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Abstract

In meiosis, the exchange of DNA between chromosomes by homologous recombination is a critical step that ensures
proper chromosome segregation and increases genetic diversity. Products of recombination include reciprocal exchanges,
known as crossovers, and non-reciprocal gene conversions or non-crossovers. The mechanisms underlying meiotic
recombination remain elusive, largely because of the difficulty of analyzing large numbers of recombination events by
traditional genetic methods. These traditional methods are increasingly being superseded by high-throughput techniques
capable of surveying meiotic recombination on a genome-wide basis. Next-generation sequencing or microarray
hybridization is used to genotype thousands of polymorphic markers in the progeny of hybrid yeast strains. New
computational tools are needed to perform this genotyping and to find and analyze recombination events. We have
developed a suite of programs, ReCombine, for using short sequence reads from next-generation sequencing experiments
to genotype yeast meiotic progeny. Upon genotyping, the program CrossOver, a component of ReCombine, then detects
recombination products and classifies them into categories based on the features found at each location and their
distribution among the various chromatids. CrossOver is also capable of analyzing segregation data from microarray
experiments or other sources. This package of programs is designed to allow even researchers without computational
expertise to use high-throughput, whole-genome methods to study the molecular mechanisms of meiotic recombination.
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Introduction

In sexually reproducing organisms, meiosis is the specialized type

of cell division that produces haploid gametes (eggs and sperm, in

humans) from diploid cells. During the first meiotic division, pairs of

homologous chromosomes become physically linked, and DNA is

exchanged between chromosomes by homologous recombination.

This exchange of DNA can either be reciprocal, leading to a

crossover (CO), or non-reciprocal, giving rise to a non-crossover

(NCO) or gene conversion (GC). Proper recombination between

homologs is critical for two reasons: first, the physical link between

homologs helps establish their alignment on the meiotic spindle and

correct segregation at the first meiotic division; and second, the

exchange of DNA provides a nearly limitless source of genetic

diversity [1]. Errors in recombination can give rise to aneuploid

gametes (containing too many or too few chromosomes), or to

deleterious chromosomal rearrangements. Such errors are common

causes of infertility and birth defects in humans [2].

Much of what we know about the details of meiotic

recombination comes from studies of the budding yeast Saccharo-

myces cerevisiae. In yeast, the process of sporulation produces four

haploid spores from a single diploid parent cell (Figure 1). These

four spores remain together as a tetrad, and can be physically

separated using a micromanipulator for further study. Most studies

of yeast meiotic recombination have relied on dissection of

hundreds of tetrads to analyze the segregation of a small number

of loci bearing nutritional or antibiotic resistance markers [3]. The

large amount of hands-on time required for each experiment

places a severe limitation on the number of experiments a single

researcher can carry out. Many important questions about meiotic

recombination, such as how cells regulate the exact location and

distribution of COs, remain unanswered. Recently, our laboratory

and others have developed whole-genome approaches to acceler-

ate the study of meiosis in yeast [4,5,6,7]. Using microarrays or

high-throughput sequencing, we are able to detect recombination

events occurring genome-wide in a single tetrad. This approach

allows us to draw conclusions based on only a few tetrads rather

than hundreds. In addition, we can survey the full spectrum of

events occurring throughout the genome rather than limiting

ourselves to a small number of marked intervals.
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For whole-genome studies, we and others [4,5,6] mate two

divergent yeast strains whose sequences differ at thousands of sites

genome-wide. After sporulation and tetrad dissection, we isolate

DNA from each of the four progeny and use microarray

hybridization [4,5,7] or high-throughput sequencing [6] to

genotype single-nucleotide polymorphisms (SNPs) and inser-

tions/deletions (indels), thus determining the regions of the

genome derived from each parent. Based on this information,

we determine the sites of COs, NCOs, and GCs. This approach

allows evaluation of multiple aspects of recombination control

simultaneously and rapidly. By monitoring changes in the

frequency and distribution of various types of events in mutant

strains, we can characterize the roles of candidate genes and begin

to understand their molecular mechanisms. For example, using

microarrays we previously showed that Zip1, a synaptonemal

complex protein, has a role in suppression of COs near

centromeres [4]. It is important to note that these experiments

only reveal recombination events between homologous chromo-

somes, and not events between sister chromatids that do not give

rise to detectable products due to lack of sequence differences.

To obtain the best resolution for our experiments, we are now

using next-generation sequencing with the Illumina/Solexa

platform to genotype greater than 67,000 SNPs and indels. The

median distance between markers in these experiments is 56 bp.

In preparation for sequencing, a library of genomic DNA

fragments derived from each spore is immobilized in a flow cell

and amplified to produce clusters of approximately 1000 identical

copies of each template. Hundreds of millions of clusters are then

simultaneously sequenced by the addition of reversibly terminated

fluorescent nucleotides, with each nucleotide bearing a distinct

fluorophore. Images collected after each round of synthesis are

analyzed to determine the sequence of each template. Our

experiments used read lengths from 36–43 base pairs with tens of

millions of reads per flow cell lane, yielding up to 27-fold average

coverage of the entire yeast genome. With recent advances in read

length and reads per lane, even deeper coverage can easily be

obtained. As a cost-saving measure, we have also successfully used

three-nucleotide ‘‘barcodes’’ to allow sequencing of multiple

samples in a single lane, resulting in a lower, but still sufficient,

6-fold average coverage level. The high resolution of these data

allows much more detailed analysis of individual recombination

products than was previously possible. In addition to simple COs,

NCOs, and GC tracts, we detect many complex recombination

events, such as discontinuous GC tracts associated with a CO, and

regions where multiple NCOs or COs cluster closely together. By

carefully classifying these recombination products and measuring

changes in their frequency and distribution in meiotic mutants, we

hope to identify signatures characteristic of different recombina-

tion pathways. Identifying such signatures would be an important

step towards understanding the mechanisms underlying CO and

GC formation. For example, the Mms4-Mus81 nuclease complex

is known to control formation of a subset of COs [8]. Deletion of

MMS4 was shown by high-density tiling microarray to lead to

regions of frequent genotype change occurring near COs [5].

Although the reason for these changes is still unknown, the ability

to detect them provides an entry point into elucidating the

mechanism of CO formation by the Mms4-Mus81 pathway.

The analysis of recombination on a genome-wide scale presents

two major bioinformatics challenges. The first is determining the

genotype at each SNP or indel position. The second is identifying

products of recombination and distinguishing between multiple

recombination resolution signatures.

Regarding the first challenge, well-established methods exist for

genotyping SNPs and indels by microarray; these include the

programs Allelescan and ssGenotyping, which can genotype and

reconstruct the segregation profile of a yeast tetrad [7,9].

However, no similar package is available for analysis of yeast

meiosis by sequencing. Next-generation sequencing generates

millions of short reads that must be aligned to each of the parent

genomes. Many programs exist for alignment of short reads,

Figure 1. Experimental setup. Two haploid yeast strains are mated to produce a diploid hybrid. The diploid is induced to undergo meiosis,
producing four haploid progeny, which are isolated for further study. For simplicity, only one chromosome per cell is shown. DNA is isolated from the
spores and subjected to sequencing or microarray analysis to determine which part of each spore’s genome was inherited from each parent strain.
doi:10.1371/journal.pone.0025509.g001

Software for Analysis of Meiotic Recombination

PLoS ONE | www.plosone.org 2 October 2011 | Volume 6 | Issue 10 | e25509



including Bowtie, SOAP, and Maq [10,11,12]. The genotype at

each SNP or indel must be determined from these aligned reads.

In virtually all published genotyping methods, SNPs or indels are

detected de novo by identifying locations where read sequences

differ from a single known reference genome [13]. Since variants

can also arise due to sequencing errors or misalignment of reads, a

filter or quality score threshold is usually imposed to reduce the

number of false positives [12,14]. In our yeast experiments, since

the genomes of both parent strains have been sequenced, we

reasoned that we could improve the accuracy of genotyping by

comparing sequence reads against both reference genomes, rather

than just one. To our knowledge, the only published program that

compares sequence reads to two known genome sequences is a

method used to genotype rice subspecies [15]. Because the rice

genome is approximately 30 times larger than the yeast genome,

sequencing coverage levels are generally much lower, and

genotyping is also complicated by the fact that rice is diploid,

and thus may have more than one allele at each locus. Due to

these limitations, a sliding window encompassing 15 SNPs is used

to determine final genotype calls along each rice chromosome. Use

of a sliding window precludes obtaining a high-resolution picture

of any single recombination event. In yeast experiments, we are

able to achieve high enough coverage levels to score individual

SNPs and indels without the need to resort to a sliding window.

Therefore, the method used for rice is not well suited for yeast or

other organisms with relatively small genomes, necessitating the

development of a new method.

The second computational challenge is detecting recombination

events based on the genotypes of the four progeny of a single

meiosis. Manual annotation of all events is impractical given the

large number of markers genotyped in each tetrad. Therefore,

what is needed is a method of automating the process of finding

recombination products, classifying them into different categories,

and recording their location and size. Furthermore, information

about the distribution of recombination events can be used to

evaluate several important aspects of CO regulation. In yeast and

many other organisms, COs are distributed non-randomly

throughout the genome. This phenomenon, known as CO

interference, ensures that COs are not clustered too closely

together and that each chromosome pair sustains at least one CO.

The strength of CO interference can be evaluated by measuring

inter-CO distances and fitting them to a gamma distribution

function characterized by a shape (c) and scale (b) parameter

[16,17]. The c and b parameters can be calculated using ,250

inter-CO distances, a number detected in three wild-type tetrads

by microarray or high-throughput sequencing. Another aspect of

global CO control is CO homeostasis, which refers to the

observation that the number of COs per meiosis tends to stay

within a narrow range. When the number of initiating double-

stranded DNA breaks is reduced, high CO levels are maintained

at the expense of NCOs [18]. The coefficient of variation between

the number of COs and NCOs per tetrad, which can be calculated

based on microarray or next-generation sequencing data, provides

a measurement of CO homeostasis. A third important aspect of

CO regulation is the nonuniform distribution of COs along

chromosomes. In particular, CO formation is repressed at

centromere- and telomere-proximal regions. Regional CO

suppression in these regions can typically be evaluated using

whole-genome data from one to three tetrads. Computational

tools are needed to perform all of these analyses of recombination

control. The ssGenotyping package developed for analysis of yeast

tetrads by microarray includes tools to perform some of the

functions described above [9]. ssGenotyping identifies recombi-

nation events, but it does not classify them in detail. ssGenotyping

is also capable of analyzing certain aspects of CO distribution,

such as interference.

Here we introduce ReCombine, a package of programs

developed in our lab to analyze meiotic recombination on a

whole-genome level using either microarray or high-throughput

sequencing data. For sequencing experiments, ReadAligner and

GenotypeCaller are used to align short sequence reads to the two

parent genomes and to determine the genotype of SNPs and

indels. These programs can accept short sequence reads from a

variety of sequencing platforms. The resulting segregation profile

is then analyzed using the program CrossOver, which can also

accept segregation data from microarray experiments as input.

CrossOver detects various types of recombination events including

COs, NCOs, and GCs, classifies them into categories, and reports

many parameters including their frequency, distribution and

conversion tract length. We previously used an earlier version of

CrossOver to detect and analyze the major types of recombination

events in microarray data [4]. The redesigned version of

CrossOver presented here is capable of much more sophisticated

sorting of recombination products than the previous version.

Results of CrossOver also include assessments of several aspects of

CO regulation, including measurements of CO interference, CO

homeostasis, and regional repression of COs near centromeres and

telomeres.

We demonstrate here the use of all three programs to analyze

two wild-type tetrads sequenced in our laboratory, and one wild-

type tetrad sequenced by Qi and co-workers [6] using a different

hybrid strain and different sequencing technology. We also show

the use of CrossOver to analyze recombination events in a large

published microarray data set. These programs constitute a

complete toolkit for using raw sequence reads to analyze

recombination, which will allow even labs without bioinformatics

expertise to carry out genome-wide studies of meiosis in yeast.

Results

Approach
Our overall strategy for data analysis consists of two major steps.

First, we use the newly developed programs ReadAligner and

GenotypeCaller to align sequence reads to the parent genomes

and determine genotypes of SNPs and indels for each spore of a

tetrad. Second, we use a redesigned CrossOver program to detect

and analyze recombination events from all four spores of the

tetrad. As we show below, the latter step can also be carried out

with microarray data.

Read alignment
In the first step of our analysis, sequence reads are mapped to

the two parental genomes using the program ReadAligner

(Figure 2). Our laboratory uses the S96 strain, which is a close

relative of the common laboratory strain S288c, and YJM789, a

strain originally isolated from the lung of an AIDS patient [19].

Both strains have been fully sequenced by traditional methods,

and their sequences differ by 0.6%, with the differences consisting

of ,60,000 single-nucleotide SNPs and ,6,000 indels [20].

Throughout this manuscript, we describe the procedures as

performed for S288c x YJM789 hybrid progeny; however,

ReCombine is also capable of analyzing data from other hybrid

progeny, as long as one of the two parents is S288c. We also

describe below the analysis by ReCombine of previously published

data from an RM11-1a x S288c tetrad.

ReadAligner uses the Bowtie short read aligner [10] to align raw

sequence reads to a merged reference genome consisting of both

S288c and YJM789 sequences. A merged reference genome is

Software for Analysis of Meiotic Recombination
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used to allow reads containing sequence polymorphisms to align to

the best-matched parental genome. Bowtie parameters are set such

that the single best alignment is reported for each read. Reads

containing no sequence polymorphisms will align equally well to

both single genomes in the merged reference genome, resulting in

two valid alignments; Bowtie randomly selects one to report. Our

Bowtie settings instruct the program to discard any reads with

more than two valid alignments to the merged genome, since they

cannot be unambiguously assigned to a specific location. Thus

reads aligning to exact repeats are excluded (e.g. telomere repeats,

rRNA sequences). Bowtie alignment results for the merged

reference genome are then separated into two pools corresponding

to the parent genomes, S288c and YJM789, for downstream SNP

and indel analysis. The results are contained in ‘‘Count files’’

(Tables S1 and S2) listing the number of reads covering each SNP

or indel position. Note that it is possible, though not common, for

a read to align to one genome but match the sequence of the other;

this usually occurs because Bowtie does not guarantee that the

reported alignment is the best possible one if all valid alignments

contain mismatches, particularly if they occur in the right (low-

quality) end of the read. Therefore, as well as tabulating the

number of reads covering a given SNP or indel position, the count

file also records whether the sequence of each read at each SNP or

indel position matched the S288c or YJM789 reference genome.

ReadAligner also carries out a separate alignment for the sole

purpose of genotyping telomere-adjacent SNPs. This is necessary

because many of the telomere-proximal regions are missing from

the published sequence of YJM789, and hence can only be

evaluated by alignment to the S288c genome. ReadAligner uses a

separate list of SNPs in these regions compiled from our

resequencing of the YJM789 strain.

Genotyping SNPs and Indels
In the second step of our analysis, initial SNP and indel

genotypes are provisionally assigned based on the Count files. This

is performed separately for reads aligning to each reference

genome, and the two provisional calls are reconciled at a later step.

At most locations, the reads aligning to a SNP or indel match only

Figure 2. Data analysis pipeline. The figure shows the procedure as
performed for a S288c/YJM789 hybrid, but other hybrid strains can also
be used. Short sequence reads from one spore are first aligned against a
merged reference genome containing both S288c and YJM789
sequences. For each read, the position of the best alignment is noted.
Reads with more than two valid alignments within the merged
reference genome are discarded. The read alignments are then divided
into two separate pools: those that aligned within the S288c genome
and those that aligned within the YJM789 genome. Reads aligning to
the S288c genome do not necessarily match the S288c sequence; this is
true because the ‘‘best’’ alignment reported by Bowtie is not
guaranteed to be the best possible alignment when multiple
mismatches are present, particularly if they fall in the low-quality end
of the read. Each pool of reads is recorded in a ‘‘Count file’’ for
downstream analysis. The information in the Count files is used to make
provisional genotype calls at each SNP or indel position, taking into
account the number of reads aligning to that position in a given
reference genome as well as their sequences and base quality scores.
These provisional genotype calls are recorded in ‘‘Master files.’’ The two
provisional calls recorded in the Master file are then reconciled to
determine the final genotype call at each SNP or indel. After this
process is carried out for each spore in a tetrad, information from all
four spores is cross-referenced and any SNPs or indels not genotyped in
all four spores are discarded. A ‘‘Seg file’’ is produced listing the
genotype of all four spores at each SNP or indel. Finally, the Seg file is
analyzed to determine the locations of COs and GCs, GC tract lengths,
and various other features of meiotic recombination.
doi:10.1371/journal.pone.0025509.g002
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one of the two parental genotypes, and assigning a genotype is

straightforward. However, we also find many cases in which a

mixture of reads matching both genotypes (or neither genotype)

align to certain SNP or indel positions. In our highest-coverage

sequencing reactions, this occurs at ,3% of SNPs and ,17% of

indels. One reason this commonly occurs is sequencing error; since

mismatches are tolerated in the alignment process, a read can still

align to the correct location even if it has a few wrong bases. Even

if sequencing were completely error-free, some ambiguous

situations would still be expected to occur due to the existence

of repetitive or partially homologous regions within a genome. For

example, a read derived from a Ty1 element on chromosome 1 in

the S96 genome may also align mistakenly to a Ty1 element on a

different chromosome in the YJM789 genome. Since the read is

actually derived from chromosome 1 in this example, it would

confound the proper genotyping of the other chromosome. Adding

to this problem is the fact that the YJM789 genome sequence is

not complete, and regions containing repetitive sequences are

especially likely to be missing from the published sequence. Thus,

when we attempt to align reads derived from these missing regions

to a merged reference genome, they are very likely to align to the

S288c genome even if they are derived from YJM789.

In order to resolve these ambiguous situations, we take

advantage of quality scores produced by the Solexa/Illumina

Pipeline software [21]. The software assigns a quality score to each

base of every read, which represents an estimate of the likelihood

of a wrong base call in the sequencing reaction at that position. We

use these base quality scores to calculate a cumulative quality score

for each of the expected genotypes at every SNP or indel position

(Figure S1). A user-defined quality score threshold is applied to

control the stringency of genotype calling. For each SNP marker, if

the base with the highest cumulative quality score is above the

quality score threshold, then the SNP is genotyped as that base

based on reads aligning to that single reference genome. An

analogous process is carried out for indel markers (details are given

in Materials and Methods). The genotype is provisionally called as

S96, YJM789, or neither. We refer to the genotype calls at this

stage as ‘‘provisional’’ because they are based on reads aligning to

only one reference genome; at a later step, the two provisional calls

for each position are reconciled, yielding a single final call. During

this initial genotyping process, if none of the nucleotide scores of a

SNP or indel exceeds the threshold, the marker is not genotyped at

that position based on reads aligning to that reference genome,

resulting in a call of ‘‘neither.’’ Provisional genotype calls based on

reads aligning to both reference genomes are placed in a single

‘‘Master file’’ (Tables S3 and S4). Next, the program Genotype-

Caller reconciles the two separate provisional genotype calls from

the reads aligning to each reference genome, producing a single

final genotype call for each marker position (rules for reconcili-

ation are given in Materials and Methods).

In order to map recombination events among four spores of a

single tetrad, only markers that are genotyped in all four spores are

used, as it is impossible to unambiguously determine a gene

conversion event at a specific marker location if only a subset of

the four spores are genotyped at that site. Therefore, any SNPs or

indels not genotyped in all four spores are discarded at this point.

GenotypeCaller produces a ‘‘Seg file,’’ containing a list of markers

genotyped in all four spores, along with the genotype of each spore

at each position (Table S5). The Seg file is used for analysis of

recombination by CrossOver. The ReCombine package also

includes plotting tools that use the Seg file to produce a graphical

representation of the segregation of an entire tetrad or of any

desired region of the tetrad.

Detection of Recombination Events by CrossOver
In the third step of our analysis, the CrossOver program is used

to analyze recombination events. CrossOver scans through a Seg

file to identify nine categories of COs and ten categories of GCs

(Figure 3). A brief summary of the logic employed by the program

is shown in Figure 4 and described here; additional details are

given in Materials and Methods. The program initially identifies

COs as locations where adjacent markers undergo a reciprocal

genotype switch (Figure 4). GC tracts, which are regions of non-

2:2 segregation, are then identified. See Materials and Methods for

a detailed description of how the location of each type of event is

reported. Conversion tracts that overlap with a CO are considered

‘‘CO-associated’’ GC tracts, and are assumed to have arisen from

heteroduplex DNA created at a double Holliday junction during

formation of the CO [22]. However, when a GC tract occurs near

a CO but is not connected to it, the interpretation is less

straightforward. Such an event could result from repair of

heteroduplex DNA during resolution of a CO (and thus be part

of a single event, a Type 7 GC), but it also might represent an

independent NCO (a Type 0 GC). In wild-type cells, we find that

the CO-to-GC distances fall into two distinct populations: the

median CO-to-GC distance is 56 kb, but a distinct cluster of

distances occurs below 5 kb (Figure 5a). We hypothesize that

conversion tracts appearing within 5 kb of a CO arise from the

same double-strand break (DSB) that creates the CO. Therefore,

when classifying GC tracts near a CO, CrossOver applies a user-

defined range, set to 5 kb by default. GC tracts occurring within

5 kb of a CO are considered CO-associated, while GC tracts

outside that range are considered independent events. The

interpretation of closely spaced COs is similarly ambiguous. In

many cases, two COs that occur closely together could be

interpreted alternatively as a single CO with an associated GC on

a different chromatid (a Type 8 CO), or as a double NCO (a Type

5 GC) (Figure 3), rather than as two individual COs. Our analysis

of inter-CO distances shows that a distinct subset falls under 5 kb

(Figure 5b). Assuming closely spaced COs to be rare under wild-

type levels of CO interference, we hypothesize that the small

population of apparent double COs with an inter-CO distance

under 5 kb are actually not double COs, but recombination events

arising from a single DSB. We further analyzed these events by

determining the distribution of CO pairs involving 2, 3, or 4

chromatids. For COs in wild-type cells, this ratio has previously

been shown to be 1:2:1 [4,23]. This reflects the fact that there is no

chromatid interference; that is, a CO between two nonsister

chromatids does not influence the probability of those chromatids

being involved in an adjacent CO. We found that the ratio of 2-,

3-, and 4-strand double COs among pairs of apparent COs less

than 5 kb apart was 1.0:0.7:0.3, a significant deviation from the

expected ratio (Table 1). In contrast, CO pairs in which the COs

are at least 5 kb apart show a ratio of 1.0:1.9: 0.9, which does not

deviate significantly from the expected ratio of 1:2:1. These results

are consistent with the model that events occurring within 5 kb of

each other are not true double COs. Therefore, as for CO-

associated GC tracts, CrossOver applies an inter-CO distance, set

to 5 kb by default, to decide whether an apparent double CO is

actually the product of a single recombination event. If three or

more COs are located in close proximity, the program alerts the

user to manually inspect the region. Such events are rare in wild

type tetrads (five events in the 46 wild type tetrads described

below).

It is important to note that the categories of COs and GCs used

for classification by CrossOver do not necessarily correspond to

mechanistically distinct groups of events. These categories were

created based on patterns of segregation that can be distinguished
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computationally, not on assumptions about their mechanistic

underpinnings. Different events falling into the same category may

have been created by different underlying processes; conversely,

events in different categories may have arisen from similar

processes. The categories are intended to serve as a framework

for detecting a wide variety of possible changes in meiotic mutants.

CrossOver creates raw data files listing all individual events. It

also produces a summary file listing key statistics, including the

total CO and NCO count, average and median tract length for

each type of GC, number of COs per chromosome, number of

chromosomes lacking a CO, and several other parameters (see

Materials and Methods). If multiple Seg files have been processed

together, the output will include both per-tetrad and overall

statistics. CrossOver also contains built-in functions to analyze

multiple aspects of CO regulation. Distances between adjacent

events are produced by the program, including inter-CO

distances; based on these distances, CrossOver calculates the

gamma and beta parameters used to estimate the strength of CO

interference. A file containing the distances from centromeres or

telomeres to COs and/or NCOs is also automatically produced,

which can be used to assess repression of recombination in those

regions. CrossOver also calculates the ratio of adjacent COs

Figure 3. CrossOver output categories. Examples are shown of each type of recombination event that can be identified by the CrossOver
program. Note that a single event may contain both a CO and a GC; for example, a Type 1 CO always contains a Type 1 GC tract, and a Type 2 CO
always contains a Type 6 GC.
doi:10.1371/journal.pone.0025509.g003
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involving two, three, or four different chromatids, which provides

a test of chromatid interference. Finally, the correlation coefficient

between the total number of COs and NCOs per tetrad is

calculated, which can be used to measure CO homeostasis.

Sequencing of Two Wild-type Tetrads
We sequenced two wild type tetrads, wtx29 and wtx30, using the

Illumina/Solexa Genome Analyzer II. For one tetrad, wtx29,

multiplexing was used to reduce the cost of sequencing by running

all four samples in a single lane. Each sequence read in this tetrad

begins with a three-base ‘‘barcode’’ that arises from the adapter

oligos used to construct the genomic DNA libraries. ReadAligner

contains a function to sort the reads by barcode and remove the

barcode before read alignment.

Read lengths for the two tetrads were also different (36 and

43 bp for wtx29 and wtx30, respectively) because the two samples

were sequenced in different sequencing runs. We used Read-

Aligner and GenotypeCaller to analyze raw sequence reads from

Figure 4. Overview of CrossOver logic. This figure shows the overall strategy used to find and classify recombination events. Additional details
are given in Figure S3. Initially, all markers in a tetrad are categorized by whether they show 2:2 segregation. The non-2:2 markers are set aside, and
2:2 markers are searched for locations where markers undergo a reciprocal genotype change. These are locations of COs. The program then
determines whether any non-2:2 markers fall within the boundaries of the COs; if so, these are considered GCs associated with a CO, and are
categorized based on which chromatids are involved. For single COs only, the program finds any pairs of COs located within a user-defined distance
of each other, and re-classifies them as single events rather than as two COs. Next, non-2:2 markers not associated with COs are considered. Adjacent
markers are grouped together into conversion tracts. If a conversion tract falls within a user-defined distance of a CO, it is categorized as a CO-
associated GC. If not, it is categorized as an NCO or a 4:0 tract.
doi:10.1371/journal.pone.0025509.g004
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these tetrads. Table 2 shows the number of individual sequence

reads that aligned to the reference genomes in each sample. The

number of reads per spore and overall genome coverage were

significantly lower in wtx29 than in wtx30 (,6 fold vs. ,26-fold

average coverage) due to multiplexing and shorter read length.

Therefore, a lower quality score threshold was used to make final

genotype calls in this tetrad (see Materials and Methods). At this

lower threshold, our simulations suggest that that fewer than

0.03% of markers are miscalled in a single spore (Table S6).

Miscalling of even a small percentage of markers is a significant

concern, as it has the potential to give rise to spurious single-

marker NCOs. If 0.03% of 67, 583 markers are miscalled in each

of four spores, this corresponds to about 80 wrong calls per tetrad.

Of these, we would expect many to be excluded from the Seg file

simply because any given position is only included in the Seg file if

genotypes are assigned to all four spores at that position. For

wtx29, 65% of markers received calls in all four spores; this

number varies depending on the coverage of a particular

experiment. Taking this into account, our simulation data still

suggest about 50 wrong final calls per tetrad, of which the majority

would be expected to appear as spurious single-marker NCOs.

Each of our wild-type tetrads only had ,30 single-marker NCOs.

To determine whether a significant fraction of these resulted from

wrong calls, we verified ten of them (five from each tetrad) by

conventional Sanger sequencing and found that all ten had been

correctly genotyped by ReCombine. Therefore, it appears that our

simulations, which model genotype calling for a single spore,

overestimate the true error rate in a full tetrad. We speculate that

markers receiving a wrong genotype call may tend to be located in

regions of the genome that are difficult to genotype, such as

repetitive regions. The existence of hard-to-genotype regions is

supported by the fact that in a given tetrad, a marker not assigned

a genotype in one spore has a greater-than-average likelihood of

not being assigned a genotype in the other three spores. In such

regions, if an erroneous call is made in one spore at a given

position, it would be highly unlikely that all four spores would

receive a final genotype call at that position; thus, any wrong calls

in these regions would tend to be excluded from the Seg file due to

the requirement for a final genotype call at all four spores.

Based on the markers genotyped in all four spores of each tetrad,

we used GenotypeCaller to reconstruct the segregation profiles of

both tetrads. Figure 6a shows the segregation pattern of wtx30 that

was produced using plotTetradSeg, a component of the ReCombine

package. A higher resolution view of chromosome 9 in this tetrad

(Figure 6b) shows examples of a few different types of recombination

products: a CO, a CO with an associated GC, and an NCO.

Next, we used CrossOver to identify and classify recombination

events in the two sequenced wild-type tetrads. Table 3 lists several

key results from this analysis. COs with simple associated GC

tracts comprised, on average, 65% of all COs, and these GC tracts

had an average tract length of 2.3 kb (61.5 kb). As mentioned

Figure 5. Inter-event distances. (A) Distances from each CO to the
nearest GC tract on each side are shown for 48 wild-type tetrads, which
includes tetrads wtx29 and wtx30, sequenced in our lab, and 46 wild-
type tetrads genotyped by Mancera et al. by microarray [5]. The inset
shows a close-up view of events falling within 25 kb of each other. A
distinct subset of CO-GC distances falls below 5 kb. (B) Distances
between pairs of adjacent COs are shown for the same set of tetrads
analyzed in (A). The inset shows a close-up view of events falling within
25 kb of each other. A distinct subset of inter-CO distances falls below
5 kb.
doi:10.1371/journal.pone.0025509.g005

Table 1. Analysis of closely spaced COs.

Number of chromatids involved in the two COs

CO pairs considered 2 chromatids 3 chromatids 4 chromatids ratio p-value

All CO pairs 1043 1883 926 1.0:1.8:0.9 0.01

COs within 5 kb of each other 94 67 32 1.0:0.7:0.3 4610213

COs at least 5 kb apart 949 1816 894 1.0:1.9:0.9 0.4

Pairs of adjacent COs were analyzed in two wildtype tetrads genotyped by sequencing (wtx29 and wtx30) and in 46 wildtype tetrads genotyped by microarray (Mancera,
2008). A list of all possible COs was first generated using CrossOver, with the threshold for merging closely spaced events set to 0 kb. This list of COs was then analyzed
to determine how many chromatids were involved in each pair of adjacent COs. The expected ratio for true COs in wild-cells is 1:2:1, which reflects a lack of chromatid
interference. Note that the total number of COs in the category "COs at least 5 kb apart" is slightly larger than the number of COs found when CrossOver is run with a
5 kb threshold for merging closely spaced events, due to merging of some COs in the latter case; the exact positions of merged COs are also different. For each pool of
events, a chi-square test was performed to determine whether the observed ratio deviates significantly from the expected ratio of 1:2:1.
doi:10.1371/journal.pone.0025509.t001
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above, the interpretation of COs and GCs that occur very closely

together, but are not directly connected, is not straightforward.

For example, a GC tract occurring near a CO but not connected

to it could be interpreted as either part of the same event (a Type 7

GC) or as an independent NCO (a Type 0 GC). Similarly, in some

cases two COs that occur closely together could be interpreted

alternatively as a single CO with an associated GC on a different

chromatid (a Type 8 CO). CrossOver decides between these two

possibilities by applying a user-defined range, set to 5 kb by

default. Genotype changes occurring within 5 kb of each other are

considered products of a single recombination event. Table 3

shows the results for both wild-type tetrads when the ranges for

both closely spaced COs and closely spaced GCs is set to 0 kb or

2.5 kb rather than 5 kb. When these ranges are set to 0 kb, all

GCs are considered independent events unless they are directly

connected to a CO, and all reciprocal genotype changes are

considered independent COs. Therefore, the reported number of

COs per tetrad is higher when a 0 kb cutoff is used rather than

5 kb. As shown in Table 3, applying a 0 kb cutoff also increases

the number of independent NCOs detected, and the average tract

length of both NCOs and GCs is also impacted.

Genotyping a RM11-1a x S288c tetrad sequenced with
454 technology

To demonstrate the ability of ReCombine to handle data from

other hybrid strains and other sequencing platforms, we obtained

published data from a single RM11-1a x S288c tetrad sequenced on

Roche-454 GS20 and GS20/FLX instruments [6]. Read lengths

are generally longer on the 454 platform than on Illumina

instruments; the average read lengths for the four spores in this

experiment ranged from 107–191. The Bowtie short read aligner,

which handles the core alignment function in ReadAligner, often

fails to find alignments for long reads. This occurs because Bowtie

does not allow gaps in alignments, which are more likely to occur in

longer reads. As a result, the program performs best with shorter

reads (approximately 50 bp or less) [10]. Other programs, such as

BWA-SW [24] and SSHAHA2 [25], are better suited for alignment

of long reads. Using ReadAligner, we found that only 32% of reads

from the four spores in this experiment could be aligned to the

merged RM11/S288c reference genome (compared to approxi-

mately 85% of reads in our Solexa/Illumina experiments with

YJM789). To improve the number of reads aligned, we split the raw

data into shorter reads of 50 bases or less. This improved the

number of reads with valid Bowtie alignments to 48%. The average

number of reads per spore in the raw data set was significantly

smaller than in our experiments: approximately 350,000 reads per

spore before splitting and 1.4 million after splitting. As result of the

low number of reads aligned, the mean coverage level for each spore

was only 1.8-3.4-fold in this experiment.

We created a list of expected polymorphisms between the

RM11-1a and S288c strains based on their published genome

sequences, and performed validation of the list using short

sequence reads from the two parental strains sequenced by Qi et

al [6]. Our list of polymorphisms included 42,106 SNPs, 2548

indels, and 3122 SNPs whose locations were known only in the

S288c genome. We then used ReadAligner and GenotypeCaller to

genotype all four spores at each of these positions. The resulting

segregation profile is shown in Figure S2. Using CrossOver, we

detected 91 COs, consistent with the results of Qi et al. However,

due to the low coverage in this experiment, in order to detect all 91

COs we found it necessary to use a lower quality score threshold

(50) than we would normally use. Even at this reduced threshold,

only 8980 out of 47,776 markers could be genotyped in all four

spores. In contrast, Qi et al. used a combination of BLASTN,

CLUSTALW, and manual examination to align these reads and

assign genotypes. They obtained 3.6-4.9-fold coverage per spore,

compared to the 1.8-3.4-fold coverage we obtained with Read-

Aligner. The exact number of markers genotyped by Qi et al. in all

four spores was not reported, but was most likely considerably

higher than the 8980 markers we genotyped. Thus, although

ReadAligner can handle reads from a variety of platforms (as long

as the data are in fastq format), it is not the best tool for alignment

of long reads. We were able to improve coverage by splitting reads

into smaller units, but this is not an ideal solution, since it

effectively reduces the amount of information available to assign

alignment positions. It is also important to note that our analysis of

the probability of errors in genotype calling (see Materials and

Methods, Quality Score Threshold Selection) was based on the

base-calling error rates of our Illumina/Solexa runs, and may not

accurately predict the reliability of genotype calling when

sequencing is performed on different platforms.

Analysis of a Large Published Microarray Data Set by
CrossOver

To demonstrate the utility of CrossOver in analyzing segrega-

tion data from sources besides sequencing, we obtained data from

Table 2. Results of sequencing two wildtype tetrads.

Sample
# samples
per lane

read
length (bp)

# reads mapped to
S288c or YJM789
(x106)

Avg. fold
genome
coverage

% genome
covered with
.3 reads

#markers
genotyped
(x 104)

Mean SNP
coverage (SD)

wtx30a 1 43 7.1 25x 93 6.0 26 (7)

wtx30b 1 43 7.3 26x 93 5.8 26 (7)

wtx30c 1 43 7.3 26x 93 5.8 26 (7)

wtx30d 1 43 7.5 27x 93 6.0 26 (7)

wtx29a 4 33 3.0 8x 91 5.6 9 (3)

wtx29b 4 33 2.3 6x 86 5.3 6 (2)

wtx29c 4 33 2.4 6x 88 5.5 7 (3)

wtx29d 4 33 2.1 6x 83 5.2 6 (2)

Two wildtype tetrads (wtx30 and wtx29) were sequenced. The four spores within each tetrad are designated a, b, c, and d. Read lengths were different for the two
tetrads because the samples were sequenced in different runs. For wtx29, barcoding was used to run all four samples in a single lane; raw read length was 36 bp before
removal of the 3-base barcode. For wtx30, 55,988 markers were genotyped in all four spores. For wtx29, 41,782 markers were genotyped in all four spores.
doi:10.1371/journal.pone.0025509.t002
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a previously published study in which 46 wild-type tetrads were

genotyped by high-density tiling microarrays [5]. In these

experiments, ,52,000 markers were genotyped, with a median

distance between markers of 78 bp, which is similar to the

resolution of our sequencing data. Selected results are shown in

Table 3 (‘‘wt array tetrads’’), again using three different distance

ranges to demarcate closely spaced events. In the previously

published analysis of these tetrads, the authors stated that they

merged events occurring within 2.5 kb of one another. They

reported an average number of 90.5 COs per tetrad. Our analysis

of the same data set by CrossOver, using a cutoff of 2.5 kb,

detected 93.1 COs per tetrad. The additional COs detected by

CrossOver were distributed among 41 of the 46 tetrads, with each

of those 41 tetrads having 1–7 extra COs in our analysis. Close

examination of several of these extra COs revealed that most of

them were closely spaced events located more than 2.5 kb but less

than 5 kb apart, which were annotated as multiple COs by our

method but merged into single events by Mancera et al, in spite of

their stated intention to merge only events within 2.5 kb of each

other. We detected an average of 47.8 NCOs per tetrad, a number

that includes our Type 0, Type 5, and Type 6 GC tracts. Mancera

et al. reported an average of 46.2 NCOs per tetrad. This number

is lower partly because Mancera et al. merged closely spaced

NCOs, whereas we do not. For comparison, we recalculated our

results based on merging NCOs within 2.5 kb of each other,

resulting in a slightly lower average of 47.1 NCOs per tetrad. The

remaining difference in NCO counts between our analysis and

theirs results mainly from differences in annotation of closely

spaced events. Close examination of individual events revealed

that Mancera et al. often annotated GCs near a CO as part of that

CO event, even when the GC tract fell more than 2.5 kb away

from the CO according to our calculations. We are unable to

determine the exact underlying reasons for this discrepancy, but it

may stem from differences in the way the positions of COs and/or

GC tracts are calculated. We also found that, inexplicably, some

(but not all) NCOs that spanned a single marker did not appear in

their list of GC tracts.

Table 3 shows only a small subset of the results produced by

CrossOver. The program produces summary statistics for each

CO type and GC type shown in Figure 3, as well as lists of all

individual events. The sorting of events into various types is

considerably more sophisticated than previous work [4,5,6] in

which GC tracts were classified simply as CO-associated GCs,

NCOs, or complex GCs. This new classification system provides a

framework for discovering specific changes in recombination

outcomes in meiotic mutants.

In addition to identifying and classifying individual recombina-

tion events, CrossOver also reports on several different aspects of

the global distribution of recombination products. One salient

feature of CO distribution in budding yeast is the repression of

COs near centromeres and telomeres. To facilitate analysis of this

aspect of CO regulation, CrossOver produces separate lists of the

distances from each CO to its nearest chromosome end, and from

each CO to the centromere. Figures 7A and 7B show plots of these

distances for the 46 wild-type tetrads.

Another important influence on CO distribution is the

phenomenon of CO interference, which refers to the observation

that COs seldom appear closely together. The distances between

pairs of adjacent COs can be modeled using the gamma

probability distribution [16,17].This distribution is characterized

by a shape parameter, c and scale parameter, b. Importantly, c
can be used as a measure of the strength of interference: a value of

c= 1 corresponds to no interference, while c .1 indicates positive

interference, and larger values of c indicate stronger interference.

CrossOver uses the distances between all pairs of adjacent COs to

calculate estimates of c and b. For the 46 wild-type tetrads

analyzed here, the values calculated were c= 1.96 and b= 61.7

when a 5 kb range was used to merge closely spaced events. When

a 2.5 kb or 0 kb range was used to merge COs, the number of

closely spaced COs increased and the apparent value of c declined

to 1.87 or 1.78, respectively. The value of 1.96 agrees well with

previous estimates of c in Saccharomyces cerevisiae [4,26]. A plot of the

Figure 6. Segregation profile of a single wild-type tetrad. (A)
Segregation of all 16 chromosomes in wtx30. Each group of four rows
represents a single yeast chromosome, indicated by a Roman numeral
on the left. Each marker genotyped in all four spores is indicated by a
blue or red line (blue = S288c, red = YJM789). (B) Close-up view of
chromosome 9 in this tetrad, showing several different types of
recombination products.
doi:10.1371/journal.pone.0025509.g006
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gamma probability distribution function with these parameters is

shown (Figure 7C) superimposed on the actual inter-CO distances.

Note that unlike the plot of inter-CO distances in Figure 5,

Figure 7C shows the results of CrossOver when a 5 kb range is

used to merge closely spaced COs; therefore, it only includes

distances between ‘‘true’’ COs, and not between products that

could be derived from a single recombination event.

Discussion

Whole-genome approaches have the potential to revolutionize

the study of meiosis by allowing detailed analysis of recombination

products on a genome-wide, cell-by-cell basis. However, the large

amount of data generated by each experiment requires compu-

tational processing, which may pose a problem for geneticists

lacking programming expertise. Here we have described methods

that allow even researchers without deep knowledge of bioinfor-

matics to perform genome-wide analysis of meiotic recombination

in yeast.

Most previously published SNP and indel detection programs

perform de novo SNP/indel calling, rather than deciding which of

two expected alleles is present at a known set of marker positions.

In de novo SNP calling, reads are aligned to a single reference

genome, and any mismatches are considered possible SNPs. This

is desirable when attempting to discover new polymorphisms or

when all possible polymorphic loci are not known, for example

when interrogating the human genome. Genotyping is typically

performed by comparing the number (and in some methods, the

quality scores) of ‘‘reference’’ vs. ‘‘variant’’ bases in reads aligning

to a given position. In this procedure, the detection of variant

alleles is limited by the fact that reads containing variant sequences

often fail to align to the reference genome. Our procedure

enhances the detection of variant positions (in our case, YJM789

alleles) by aligning reads to a merged reference genome containing

both S288c and YJM789 sequences, thus capturing information

from reads that would otherwise be discarded. The single

previously published study of yeast meiosis by next-generation

sequencing used a similar but distinct approach, performing a

separate alignment to each reference genome [6]. However, the

method of reconciling information from these two alignments to

arrive at final genotype calls was not reported, so we are unable to

perform a side-by-side comparison of the two procedures.

An additional confounding factor in de novo SNP detection

methods is that some of the reads categorized as ‘‘variant’’ may not

represent true polymorphisms, instead resulting from sequencing

errors or misalignment of reads in repetitive or homologous

regions. In our experiments, we have the benefit of knowing in

advance the exact sequence and location of all possible SNPs and

indels. We are thus able to reduce the confounding effect of

spurious variant reads by specifically determining which of two

expected bases is found at a given SNP position. Incorporating

sequence quality scores into the genotyping method allows the user

to control the stringency of genotype calls. Users can adjust the

sensitivity and specificity of the method as needed for their own

experiments.

The final component of our analysis package, CrossOver,

extracts meaningful biological information from genotype data.

CrossOver can process segregation profiles from various sources,

regardless of the marker resolution. Detecting recombination

events and sorting them into specific categories provides a basis for

determining the effects of mutations on meiosis. By measuring

changes in the prevalence or distribution of specific event types in

meiotic mutants, we can begin to elucidate gene function. In

addition, as new categories of events are discovered, the program

can be altered to detect these new types. CrossOver provides an

entry point into discovering patterns in the products produced by

different recombination pathways, which can serve as signatures

for those pathways in future experiments and provide insight into

the molecular mechanisms underlying each pathway.

A feature of recombination that cannot currently be automat-

ically analyzed by CrossOver is post-meiotic segregation (PMS).

PMS refers to situations where recombination produces a region of

heteroduplex DNA, with mismatches between the two strands at

SNP or indel positions. PMS is detected by separating the two cells

resulting from the first mitotic division after sporulation, and

determining the genotypes of the resulting eight cells (four mother-

daughter pairs). PMS events are identified by finding genotype

differences between the mother and daughter cells in a pair. A

recent study analyzed PMS on a genome-wide scale and found

that approximately 9% of all recombination events in a wild-type

Table 3. Selected results of CrossOver analysis.

Type I GCs: CO-associated, continuous Type 0 GCs: NCO on one chromatid

Strains
# of
tetrads

range for
merging close
events (kb)

#COs per
tetrad (SD)

# per
tetrad (SD)

Avg. tract
length (kb)
(SD)

Median tract
length (kb)

# per
tetrad (SD)

Avg. tract
length
(kb) (SD)

Median
tract length
(kb)

wtx29 1 5 97 63 2.5 (1.5) 2.0 55 2.0 (1.7) 1.6

wtx30 1 5 99 64 2.2 (1.4) 1.9 44 2.2 (1.9) 1.7

wtx29+30 2 0 106 (2) 70 (2) 2.3 (1.4) 2.0 60 (7) 2.0 (1.7) 1.6

wtx29+30 2 2.5 104 (1) 69 (2) 2.3 (1.4) 2.0 56 (9) 2.2 (1.7) 1.7

wtx29+30 2 5 98 (1) 64 (1) 2.3 (1.5) 2.0 50 (6) 2.2 (1.8) 1.6

wt arrays 46 0 96 (9) 60 (8) 2.2 (1.9) 1.8 48 (9) 1.9 (1.6) 1.5

wt arrays 46 2.5 93 (9) 58 (8) 2.2 (1.9) 1.8 42 (8) 2.0 (1.6) 1.7

wt arrays 46 5 91 (9) 57 (8) 2.3 (1.9) 1.8 38 (8) 2.0 (1.7) 1.7

Analysis of wtx29 and wtx30 was performed either separately or together. ‘‘wt arrays’’ indicates the re-analysis by CrossOver of raw data from 46 tetrads genotyped by
high-density tiling microarray (Mancera, 2008). "Range for merging close events" refers to the distance range used to determine whether an apparent double CO is
actually a single event, and to determine whether a GC is considered "associated with" a nearby CO. A 5 kb range is used by default. Where applicable, the standard
deviation for the measurement is given in parentheses.
doi:10.1371/journal.pone.0025509.t003
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tetrad showed PMS [27]. CrossOver does not currently have a

designated function to associate PMS with the classes of

recombinational repair. However, the program FindPMS, includ-

ed in the ReCombine package, can be used to detect PMS events

in four mother-daughter pairs that are genotyped as two separate

tetrads. Users can sort the PMS events into categories by

comparing their locations to the positions of recombination

products found in the individual tetrads by CrossOver. Since the

number of PMS events is low (6–18 per tetrad), manual curation of

these events is feasible.

Materials and Methods

Generation of sequencing data
Genomic DNA libraries were prepared as described in the

Illumina protocol ‘‘Preparing Samples for Sequencing Genomic

DNA.’’ Samples were sequenced at the Vincent J. Coates

Genomics Sequencing Laboratory of the California Institute for

Quantitative Biosciences at the University of California, Berkeley,

or at the Center for Advanced Technology at the University of

California, San Francisco. To reduce the cost of sequencing, for

tetrad wtx29, multiplex sequencing was used to sequence multiple

yeast samples in one lane. Short fragments of yeast genomic DNA

were ligated to adapter oligos that contained one of four three-

nucleotide ‘‘barcodes’’: TGT, CAT, ACT, and GTT [28].

Libraries with different barcodes were pooled together in

equimolar ratios for sequencing.

Experimental Design
As high-throughput sequencing technology evolves, it is

becoming possible to multiplex greater numbers of samples and

still obtain sufficient coverage to map meiotic recombination. An

approximation of the expected coverage from a given experiment

can be calculated by multiplying the expected number of reads per

lane by the read length and by the expected percentage of usable

reads. (In our experiments, approximately 85% of reads could be

aligned to the reference genome; this may vary depending on the

sequencing platform and sample preparation protocol used.) The

resulting number of bases covered should then be divided by the

size of the yeast genome (12 Mb) to yield the fold coverage. For

example, for a sequencing platform capable of generating 10

million 50-base reads per lane, the expected coverage per lane

would be [(106106 reads)6(50 bases per read)6(0.85 reads

aligned)]/(126106 bases in yeast genome) = 35-fold coverage.

We have successfully genotyped tetrads with as low as 6-fold

average coverage; however, as coverage declines, the ability to

detect recombination events also declines. Refer to Table S6 for

estimates of the sensitivity and specificity of genotype calling at

different coverage levels.

The number of tetrads required to detect changes in

recombination will vary depending on the magnitude of the

change. For example, based on bootstrapping analysis, we

previously determined that ,250 intercrossover distances is

sufficient to distinguish between a strain with wild-type crossover

interference and a strain that has completely lost interference [4].

However, 250 intercrossover distances is not sufficient to detect a

moderate loss of interference. Standard statistical tests, such as chi-

square or t-tests, should be applied to determine whether changes

are significant.

ReadAligner can accept data from other platforms besides

Illumina/Solexa, as long as the input file is in fastq format. Read

quality scores in the fastq file may be in Sanger or Illlumina

format; ReadAligner allows the user to select the quality score

format. The Bowtie program, which performs the alignment of

raw reads in ReadAligner, can handle read lengths of up to 1024

bases. However, since Bowtie alignments are not tolerant of indels,

which become more prevalent with increasing read length, Bowtie

is best suited for short reads (roughly 50 bases or less; described in

detail in [10]). At longer read lengths, the percentage of reads that

can be aligned to the reference genome decreases.

ReadAligner does not currently support paired-end alignment.

Data from paired-end sequencing experiments should be run as

Figure 7. Analysis by CrossOver of 46 wild-type tetrads
genotyped by microarray. Raw data were obtained from Mancera
et al. [5]. All histograms show results obtained using a 5 kb range for
closely spaced events. (A) Centromere-CO distances. The distance from
each CO to the centromere was calculated by CrossOver and plotted as
a histogram. (B) Telomere-CO distances. The distance from each CO to
its nearest telomere was calculated by CrossOver and plotted as a
histogram. (C) Inter-CO distances. A file containing distances between
all pairs of adjacent COs was produced by CrossOver and plotted as a
histogram. CrossOver also uses the list of inter-CO distances to calculate
estimates of c and b, the shape and scale parameters, respectively, for
the gamma distribution. The red line shows a plot of the gamma
probability distribution for c= 1.96 and b= 61.7.
doi:10.1371/journal.pone.0025509.g007
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separate (unpaired) reads. Advanced users may modify the Bowtie

input parameters in ReadAligner to support paired-end alignment.

Software implementation
All programs except for those used for segregation plots were

written in Python and are compatible with Python version 2.6 (or

later versions in the 2.x series). The plotting programs were written

in R and are compatible with R Version 2.11.0 or higher. The

numerical package NumPy 1.3.0 (http://numpy.scipy.org) was

used for a variety of statistical analyses. ReadAligner relies on the

Bowtie short read aligner [10]. The ReCombine user manual and

software package are available for download at http://source-

forge.net/projects/recombine/.

Reference genome sequences
The S288c genome sequence is complete and fully assembled

[29] (Genbank accession numbers NC_001133 through

NC_001148). The published genome sequence of YJM789

(Genbank accession number AAFW02000000) is not fully

assembled; it is organized into large contigs rather than complete

chromosomes [19,20]. The RM11-1a genome was obtained as

supercontigs 1.1–1.17 from the Broad Institute, Cambridge, MA.

Files containing the individual and merged reference genomes

used in this study are included in the downloadable ReCombine

package.

SNP and indel list creation
A critical first step in genotyping SNPs and indels is the creation

of a ‘‘SNP list’’ and ‘‘indel list’’ containing all expected sequence

differences between the two parent yeast strains. By aligning the

YJM789 sequence contigs against the fully assembled S288c

genome, Wei et al. reported ,60,000 single-nucleotide polymor-

phisms (SNPs) and ,6,000 insertions or deletions (indels) between

the two strains [20]. We validated this list by sequencing the S96

and YJM789 haploid parents used in our lab (data not shown). We

discovered the loss of polymorphism at 1,081 published SNP

locations, where the two parental strains no longer have a

sequence difference at the reported SNP position in our yeast

strains. Therefore, these positions do not appear in our SNP list.

We encountered difficulties in reconciling nearly half of the indels

reported by Wei et al. For many of the reported indels, the

sequence given in the published indel list does not match the

published sequence of the S288c reference genome at that

position. Out of the ,6,000 indels reported by Wei et al, we

were able to verify the position and sequence of 3,401 indels in the

S288c reference genome.

Many telomere-proximal regions are missing from the published

sequence of YJM789. We compiled a list of SNPs in these regions

based on our sequencing of the YJM789 strain. Since the positions

of these SNPs is not known in the YJM789 reference genome, two

separate SNP lists were used in our analysis: one containing SNPs

and indels with known positions in both reference genomes, and

one containing telomeric SNPs, whose position is known only in

the S288c reference genome (Table S7).

All SNP and indel markers were subjected to the following

additional validation procedure to remove any markers that could

not be used reliably to distinguish between the two genotypes. We

used sequencing data from each individual haploid parent, and

aligned it against the merged reference genome using ReadAligner

to generate S288c and YJM789 count files (exactly as described for

meiotic progeny). We then analyzed the cumulative quality score

for each marker position as follows. If, for a given marker position,

the cumulative score for reads from the wrong parent aligning to a

given reference genome was greater than or equal to half the score

for the correct parent, we considered the marker unreliable and

eliminated it from the list. This resulted in the removal of 319

SNPs and 593 indels. Altogether, after elimination of unreliable

markers, our marker lists contained a total of 67,583 polymorphic

markers, including 64,161 SNPs, 2,785 indels, and 637 new SNPs

found near chromosome ends. For genotyping the RM11-1a x

S288c tetrad, a SNP/indel list was produced using Mummer 3.22

[30] and validated using sequencing data from each haploid

parent. These lists are included in the ReCombine package

available for download from SourceForge.

Read alignment by ReadAligner
The input for ReadAligner is a fastq file containing short

sequence reads and quality scores. If multiple samples have been

sequenced in one lane, the reads must be sorted into separate pools

based on the barcode at the beginning of each read and trimmed

of the barcode bases before alignment. ReadAligner contains a

function to accomplish this. ReadAligner then uses the Bowtie

short read aligner [10] to align reads to a merged reference

genome containing both the reference genomes. By default, up to

two mismatches are tolerated within the first 28 bases of the read,

and no gaps are allowed in Bowtie alignments. Reads with more

than two valid alignments to the merged genome are discarded.

This criterion ensures that only reads that can be unambiguously

mapped to a specific location in the genome are used for further

analysis. Bowtie alignment results for the merged reference

genome are then separated into two pools corresponding to the

parent genomes, S288c and YJM789, for further analysis. The

number of S288c-aligning or YJM789-aligning reads covering

each SNP or indel position is listed in ‘‘Count files,’’ (Tables S1

and S2). There are separate Count files for SNPs and indels. Note

that it is possible, though not common, for a read to align to one

genome but match the sequence of the other; this usually occurs

because Bowtie does not guarantee that the reported alignment is

the best possible one if all valid alignments contain mismatches,

particularly if they occur in the right (low-quality) end of the read.

Therefore, as well as tabulating the number of reads covering a

given SNP or indel position, the count file also records whether the

sequence of each read at each SNP or indel position matched the

S288c or YJM789 reference genome.

A second Bowtie alignment is carried out in which the reads are

aligned only to the S288c genome. This alignment is used to

genotype telomeric SNPs, since these regions are not included in

the published sequence of the YJM789 genome. In this step, any

reads with more than one valid alignment are discarded. In total,

five count files are produced from each sequencing sample: three

S288c Count files (listing SNPs, indels, and telomeric SNPs,

respectively), and two YJM789 Count files (listing SNPs and indels,

respectively).

Genotyping of SNPs
Information contained in the Count files is used to assign a

provisional genotype call to each position; this is carried out

separately for reads aligning to each reference genome. These two

provisional calls are later reconciled by GenotypeCaller, yielding a

single final call for each marker.

For each set of reads aligning to a particular SNP in a given

reference genome, the bases that align to the SNP position are

sorted into three possible base calls: S288c, YJM789, or other. (For

example, if a SNP position is expected to have a C in the S288c

genome and a T in the YJM789 genome, possible base calls would

be ‘‘C,’’ ‘‘T,’’ and ‘‘other.’’) A calculation is then performed using

the quality scores assigned to the specific base (or bases) in each

sequence read corresponding to the SNP position. The Solexa/
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Illumina Pipeline software computes a base quality score for each

base of every Illumina sequence read using an error model

generated from a control sequencing lane with a control template

[21]. These quality scores are listed in the fastq input files.

We use these base quality scores to calculate a cumulative

quality score for each of the possible genotypes at each SNP

position, as follows. For each genotype, a ‘‘nucleotide score’’ is

calculated as the difference between the sum of the base quality

scores of the reads with that particular nucleotide and the sum of

the base quality scores of all other reads that did not have that

particular nucleotide. In the previous example, the S288c score

would be the sum of the base quality scores for that C in reads

aligning to that position, minus the sum of the base quality scores

for all other nucleotides aligning to that position.

For each sequencing sample, a quality score threshold is set by

the user (see below for details about choosing the quality score

threshold). For each marker position, if the cumulative quality

score of one of the possible genotypes passes the threshold, the

position is provisionally assigned that genotype (these initial calls

are referred to as ‘‘provisional’’ because they are assigned based on

reads aligning to one reference genome at a time. The two

provisional calls are then reconciled at the next stage of analysis).

For indels, a similar procedure is carried out, but with

modifications; details are given below.

The provisional genotypes determined as described above are

recorded in Master files (Tables S3 and S4). Multiple sets of master

files are produced, each using a different quality score threshold:

20, 50, 80, 100, 120, 150, 200, 250, 300, 400, and 500. In

addition, as for count files, there are separate Master files for

SNPs, indels, and telomeric SNPs.

Genotyping of Indels
Marker quality scores for indels are calculated in a similar

manner to the SNP markers with the following modifications.

Since an insertion may span several bases, one reference base is

selected for the purpose of calculating the quality score for that

insertion. The reference base for an insertion is the center base of

an odd-length insertion or the right-most base of the two center

bases of an even-length insertion. For a deletion, the marker

quality score is calculated using the average of the base quality

scores of the two bases directly bordering the deleted region. To

ensure that the two bases directly bordering the deleted region are

adjacent bases on a sequence read and that no insertion is present

between them, the first and last three bases of all sequence reads

are not included in this analysis. This is based on the fact that since

Bowtie tolerates up to two mismatches in the high-quality end of a

read, it is possible for a read with no sequencing errors to match at

an indel site if two or fewer bases lie on one side of the indel.

Quality Score Threshold Selection
We performed simulations to test the sensitivity and specificity

of genotype calling using various quality score thresholds. A

section of ,700 kb of chromosome 2 was used for the simulations.

A chimeric chromosome consisting of sequences from both

reference genomes (S288c and YJM789) was generated by

introducing a crossover every 140 kb (five COs total) which is

the number found experimentally for that chromosome. The open

source Maq software [12] was used to randomly generate a pool of

simulated reads, introducing errors in the reads based on position-

specific error probabilities taken from an actual Solexa/Illumina

run. Due to the variety of genome coverage levels and read lengths

in our real experiments, the simulation was performed for a

number of conditions. Table S6 lists the various coverage levels

and read lengths simulated. The simulation was repeated 6 times

at each coverage level.

At each coverage level, simulated reads were aligned to the

merged reference genome using ReadAligner and Master files

were produced for the following marker threshold levels: 20, 50,

80, 100, 120, 150, 200, 250, 300, 400, and 500. Only SNPs were

used in this analysis; indels were not included. The final marker

genotype calls at every threshold were compared to the actual

marker genotypes from the chimeric chromosome used in the

simulation. The number of incorrectly genotyped markers in each

simulation at each coverage level and threshold was calculated.

Note that this procedure mimics genotyping of a single spore, not

an entire tetrad. Table S6 shows the percentage of correctly and

incorrectly genotyped markers. In practice, we normally choose

the threshold that gives the highest percentage of correctly

identified markers with the following constraints: a) the average

number of incorrectly indentified markers in the chimeric

chromosome must be less than or equal to 3, and b) threshold

levels 20 and 50 are not considered due to the low number of reads

(1 or 2 reads) required to reach the thresholds.

Final genotype determination by GenotypeCaller
program

GenotypeCaller uses Master files as input. The user determines

the quality score threshold to be used and chooses the

corresponding set of Master files to use as input. Thresholds used

for the two wild type tetrads in this study were 80 for wtx29 and

150 for wtx30. GenotypeCaller then determines final marker

genotype calls by comparing the provisional calls from the two

reference genomes listed in the Master files. The rules used to

reconcile differing calls are as follows. For SNPs, positions with

agreeing genotype calls from reads aligning to both reference

genomes are given that genotype. SNPs with conflicting genotype

calls from the two reference genomes are discarded. For SNPs in

which only one reference genome yields a genotype, a final SNP

genotype is determined only if the genotype call matches the

reference genome from which it originated. For example, if a

marker is genotyped as S96 according to the Bowtie alignment to

the S288c reference genome and not genotyped in the alignment

to the YJM789 reference genome, then the SNP is given a final

marker call of the S96 genotype. This criterion follows from the

fact that reads containing S96 SNPs should preferentially match to

the S288c reference genome, rather than the YJM789 reference

genome. The reverse is true for reads containing YJM789 SNPs.

Indel genotyping follows a slightly different procedure. Since a

deletion in one reference genome is an insertion in the opposite

reference genome, an ideal indel displays a strong preferential

alignment between the two genomes, resulting in a high quality

score in one genome and a low quality score in the opposite

genome. Therefore, when making genotype calls for indels, we

require that in addition to passing the quality score threshold, the

cumulative quality score of the reads aligning to one genome must

be at least twice the cumulative quality score of reads aligning to

the same indel position in the other genome.

After determining final genotype calls, GenotypeCaller compiles

a list of markers genotyped in all four spores of a tetrad. A Seg file

is produced containing only these markers, along with the

genotypes of all four spores at each of these positions (Table S5).

Plotting segregation profiles
The ReCombine package includes two R scripts, plotTetradSeg

and plotTractSeg, which can be used to create graphical

representations of tetrad segregation. plotTetradSeg displays the

segregation of an entire tetrad, while plotTractSeg can be used to
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display a region defined by any two desired markers. Both

programs use the Seg file as input.

CrossOver program
Input file format. As input, CrossOver accepts seg files

produced by GenotypeCaller, or by the program Allelescan [7].

Segregation data from other sources can also be used, as long as

the data are properly formatted. The detailed format of each line

of data should be as follows:

5\t391664\t\t0\t1\t1\t0\r\n (Allelescan output format)

or

5\t391664\tspaceholder\t0\t1\t1\t0\n (GenotypeCaller out-

put format).

(The above example describes a SNP on chromosome 5,

position 391664, in which the genotypes of the four spores are 0, 1,

1, and 0, respectively.).

Identification of recombination events. A detailed flow chart

showing the steps carried out by CrossOver is shown in Figure S3.

Initially, the program sets aside any markers with non-2:2

segregation ratios and considers only markers segregating 2:2.

COs are identified as locations where markers undergo a

reciprocal genotype switch (Figure S3). In most cases, only two

of the four chromatids undergo a switch; however, if four

chromatids undergo a switch at the same location, this is

classified as a double CO and is considered separately (CO

Types 5, 6, and 7). The program then determines whether there

are intervening non-2:2 markers between the markers flanking the

CO. If so, these are classified as GC tracts associated with a CO. If

not, the CO is classified as a CO without detectable GC tract (CO

Type 0). COs are placed into different categories depending on

whether the associated GC tract lies on one of the chromatids

involved in the crossover, on a non-crossing-over chromatid, or

both (CO Types 1, 2, and 3). The GC tract itself is categorized as

GC Type 1 or 6. If a CO with an associated GC does not fit easily

into one of the preceding categories, it is placed into CO Type 4

(or Type 7, if it is a double CO). These are typically COs with

discontinuous GC tracts.

After COs have been identified, CrossOver identifies pairs of

COs that occur within a user-defined range (set to 5 kb by default).

Only single COs are included in this analysis. When three or more

COs occur within 5 kb of one another, a message appears on the

console instructing the user to manually inspect the region.

If two closely spaced COs involve the same two chromatids, the

two COs are reclassified as a single NCO (GC Type 5). If three

chromatids are involved, the two COs are reclassified as a single

CO with an associated GC on a non-crossing-over strand (CO

Type 8). Note that CO Types 3 and 8 are similar in that both

contain a GC tract on a non-crossing-over chromatid. The key

difference is that Type 3 COs contain a 4:0 tract, whereas Type 8

COs do not. CO type 2 is also similar to CO Types 3 and 8.

Although all three can be distinguished computationally, we do

not know whether they arise from the same underlying biological

process.

After all COs have been identified and sorted, non-2:2 markers

are separated into two lists: those that segregated 3:1 or 1:3, and

those that segregated 4:0 or 0:4 (Figure S3). GC tracts are then

identified in each list by grouping consecutive markers together. A

single non-2:2 marker without adjacent non-2:2 markers is

considered a tract of its own. Any GC tracts involving the first

or last marker of a chromosome are categorized as GC Type 3 or

4. GC tracts falling within a user-defined range of a CO are then

identified; by default, this range is set to 5 kb. GC tracts falling

within this range are classified as GC Type 6 or 7 depending on

whether or not the tract occurs on a chromatid involved in the

CO. The CO near a Type 6 or 7 GC may, in addition, have a GC

directly connected to it (on the chromatids involved in the CO). If

such a tract is present, it is classified as GC Type 1 and also as

Type 8 (if it occurs in conjunction with a Type 6 GC) or Type 9 (if

it occurs in conjunction with a Type 7 GC). GC tracts with 3:1 or

1:3 segregation that do not occur near a CO are classified as

NCOs (GC Type 0). GC tracts with 4:0 or 0:4 segregation that do

not occur near a CO are classified as 4:0 tracts (GC Type 2). Note

that 4:0 tracts that occur as part of a Type 3 CO do not appear in

the GC Type 2 category.

Calculation of CO and GC positions. For a simple CO without

an associated GC, the CO position is calculated as the midpoint of

the two markers defining the genotype switch (Figure S4). In cases

where a CO has an associated GC on a crossing-over chromatid,

the program first finds the midpoint of the markers defining the

genotype switch on each chromatid, then calculates the CO

position as the midpoint of these two midpoints. Detailed examples

of how CrossOver determines the positions of COs and GCs are

shown in Figure S4. In general, the length of a GC tract is

calculated by finding the difference between these two midpoints.

A minimum and maximum possible tract length is also calculated

by using the innermost or outermost markers, rather than

midpoints. For GC Type 5, which consists of two GC tracts on

different chromatids, a single tract length is reported; this is the

distance between the midpoint of the two markers defining the 5’

end of the leftmost tract and the midpoint of the two markers

defining the 3’ end of the rightmost tract. For GC Types 6 and 7,

there are often two component GC tracts: one that is contiguous

with the CO, and another that is not directly connected to the

CO. In the GC tract report, GC Types 6 and 7 list only the tract

that is not directly connected to the CO. The GC tract that is

contiguous with the CO, if present, is reported as a Type 1 GC,

and it is also reported as Type 8 or 9 (depending on whether it is

part of a Type 6 or 7 GC event, respectively). Therefore, in the

GC tract report, most Type 6 and 7 GCs have a nearby Type 1

GC, and that Type 1 GC is also listed as a Type 8 or Type 9 GC.

An additional category of GCs not shown in Figure 3 is GC Type

10, which consists of only those Type 1 COs that are not also

classified as Type 8 or 9.

For double COs (CO Types 5, 6, and 7), it is impossible to

determine which chromatids were involved in each of the two

exchanges. Therefore, CrossOver randomly pairs the possible

partners.

Output. CrossOver creates a raw data file that contains a list

of every CO found. This list identifies the chromosomal position,

the CO type, the identities of the two chromatids involved in the

exchange, and if applicable, the tract length of any associated GC

and the number of markers defining the GC. A separate file

contains all GC tract data. For each GC tract the position, GC

type, estimated tract length, minimum and maximum possible

tract lengths, number of markers involved, positions of the first and

last markers within the GC tract, and the number of YJM789

alleles found in the first marker of the tract (for analysis of allele

parity) is noted. CrossOver also creates summary reports detailing

key statistics, which include but are not limited to: total CO

number, number of COs per chromosome, number of each type of

CO and GC, number of nonexchange chromosomes (E0s), and

average and median GC tract lengths. If multiple tetrads have

been analyzed in batch, these statistics include per-tetrad results.

Distances between adjacent events are also produced by the

program, including inter-CO distances, inter-NCO distances, and

the distances from centromeres or telomeres to COs and/or

NCOs. Results also include the gamma and beta parameters used

to calculate the strength of CO interference; the ratio of adjacent
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COs involving two, three, or four different chromatids, used to

evaluate chromatid interference; and the correlation coeffcient

between the total number of COs and NCOs per tetrad, which

can be used to measure CO homeostasis.

Supporting Information

Figure S1 Use of quality scores in genotype calling. This

example shows reads from spore C in tetrad wtx30 aligning to a

particular SNP on chromosome I. In the top panel, reads whose

reported ‘‘best’’ alignment falls within the S288c reference genome

are shown. These reads are tabulated in the S288c count file for

this spore. The next panel shows reads whose ‘‘best’’ alignment

falls within the YJM789 genome. These reads are tabulated in the

YJM789 SNP count file for this spore. The quality scores shown

are the scores assigned to the nucleotide at the SNP position in

each read by the Solexa/Illumina pipeline. For reads aligning to

each reference genome, a cumulative score for each possible

genotype is calculated. This is done by first adding the quality

scores for all reads with a given genotype; this sum is listed in the

corresponding count file. From this sum, the quality score sums for

all other possible genotypes are subtracted, yielding the cumulative

quality scores shown here. If one of these cumulative scores passes

the quality score threshold chosen for the experiment, then the

genotype is ‘‘provisionally’’ called as that genotype. This

provisional call is listed in the master file. If more than one

genotype passes the threshold, or if no genotypes pass the

threshold, a provisional call of ‘‘neither’’ is made. Finally, the

two provisional calls are reconciled to yield a single file genotype

call, recorded in the Seg file.

(EPS)

Figure S2 Segregation profile of an RM11-1a x S288c
tetrad. (A) Segregation of all 16 chromosomes in the RM11-1a x

S288c tetrad sequenced by Qi and co-workers (Qi, 2009). Each

group of four rows represents a single yeast chromosome,

indicated by a Roman numeral on the left. Each marker

genotyped in all four spores is indicated by a blue or red line

(blue = S288c, red = RM11-1a).

(EPS)

Figure S3 Detailed CrossOver Pipeline. The figure shows

the logic used to find recombination events and sort them into

categories. Note that in many cases, a single event contains both a

CO and a GC; these are indicated on the figure. In Steps 7–11, a

segregation matrix is created in which [a, b, c, d] contains the

number of genotype switches on each of the four chromatids in the

interval defined by the two ends of the CO. For example, in Step

8, [0, 0, 1, 1] indicates that two chromatids have no genotype

changes and two chromatids have a single genotype change (either

from 0 to 1 or 1 to 0) in that interval.

(EPS)

Figure S4 Examples of how CO and GC events are
identified. Part of a seg file is shown in each case. Genotype

swtiches are indicated by gray boxes. (A) A CO without associated

GC (Type 0 CO). The CO position is calculated as the midpoint

between the two markers defining the genotype switch. (B) A CO

with associated GC (Type 1 CO and Type 1 GC). A region of 3:1

segregation appears between the two markers defining the ends of

the CO. Each end of the GC is defined as the midpoint between

the two markers with opposite genotypes. GC tract length is found

by calculating the distance between these two midpoints, and the

CO position is calculated as the midpoint between the two

midpoints. A minimum and maximum GC tract length is also

calculated by using the innermost or outermost marker pairs to

define the ends of the GC tract. The number of markers (in this

case, 2) falling within the GC tract is also recorded. (C) A CO with

associated GC on a chromatid not involved in the CO (Type 2

CO and Type 6 GC). The CO occurs between spores 2 and 3 and

the GC is in spore 1. (D) A GC involving a chromosome end. In

this example, the 3:1 tract is in spore 4, beginning at the third

marker in this list and continuing through the last marker

genotyped on this chromosome.

(EPS)

Table S1 Examples of SNP count files.

(XLS)

Table S2 Examples of indel count files.

(XLS)

Table S3 Example of a SNP master file.

(XLS)

Table S4 Example of an indel master file.

(XLS)

Table S5 Example of a seg file.

(XLS)

Table S6 Quality score threshold simulation results.

(XLS)

Table S7 Examples of SNP and indel lists.

(XLS)
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