
1Scientific RepoRts | (2019) 9:1380 | https://doi.org/10.1038/s41598-018-35751-3

www.nature.com/scientificreports

Multi-qubit Quantum Rabi Model 
and Multi-partite entangled states 
in a Circuit QeD system
Jialun Li1, Gangcheng Wang1, Ruoqi Xiao1, Chunfang sun1, Chunfeng Wu2 & Kang Xue1

Multi-qubit quantum Rabi model, which is a fundamental model describing light-matter interaction, 
plays an important role in various physical systems. In this paper, we propose a theoretical method to 
simulate multi-qubit quantum Rabi model in a circuit quantum electrodynamics system. By means of 
external transversal and longitudinal driving fields, an effective Hamiltonian describing the multi-qubit 
quantum Rabi model is derived. The effective frequency of the resonator and the effective splitting of 
the qubits depend on the external driving fields. By adjusting the frequencies and the amplitudes of the 
driving fields, the stronger coupling regimes could be reached. The numerical simulation shows that 
our proposal works well in a wide range of parameter space. Moreover, our scheme can be utilized to 
generate two-qubit gate, Schrödinger states, and multi-qubit GHZ states. The maximum displacement 
of the schrödinger cat states can be enhanced by increasing the number of the qubits and the relative 
coupling strength. It should be mention that we can obtain high fidelity Schrödinger cat states and 
multi-qubit GHZ states even the system suffering dissipation. The presented proposal may open a way 
to study the stronger coupling regimes whose coupling strength is far away from ultrastrong coupling 
regimes.

The quantum Rabi model (QRM)1–3, which is a fundamental model to describe the interactions between light and 
matter, occupies a crucial position in various physical systems, such as quantum optics4, solid state system5, 
molecular system6, and so on. When the ratio between the coupling strength (g) and the mode frequency (ω) 
satisfies ω g/ 1, the rotating-wave approximation (RWA) is suitable, and the counter-rotating term (CRT) can 
be ignored. In this case, the QRM is reduced to the Jaynes-Cummings (JC) model7, which has been applied to 
explain many physical phenomena, such as the revivals of the atomic population inversion after its collapse8,9, 
vacuum Rabi splitting10,11, and so on. Recently, new coupling regimes, such as ultra-strong coupling (USC) and 
deep-strong coupling (DSC) regimes, have been reached in some circuit QED systems12–17. In this case, the CRT 
cannot be neglected. Consequently, many interesting effects induced by CRT appear in these regimes18–29. The 
implementations of QRM in USC and DSC regimes have also motivated new applications to the quantum infor-
mation processing30–35. It should be mentioned that, though great progress has been achieved, it is also challeng-
ing to implement QRM in USC, and DSC regimes experimentally.

Of particular interest is how to simulate the QRM in USC, and even DSC regimes when the system is far from 
USC regime. Motivated by this consideration, some quantum simulation approaches have been proposed in var-
ious physical systems, such as superconducting circuits36–40, quantum optical41, trapped ions42,43, cold atoms44–46, 
and so on. These quantum simulation proposals provide us with experimental feasible methods to implement 
QRM in USC and DSC regimes. Very recently, the quantum simulations of USC and DSC regimes extend to the 
multi-qubit case with trapped ions and anisotropic quantum Rabi model with superconducting circuits. The 
simulations of the generalized models provide us with platforms to study concerning physical issues, such as 
quantum critical phenomena, multi-partite entanglement, and so on.

On the other hand, the qubit-dependent displacement interaction describes a quantum resonator condition-
ally displaced according to qubit(s)’ states. Such interaction plays an important role in understanding the fun-
damentals of quantum physics47–53. Based on such type interaction, the superposition of the coherent states can 
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be prepared in various of systems48–53. The qubit-dependent displacement interaction also has been used to the 
quantum information processing54–65, such as generation of unconventional phase gate60 and multipartite entan-
gled states61–63. Following the theoretical and experimental study of the QRM38, we focus on the simulation of 
multi-qubit QRM, and we will study its applications to generation of two-qubit quantum gate, Schrödinger cat 
states and multi-qubit GHZ states.

In this paper, we propose an alternative scheme to simulate multi-qubit QRM in USC regime, and even DSC 
regime with a circuit QED setup. The system consists of multiple flux qubits, which strongly coupled to a reso-
nator. To obtain the tunable multi-qubit QRM, we apply transversal and longitudinal external driving fields on 
the qubits. We show the stronger coupling regimes can be reached by tuning the driving amplitudes and frequen-
cies. Additionally, we study some applications of simulated Hamiltonian on two-qubit quantum gate, superpo-
sition coherent states and multi-qubit entangled states. The results show that the non-trivial two-qubit gate is 
equivalent to the controlled-NOT (CNOT) gate. Based on the multi-qubit conditional interaction Hamiltonian, 
the Schrödinger cat states and multi-qubit GHZ states can be generated. The maximum displacement of the 
Schrödinger cat states depends on the number of qubits and the relative coupling strength, which indicates the 
maximum displacement can be enhanced by increasing number of the qubits and the relative coupling strength.

The derivation of the effective Hamiltonian
In this section, we first derive a effective QRM, in which the relative coupling strength can be adjusted by tuning 
the frequency of the external driving fields. We also show the fidelity of the simulated Hamiltonian. We consider 
N qubits strongly coupled to a single-mode harmonic oscillator. The qubits are driven by the longitudinal and 
transversal external driving fields. Such model can be realized in a variety of physical systems. Here we adopt a 
circuit QED setup to demonstrate our proposal. We consider N flux qubits are coupled to a transmission line 
resonator, which can be modeled as a single mode harmonic oscillator. Assuming the qubits are tuned to the 
degeneracy point, then the Hamiltonian in this case reads (here and after, we set ℏ = 1)
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Here the operator â ( ˆ†a ) is the annihilation (creation) operator of the bosonic field with frequency ωr. The 
qubits are described by Pauli matrices σαˆk  (α = x, y, z), which denotes α component of the k-th Pauli matrix. For 
simplicity, we consider all the qubits possess the same energy splitting ε (i.e., εk = ε), and the qubits couple to the 
bosonic field with unified coupling strength g (i.e. gk = g). Ĥint shows the interaction between the resonator and 
the qubits. All the qubits are driven by two classical fields with the frequencies ωz and ωx, and the corresponding 
amplitudes are denoted by Ωz and Ωx. In this case, we introduce the collective operators σ= ∑α α=

ˆ ˆJ k
N1

2 1  to sim-
plify the Hamiltonian (1) as ω ε= +ˆ ˆ ˆ ˆ†H a a Jr z0 , = +ˆ ˆ ˆ ˆ†H g a a J( ) xint , and Ĥd = Ωzcos(ωzt)Ĵz + Ωxcos(ωxt)Ĵx. 
Choosing the rotating framework defined by

ω ω=
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2
exp( ) (3)
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and considering the following conditions

ω ω ω ω ε ωΩ = Ω Ω −   g2 , , , , (4)x z x x z z z x

we can neglect the fast oscillating terms and obtain the following time-independent effective Hamiltonian (the 
detailed derivation is shown in the Methods section)

ω ε= + + + 


ˆ ˆ ˆ ˆ ˆ ˆ ˆ† †H a a J g a a J( ) , (5)r z xeff

where ῶr = ωr − ωx, ε = Ωz/2, and g  = g/2 are the effective frequency of the resonator, effective energy splitting of 
the qubits, and effective coupling strength, respectively. Such effective Hamiltonian describes a multi-qubit gen-
eralization of quantum Rabi model (i.e., Dicke model), in which the frequency of the resonator and the energy 
splitting of qubits can be adjusted by tuning the frequencies and amplitudes of external driving fields. The relative 
coupling strength reads

ω ω ω
=

−




g g
2( )

,
(6)r r x
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The relative coupling strength can be adjusted by tuning the frequency of the transversal driving fields. Thus 
we can obtain the multi-qubit QRM in different coupling regimes.

In order to assess the validity of the effective Hamiltonian. We compare the time-dependent evolution states 
governed by the full Hamiltonian (1) and the effective Hamiltonian (5). Let ψ = ⊗gg g(0) 0 r be the initial 
state and the evolution states governed by the Hamiltonian (1) and (5) are denoted by ψ t( )  and ψ∼ t( ) ideal

, respec-
tively. We denote the evolution state governed by Hamiltonian (1) in the rotating framework defined by U(t) with 
ψ ψ=
∼ †t U t t( ) ( ) ( ) . The fidelity of the evolution states ψ∼ t( )  and ψ∼ t( ) ideal

 reads F(t) = |〈ψ∼ t( )|ψ∼ t( )〉ideal|2. 
Considering the approximate conditions, we choose the following parameters: ε = ωr, Ωz = 0.004ωr, 
Ωx = 2ωz = 0.2ωr, g = 0.002ωr and ωx = {0.996, 0.998, 0.999, 0.9995}ωr. Under such parameters, the relative cou-
pling strength are g /ῶr = {0.25, 0.5, 1, 2} and the system is driven to stronger coupling regimes. In Fig. 1, we plot 
the fidelity of evolution states for N = 2 (black solid line), N = 3 (blue dash-dotted line), N = 4 (red dashed line), 
N = 5 (green dotted line) and N = 6 (cyan solid line). The Fig. 1(a–d) show the fidelity when the relative coupling 
strength g /ῶr = {0.25, 0.5, 1, 2}, respectively. The results show that the effective Hamiltonian is validity when the 
number of the qubits and the relative coupling strength are not very large.

The applications of the effective Hamiltonian
In this section, we will illustrate some applications to the simulated multi-qubit QRM on quantum information 
processing. Such as the generation of quantum gate, the Schrödinger cat states, and multi-qubit GHZ states. 
Moving to the rotating frame associated with ε ω′ = − −



ˆ ˆ ˆ†U i J t i a atexp( )z r3 , the effective Hamiltonian is recast as 
following form
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If we consider all the qubits have zero effective energy splitting (i.e., ε = 0), the Eq. (7) can be reduced to the 
following form
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Figure 1. The fidelity of the evolution states as a function of evolution time for multi-qubit under different 
relative coupling strength. (a) the fidelity of the evolution states under the relative coupling strength g /ῶr = 0.25. 
(b) the fidelity of the evolution states under the relative coupling strength g /ῶr = 0.5. (c) the fidelity of the 
evolution states under the relative coupling strength g /ῶr = 1. (d) the fidelity of the evolution states under the 
relative coupling strength g /ῶr = 2. The frequencies of the transversal driving are ωx = {0.996, 0.998, 0.999, 
0.9995}ωr for (a–d), respectively. The other parameters are ε = ωr, Ωz = 0.004ωr, Ωx = 2ωz = 0.2ωr, and 
g = 0.002ωr. We choose ψ = gg g(0)  as initial state.
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This is a periodic Hamiltonian with period T = 2π/|ῶr|. The evolution operator for Hamiltonian (8) can be 
obtained by means of the Magnus expansion66

= Ω + Ωt t t( ) exp( ( ) ( )), (9)1 2

where
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Considering the commutator [Ω1(t), Ω2(t)] = 0, the evolution operator can be recast as follows

β φ= ˆ ˆt D t J i t J( ) ( ( ) )exp( ( ) ), (11)x x
2



where the displacement operator is given by β β β= −ˆ ˆ† ⁎D a a( ) exp( ). The parameters β(t) and φ(t) are defined as 
β ω= − ω∼




t g e( ) ( / )(1 )r
i tr  and φ(t) = (g /ῶr)2(ῶrt − sinῶrt). For the following convenience, we introduce the collec-

tive states, which is the eigenstates of the collective operators {Ĵ2, Ĵα}. Let the collective states 
| = − − +α α α j j j j j j{ , ; , 1, ; α = x y z, , } be the eigenstates of operator set {Ĵ2, Ĵα}, and they satisfy the follow-

ing equations: = +α α α α
Ĵ j j j j j j, ( 1) ,

2 , =α α α α α α
Ĵ j j j j j, , .

In the following, we will use the evolution operator given in Eq. (11) to generate two-qubit quantum gate, 
Schrödinger cat state, and N– qubit GHZ states. To describe the dynamics of the system under dissipation, we 
utilize the following master equation

∑ρ ρ γ σ ρ κ ρ= − + +
=

−


ˆ ˆ ˆi H t t a t[ ( ), ] [ ] ( ) [ ] ( ),
(12)k
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1
 

where ρ(t) is the time-dependent density matrix. The time-dependent density matrix in the rotating framework 
can be obtained by ρ ρ=



†U t U t( ) ( ) and its dynamics is governed by the Hamiltonian =
∼̂ †H t U H t U t( ) ( ) ( ) 

− ∂†iU t U t( ) ( )t , which is full Hamiltonian in the rotating framework. The qubits decay rate and resonator loss rate 
are denoted by γ and κ, respectively.  ρ ρ ρ ρ= − −ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † †

A A A A A A A[ ] (2 )1
2

 is the Lindblad superoperator 
describing the losses of the system. In the following numerical simulation, we adopt the following realistic param-
eters67,68: ε = ωr = 2π × 10 GHz, Ωx = 2ωz = 2π × 2 GHz, g = 2π × 20 MHz and ωx = 2π × 9.98 GHz. The decay rate 
of the qubit and resonator loss rate are taken as γ = 2π × 0.05 MHz and κ = 2π × 0.012 MHz. We switch off the 
longitudinal driving fields (i.e., Ωz = 0). The parameters are list in Table (1). Under such parameters, the relative 
coupling strength is g /ῶr = 0.5 and the effective energy splitting is ε = 0.

the realization of the quantum gate. To obtain the two-qubit quantum gate, we consider N = 2 and 
evolution time t = T = 2π/ῶr. In this case, σ σ= +ˆ ˆ ˆJ ( )/2x

x x
1 2  and the evolution operator (14) reduces to 

U Iφ φ σ σ= + ˆ ˆT( ) cos( /2) sin( /2) x x
1 2  with φ = 2π(g /ῶr)2, where   is the identity operator for two-qubit system. 

Here, we have omitted a global phase. Obviously, such quantum gate is capable to generate entanglement when 
φ ≠ mπ (m is an integer). To describe the entanglement generation capacity of the unitary operator, we utilize the 
entangling power given by Zanardi et al.69–72. The entangling power defined on d × d system can be expressed in 
terms of the linear entropy of operators  , S12, and S12 as follows

=
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4 . The rearrangement of   is defined as =ij kl
R

ik jl, ,   72. The entan-
gling power of the quantum gate can be obtained as φ=e ( ) sinp

2
9

2 . When φ = π/2 (i.e. g /ῶr = 0.5), we obtain a 
quantum gate with maximum quantum entangling power. Such non-trivial quantum gate is local equivalent to 
the CNOT gate73,74. We can check the following local equivalence relation

= ⊗ ⊗u u u uCNOT ( ) ( ), (14)1 2 3 4

where the local unitary operators are as follows

ε/2π ωr/2π g/2π Ωx/2π ωx/2π γ/2π κ/2π

10 GHz 10 GHz 20 MHz 2 GHz 9.98 GHz 0.05 MHz 0.012 MHz

Table 1. The realistic parameters in the numerical simulation are listed in the following table67,68.
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In order to assess the performance of our proposal to generate CNOT equivalent gate against sources of error, 
we adopt the process fidelity Fpro, which measures the difference between ideal and real quantum processes. For 
an ideal unitary process   and its real process E U( ), the process fidelity reads

E U U U E∑= 




.

=

† † ( )d
W WF ( , ) 1 Tr

(16)j

d

j jpro 3
1

2

For two-qubit system, d = 4 and Wj is the operator basis acting on the 4-dimensional Hilbert space. The oper-
ator basis can be represented with the Pauli matrices (i.e., σ σ σ∈ ˆ ˆ ˆW { , , , }j

x z z
1 1 2 ). If we adopt the full 

Hamiltonian without dissipation (i.e., Eq. (1)) under the parameters listed in Table (1), the process fidelity can 
reach 99.57%. If we adopt the full Hamiltonian with dissipation (i.e., Eq. (12)), the process fidelity of the quantum 
gate is 96.32%. The higher performance of the quantum gate needs to resort to adopt superconducting qubit with 
lower decay rate.

the generation of schrödinger cat states. The conditional interaction is also crucial in creating super-
posed coherent states and hence exploring the superposition rule. We then investigate the creation of the super-
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where β= ± − | |±
−N t[2(1 exp( ( ) ))]1

2
2 2 1/2  and β β=
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± ± t tCat ( ) ( )N

r

N

r2 2
 . The superposition 

coherent states ±Cat  are the so-called even and odd Schrödinger cat states49–53. After measurement is performed 
on the states +  and − , the final state in Eq. (18) collapses to the states +at tC ( )  or − tCat ( ) . The probability 
of obtaining even and odd cat states are β


+ − | | 


N t1 exp( ( ) )1

2
1
2

2 2  and β


− − | | 


N t1 exp( ( ) )1
2

1
2

2 2 , respectively. The 
magnitude of the displacement β| |t( )N

2
 changes depending on the evolution time. When t0 = π/ῶr, the displace-

ment reaches its maximum value Ng /ῶῶr, which indicates the maximum displacement can be enhanced by 
increasing number of the qubits N and the relative coupling strength g /ῶr.

In order to study the Schrödinger states generation when the system subjects to dissipation, we compare the 
evolution states under effective Hamiltonian with quantum states governed by full Hamiltonian with and without 
dissipation. Let ψ t( )0  be target state. We denote time-dependent density matrix governed by the effective 
Hamiltonian, full Hamiltonian without dissipation and master equation with ρ

ideal(t), ρ
full(t) and ρ

diss(t), respec-
tively. We compare expected state ψ t( )0  with evolution states by using the fidelities ψ ρ ψ=


t t tF ( ) ( ) ( )ideal 0 ideal 0 , 

ψ ρ ψ=


t t tF ( ) ( ) ( )full 0 full 0  and ψ ρ ψ=


t t tF ( ) ( ) ( )diss 0 diss 0 . The Fig. 2 shows the numerical results for Fideal (black 
dotted line), Ffull (red dash-dotted line) and Fdiss (blue solid line). The results show that when evolution time 
t = π/ῶr, the target state is reached. Even when the system subjects to dissipation, we also can obtain Schrödinger 
cat states when the number of the qubits is not very large.

The generation of multi-qubit GHZ states. The derived effective Hamiltonian in Eq. (5) also can be 
used to generate the multi-qubit GHZ states62,63. Let ε = 0 and the evolution time t = T = 2π/|ῶr|, we get β(T) = 0 
and φ(T) = 2π(g /ῶr)2. Then the evolution operator (11) reduces to

 φ= .ˆ( )T i T J( ) exp ( ) (19)x
2

The multi-qubit states 
gg g  and 

ee e  can be recast in terms of the collective states as −,N N

z2 2
 and ,N N

z2 2
, 

respectively. The collective states ±,N N

z2 2
 can be expressed in terms of eigenstates of the {Ĵ2, Ĵx} as follows
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If we set φ(T) = π/2 (i.e., g /ῶr = 1/2), the above final state reads
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In the following, we proof the above final state is local equivalent to the N– qubit GHZ state. When N is an 
even integer, M are integers ranging from − N
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If N is an odd integer, M are half integers. We can introduce an integer M′ with ′ = −M M 1
2

. Then the final 
state (22) are
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Figure 2. Numerical simulation of Schrödinger cat states with multi-qubit system for N = 1, 2, 3, 4, 5. The 
physics parameters are given in Table (1). (a) N = 1. (b) N = 2. (c) N = 3. (d) N = 4. (e) N = 5. The fidelity 
between target states and evolution states Fideal, Ffull, and Fdiss are plotted with black dotted line, red dash-dotted 
line, and blue solid line, respectively.
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Based on the Eqs (24 and 26), the final state is equivalent to the GHZ state for even or odd integer N. The above 
results apply to an ideal situation, namely, dissipation-free environment. To assess the experimental feasibility of 
our proposal, we compare multi-qubit GHZ states GHZ o e

N
/

( ) (we denote GHZ  for simplicity) with evolution 
states governed by the effective Hamiltonian (i.e., Eq. (5)), the full Hamiltonian without dissipation (i.e., Eq. (1)), 
the full Hamiltonian with dissipation (i.e., Eq. (12)). We denote the evolution density matrices governed by Eq. 
(5), Eq. (1) and Eq. (12) with ρ

ideal(t), ρ
full(t) and ρ

diss(t), respectively. The fidelity between multi-qubit GHZ states 
GHZ  and evolution states are denoted by ρ=


tF GHZ ( ) GHZideal ideal , ρ=


tF GHZ ( ) GHZfull full  and 

ρ=


tF GHZ ( ) GHZdiss diss . The Fig. 3 shows the numerical results for Fideal (black dotted line), Ffull (red 
dash-dotted line) and Fdiss (blue solid line). The Fig. 3(a–e) are the numerical results for N = 2, 3, 4, 5, 6, respec-
tively. The fidelity for Ffull and Fdiss at time t = 2π/ῶr are shown in Table (2). The results show that we can obtain 
high fidelity multi-qubit GHZ state even the system subjecting to dissipation.

Discussion
In summery, we have proposed a scheme to simulate the multi-qubit quantum Rabi model in circuit QED sys-
tem. The effective Hamiltonian for multi-qubit quantum Rabi model can be derived. Based on unitary dynamics, 
the fidelity of effective Hamiltonian is discussed in detail. The results show that the system can reach stronger 
coupling regimes by adjusting the external driving amplitudes and frequencies. With this tunable effective 
Hamiltonian, the qubit-dependent displacement interaction Hamiltonian can be obtained by tuning the driving 
parameters. Based on such Hamiltonian, we also discuss the applications to constructing nontrivial quantum gate, 
the Schrödinger cat states and multi-qubit GHZ states. With the effective Hamiltonian, we can generate the quan-
tum gate with the maximum two-qubit entangling power. The local equivalence between the achieved quantum 
gate and the CNOT gate has been discussed in detail. The numerical calculation shows that the process fidelity 
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Figure 3. Numerical simulation of the multi-qubit GHZ states for N = 2, 3, 4, 5, 6. The physics parameters are 
given in Table (1). (a) N = 2. (b) N = 3. (c) N = 4. (d) N = 5. (e) N = 6. The fidelity between target GHZ states and 
evolution states Fideal, Ffull, and Fdiss are plotted with black dotted line, red dash-dotted line, and blue solid line, 
respectively.
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of the quantum gate reaches 96.32% under the chosen parameters. The Schrödinger cat states can be generated 
with the effective Hamiltonian, and the magnitude of the displacement can be enhanced by increasing the num-
ber of the qubits and relative coupling strength. In the case of multiple quantum qubits, we generate high fidelity 
multi-qubit GHZ states for even and odd N. We show that the high fidelity Schrödinger cat state and multi-qubit 
GHZ state can be obtained even the system subjecting to dissipation.

The presented proposal may open a way to study the stronger coupling regimes whose coupling strength is 
far away from ultrastrong coupling regimes. We should note that the effective Hamiltonian is not validity when 
the number of the qubits and the relative coupling strength are very large. Even so, our scheme may also provide 
potential applications to the quantum computation and quantum state engineering.

Methods
In this part, we will show how to obtain the effective Hamiltonian in Eq. (5). We choose the rotating framework 
related to the time-dependent unitary transformation = ω ω− −ˆ ˆ ˆ†

U t e e( ) i J t i a at
1

x z x . The transformed Hamiltonian reads
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∂

∂
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where Ĵ± = Ĵx ± iĴy and H.c. denotes the Hermitian conjugate. Considering the condition ω Ωx x and ω  gx , 
the fast oscillating terms can be ignored by performing RWA. Then the simplified Hamiltonian reads
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Moving to the rotation framework with respect to = − ′ˆ
U t e( ) iH t

2
0  with ′ = Ωˆ ˆH Jx0 2

x , we obtain the following 
transformed Hamiltonian
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Let Ωx = 2ωz. The Hamiltonian in Eq. (29) can be rewritten as
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When the parameters satisfy the conditions: ω Ωz z, ω ε ω−z x, ω  gz , we can neglect the fast oscillat-
ing terms and recast above Hamiltonian as

ω ε= + + + 


ˆ ˆ ˆ ˆ ˆ ˆ ˆ† †H a a J g a a J( ) , (31)r z xeff

where ῶr = ωr − ωx, ε = Ωz/2, and g  = g/2. Thus we obtain the effective Hamiltonian shown in Eq. (5), which is 
effective under the following conditions: Ωx = 2ωz, ω Ω  gx x , ω Ωz z, ω ε ω−z x. Such Hamiltonian is 
multi-qubit extension of the QRM with tunable parameters (i.e., the tunable Dicke model). The simulated cou-
pling ratio is g /ῶr = g/[2(ωr − ωx)], which is also turnable by adjusting the frequency of the transverse driving.

N = 2 N = 3 N = 4 N = 5 N = 6

Ffull 0.9971 0.9924 0.9886 0.9816 0.9761

Fdiss 0.9806 0.9644 0.9497 0.9321 0.9162

Table 2. The fidelity of the GHZ states at time t = 2π/ῶr is list in the following table.
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