PGC–SZ. After multi-

ple testing corrections, no SNP reached significance with any of the

phenotypes, and no excess of single-SNP associations was observed

for any of the outcomes (binomial testP> 0.05).Nevertheless, nine

SNPs were nominally associated with more than one phenotypic

outcome in the ASPIS, with SZ risk allele predicting weaker

performance (Table IV).
TABLE IV. PGC-SZ Genome-Wide Significant SNPs Nom

ASPIS

SNP ID Location Outcomes

rs12421382 11q22.3 VNB, SNB

rs7523273 1q32.2 CPT, ACV

rs6704641 2q33.1 SNB, SPEM

rs7819570 8q21.3 SNB-RT, VNB-RT

rs4129585 8q24.3 CPT-RT, SNB-RT

rs7893279 10p12.31 CPT, VNB

rs77502336 11q24.1 IQ, SPEM

rs2068012 14q12 VNB, SNB

PGC, psychiatric genomics consortium.
Two-sided P-values are shown.
DISCUSSION

The aim of the current study was to evaluate the contribution of

common genetic variation to individual neupsychological and

oculomotor performance differences among young adults from

the general population, and whether SZ risk loci could predict such

differences. We studied traits that represent promising endophe-

notypes for SZ with presumed less complex biology and influenced

by overlapping genetic variation [Braff DL et al., 2007; Glahn DC

et al., 2014]. Since compelling evidence has shown that neuro-

cognitive disruptions in SZ exist prior to the onset of clinical

symptoms [Kahn RS and Keefe RS 2013; Bora E and Murray RM

2013], the discovery of genetic loci implicated in themodulation of

cognitive abilities in young adulthood, may shed light into neuro-

nal processes and the underlyingmolecularmechanisms that, when

compromised, increase the risk to develop SZ. Due to the limited

power of our discovery sample to detect SNP associationswith high

confidence, we intended to validate the most promising results in

an internal follow-up sample (ASPIS) and an independent sample

with almost identical demographic and phenotypic characteristics

(LOGOS). Overall, the observed associations replicated weakly and

inconsistently; however, given the sample size limitations and the

vicinity of genes that are strong functional candidates, these results

warrant attention for future genetic and functional studies. The

marker showing the strongest association with sustained attention/

vigilance, which surpassed genome-wide significance cut-off, is of

potential interest since it is located within a brain expressed gene

(CNTNAP5) previously implicated in neuropsychiatric diseases

with known disturbances in sustained attention, that is bipolar

disorder, autism and attention-deficit hyperactivity disorder

[Djurovic S et al., 2010; Pagnamenta AT et al., 2010; Neale BM

et al., 2010]. CNTNAP5 protein belongs to the neurexin super-

family of cell-adhesion molecules, which have been shown to

constitute key regulators of synapse formation and neurotrans-

mission [Anderson GR et al., 2012; Karayannis T et al., 2014].

Suggestive evidence of association was observed for three addi-

tional loci, located within genes whose protein products are

involved in glutamatergic signaling (GRIK3) and synaptic vesicle
inally Associated With Multiple ASPIS Phenotypes

Best ASPIS PGC-SZ

P-value P-value Genes in region

7.8E-04 (VNB) 3.7E-08 C11orf87

2.0E-02 (CPT) 4.5E-08 CD46, CR1L, CD34

7.5E-03 (SPEM) 8.3E-09 SATB2

2.9E-03 (SNB-RT) 1.2E-08 MMP16

7.2E-03 (CPT-RT) 1.7E-15 TSNARE1

3.4E-02 (CPT) 2.0E-12 CACNB2

4.3E-03 (IQ) 7.5E-09 GRAMD1B

1.9E-02 (VNB) 1.4E-08 PRKD1, MIR548AI
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trafficking processes (ERC2, BIN1). Genetic variation within

GRIK3 has been previously linked to SZ and developmental delay

[Djurovic S et al., 2009; Takenouchi T et al., 2014].

Our analyses suggest that while single-SNP effects are small, the

aggregate effect of common SNPs (SNP-heritability) can explain a

substantial portion of the phenotypic variance for at least two

phenotypes, verbal and spatial WM accuracy (N-back task). Of

note, this result represents a direct replication of the significant

SNP-heritability observed independently for N-back performance

in a cohort of healthy young adults [Vogler C et al., 2014].

Moreover, these findings are in agreement with reported herita-

bility estimates of diverse cognitive abilities in children and ado-

lescents using the same genetic approach [Benyamin B et al., 2013;

Trzaskowski M et al., 2013; Roninson EB et al., 2014], supporting

the contribution of multiple common variants to neurocognitive

functioning. Twin and family studies in clinical and non-clinical

samples have also revealed a considerable heritability for WM

[Greenwood TA et al., 2007; Wilson RS et al., 2011; Goldberg X

et al., 2013], as well as a significant genetic relationship between

general cognitive ability and aspects of executive function, includ-

ing WM [Aukes MF et al., 2009; Lee T et al., 2012]. In addition,

neuroimaging findings in young twins of the same age range as the

participants in the current study, who performed the sameWMN-

back task, demonstrated an increased heritability for WM-related

brain activation [Blokland GA et al., 2011]. Jointly, the above

observations underscore the strong influence of genetic compo-

nents on WM, which has been shown to be a reliable endophe-

notype for SZ [Horan WP et al., 2008].

While the sample size of the ASPIS did not allow robust genetic

associations for individual loci, our permutation analyses detected

significantly more associated loci than the null expectation for 4 of

the 11 outcomes tested, suggesting that within our strongest

signals there are true-positives and allowing an estimate of their

minimum number at 95% confidence. Verbal WM and intra-

subject reaction time variability in the antisaccade task showed the

most promising results, with an estimate of at least 39 and 61 true-

positives among the 418 and 448 top-associated signals with

P< 0.001 respectively, and with such numbers of signals not

reached in 3,000 permutations. These results are encouraging

for future genome-wide and follow-up studies as they suggest

that there are some relatively strong genetic effects influencing

these phenotypes and they will likely be among the first to reach

genome-wide significance with the inclusion of additional indi-

viduals. It is of interest that the intra-subject antisaccade reaction

time variability is an oculomotor measure that we have repeatedly

found to show different distributions between SZ cases and

controls, and therefore may prove a useful SZ endophenotype

[Smyrnis N et al., 2009; Theleritis C et al., 2014].

On another front, our results provide independent validation of

previously reported GWAS findings on human general cognitive

ability. Although we could not replicate individual single-SNP

associations, likely due to small effect sizes of the respective

variants, the cumulative effect of multiple SNPs, as indexed by

the computed polygenic score, shows correlation with WM which

is central to general cognitive ability and a key component of the

composite phenotypic construct analyzed by COGENT [Lencz T

et al., 2014]. Applying the same polygenic strategy, we explored the
extent of the overlapping genetic determinants between neuro-

cognitive performance and SZ risk, if any. To the best of our

knowledge, this is the first general population study assessing the

contribution of a SZ polygenic risk score derived from the largest to

date SZ GWAS meta- analysis [Ripke S et al., 2014], on cognitive

and oculomotor performance. We found weak evidence that SZ

risk alleles predispose to aberrant sustained attention and spatial

WM, at least in young adulthood. We acknowledge that this result

could not be considered striking in terms of the obtained statistical

evidence in our limited number of individuals; yet it is in agreement

with the genetic overlap between neurocognition and SZ observed

in twin and family studies [Toulopoulou T et al., 2007, 2010].

Similar findings have also been reported for general cognitive

ability by COGENT which studied a much larger sample than

theASPIS, aswell as forWM-related prefrontal brain activation in a

small cohort of SZ patients and healthy controls [Kauppi K et al.,

2014]. We may, therefore, hypothesize that the overlapping var-

iants could modify the function of genes that orchestrate neuro-

developmental processes implicated to both cognitive dysfunction

and psychosis (Bora E and Murray RM 2013); however this

hypothesis cannot be tested with the existing data. It should be

stressed that our results are based on measurements in healthy

individuals, thus we cannot rule out a more pronounced effect of

PGC-SZ polygenic risk on neurocognitive functioning in a clinical

population.

Taken together, our GWAS results reveal associations within or

near genes encoding proteins with well-defined neuronal functions

and potentially vital involvement in mechanisms shaping human

neurocognition, although independent studies will be needed to

adequately validate the reported findings. Furthermore, this study

underscores the polygenic nature of WM and its genetic relation-

ship with SZ, which even though is of minor magnitude, strength-

ens the notion thatWMmay represent a highly suitable phenotype

for future collaborative efforts, aiming at the identification and

characterization of genetic risk factors that enhance both symp-

toms of psychopathology and neurocognitive impairment.
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