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ESEARCHERS are inventing and honing the technolo- 
gies to provide increasingly clear pictures of the or- 
ganization of the nucleus. One driving issue is the 

role of chromosome arrangement in gene expression. The in- 
tractable nature of this question lies in the fact that it is not 
yet possible to extract a "chromosome arrangement" and as- 
say it for function. Instead, it must be observed in situ and 
correlated with patterns of gene expression. Today, as 
exemplified by Hiraoka et al. (1993) in this issue of the Jour- 
nal of Cell Biology, as well as by others (for example, Selig 
et al., 1992; reviewed by Manuelidis, 1990; Trask, 1991; 
Jackson, 1991), we are equipped with a level of resolution 
that allows the positioning of each gene on a temporal and 
spatial map of the nucleus. 

Hiraoka et al. (1993) focus on that magical moment in 
Drosophila development when the syncytial blastoderm un- 
dergoes cellularization and the embryo launches itself full 
force into zygotic gene expression. By following the two his- 
tone loci situated on their homologous chromosomes, the 
authors demonstrate two striking changes in chromosome 
arrangement: (a) the loci pair, implying the onset of pairing 
for all homologous chromosomes, and (b) the loci move 
from the center of the nucleus toward the apically positioned 
centromeres, apparently due to the condensation of hetero- 
chromatin flanking the centromere. These observations 
beckon us to that phenomenon called transvection and the 
possibility that chromosome structure can drive develop- 
mental decisions. 

Transvection 

For nearly 50 years after homologous chromosomes were 
found to be paired in the somatic cells of Dipteran insects 
such as Drosophila, researchers mused over the possibility 
that pairing influences gene expression. In 1954, Lewis crys- 
tallized a large body of work into the term "transvection7 im- 
plying that yes, gene expression can be altered depending 
upon whether or not genes are paired with their homologue. 
He illustrated transvection by showing how complementa- 
tion between two alleles of the bithorax gene complex can 
be antagonized by disruptions of somatic pairing. Since then, 
the number of loci exhibiting transvection effects in Drosoph- 
ila has grown significantly. Keeping pace with the number 
of loci, is the number of models evoked to explain transvec- 
tion (reviewed by Judd, 1988; Ashburner, 1989; Wu and 
Goldberg, 1989; Pirrotta, 1990; Pirrotta, 1991; Tartof and 
Henikoff, 1991; also Micol et al., 1990; Kassis et al., 1991; 
Hazelrigg and Petersen, 1992). As has been frequently 

noted, the mechanism of transvection may differ from locus 
to locus. Only two examples of transvection and only a sub- 
set of the models are mentioned here. 

Fig. 1 illustrates transvection at the yellow gene of Dro- 
sophila (Geyer et al., 1990). The y2 and y~  mutations 
cause abnormal yellow pigmentation, y is caused by the in- 
sertion of a transposable element between the promoter and 
two enhancers, and y~  is a derivative of y2 that lacks part 
of the transposable element as well as the promoter and first 
exon. Surprisingly, ye is complemented by yS~. Further- 
more, substantial amounts of wild-type sized transcripts can 
be detected in y2/y~ pupae while this is not the case for 
y2/y2 or y~/yS~ pupae. The authors implicate transvection 
by showing that complementation is negated if the two alleles 
are not allowed to pair. They propose that transcription fac- 
tors that have been attracted to the yS~ enhancers act upon 
the y2 promoter by tracking or DNA looping. Similar 
models evoking looping and/or the intermolecular action of 
bound or free regulatory factors have been raised to explain 
transvection at other loci (see reviews). 

Transvection is also involved in the interaction of the 
zeste I (z0 t mutation and the white gene (reviewed by Wu 
and Goldberg, 1989; Pirrotta, 1991; also Chert et al., 1992; 
Laney and Biggin, 1992). The white gene is important for 
the red pigmentation of the eyes of the fly. When a white gene 
is paired with another white gene, it can be repressed in a 
mutant z t background such that the eyes become yellow. An 
unpaired white gene escapes repression. The zeste protein 
can bind DNA, alter transcription, as well as self-aggregate. 
This has led to the suggestion that the mutant z ~ protein 
represses by binding white and then aggregating to an exces- 
sive degree, perhaps doing so more efficiently when white 
genes are paired. 

Mutations of zeste affect three other loci that exhibit trans- 
vection effects, although these loci differ in their responses 
to the different kinds of zeste mutations (reviewed by Tartof 
and Henikoff, 1991). Zeste protein has therefore been pro- 
posed to act generally, holding DNA segments together ei- 
ther intramolecularly during looping or intermolecularly 
during transvecfion. These ideas are being tested (reviewed 
by Pirotta, 1991; also Qian et al., 1992). 

Is it possible that the paired state of genes plays a dynamic 
role in regulation? For example, a gene might be regulated 
by being switched between two states (Fig. 2): (a) the 
linearly locked state where the accessibility of DNA to 

1. Abbreviations used in this paper: Psc, Posterior sex comb; z t, zeste I. 
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Figure L Transvection at yellow. The intact transposable element 
([]) of yZ inhibits the action of the enhancers (e) on the promoter 
in cis. The yZ promoter can be activated (curved arrow) in trans by 
a paired yJ~ which, because of a deletion of its promoter and an 
exon (a), cannot produce transcripts on its own (not to scale; 
adapted from Geyer et al., 1990). 
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Figure 2. Linear locking and looping. Here, pairing (o) locks en- 
hancers (e) away from promoters (P), while looping brings en- 
hancers to promoters. 

regulatory factors is reduced and enhancers are locked away 
from the promoter, and (b) the looped state where in- 
tramolecular looping can stimulate expression. In this view, 
mutant z ~ protein represses paired white genes by restrain- 
ing them in the linearly locked state, while an unpaired white 
gene escapes repression because it cannot be linearly locked. 
The different responses of loci to the various types of zeste 
mutations might imply that the consequences of the linear 
and looped states differ from locus to locus. In some cases, 
linearity might correspond to the gene-activated state. Such 
a model could also apply intramolecularly. 

Does Transvection Occur Outside Drosophila? 

The larger phenomenon that transvection represents, com- 
munication between alleles including autoregulation, trans- 
sensing, and some epigenetic events, is not unique to Dro- 
sophila (for example, see Jorgensen, 1990; Monk, 1990; 
Tartofand Henikoff, 1991). Whether the specific mechanism 
of transvection, which involves gene pairing, occurs else- 
where remains a tantalizing possibility (Tartof and Henikoff, 
1991). Most recently, Sabl and Laird (1992), Tsai and Silver 
(1991), and Bollmann et al. (1991) have proposed transvec- 
tion-like bases for Huntington's chorea in humans, expres- 
sion of the T-associated maternal effect locus in mouse, and 
the semi-dominance of a mutant nivea allele in snapdragon, 
respectively. Evidence for somatic pairing outside Diptera, 
including plants and vertebrates, also exists (reviewed by 
Grell, 1969). For example, Arnoldus et al. (1991) have found 
evidence for tissue specific somatic pairing in humans, sug- 
gesting that pairing is not only developmentally regulated 
but a form of regulation in itself. 

Is Transvection Essential? 

Transvection may not be essential for viability since chromo- 
some rearrangements in Drosophila, including deletions, 
generally do not result in lethality, and haploid patches of tis- 

sue survive to adulthood (Santamaria, 1983). In fact, it is 
possible that transvection is not only nonessential, it is un- 
desirable, and Drosophila has evolved mechanisms to pre- 
vent rampant communication between paired homologues. 
This view is consistent with the benign effects of rearrange- 
ments and predicts that transvection will not be apparent un- 
less the blockade is removed by, for example, specific kinds 
of mutations. Transvection at yellow is consistent with this 
proposal. Geyer et al. (1990) found that alleles with a dys- 
functional promoter are able to complement yZ while those 
that disrupt yellow posttranscriptionally fail. Apparently, cis 
activity of yellow enhancers precludes their action in trans. 

This train of thought leads us to ask why transvection ex- 
ists at all. The trivial response is that we are mistaken and 
have failed to find the circumstances under which it is re- 
quired. Alternatively, transvection may exist because it con- 
fers advantages by, for example, permitting complementa- 
tion that is otherwise not possible (also Zachar et al., 1985; 
Monk, 1990). Finally, transvection may exist because it uses 
factors that participate in a mechanism that is essential and 
also involves gene pairing. In fact, all genes of all organisms 
experience pairing at least once per cell cycle. This occurs 
when they pass through the replication fork and are not only 
near their replicated sister but are exchanging information 
with it. Such proximity has also been proposed to mediate 
replication control (Roberts and Weintraub, 1986; Abeles 
and Austin, 1991; Kittell and Helinski, 1991). Is it possible 
that some molecules of the replication machinery moonlight 
as modulators of transvection outside the confines of the 
replication fork? 

Gene pairing also occurs in Drosophila tissues that harbor 
polytene chromosomes or undergo gene amplification. As 
proposed by Ashburner (1977), transvection could be the 
reenactment between homologues of the essential process 
that assures the uniform activation of genes within a single 
polytenized chromosome. 

When and Where Does the Critical Pairing 
Event Occur? 

While many models propose the crucial pairing event to oc- 
cur at transcription, other possibilities should be kept in 
mind when new cases of transvection are being considered. 
For instance, the evidence for nuclear compartmentalization 
(for example, see Carter et al., 1991; Leonhardt et al., 1992 
and references within; reviewed by Manuelidis, 1990; Jack- 
son, 1991) and the restriction of transcripts to nuclear 
'~racks" (Xing and Lawrence, 1991) lend plausibility to a 
proposal that transvection can occur posttranscriptionally by 
trans-splicing (Judd, 1979). If transcripts are clustered in the 
nucleus, they will enter the cytoplasm as a cluster, and sub- 
sequent translation may then result in a local high concentra- 
tion of product in the cytoplasm, or in the nucleus if the pro- 
teins are shuttled back. If the activity of the products is 
concentration dependent, the consequence of homologue 
pairing may be realized only posttranslationally. 

The critical pairing event may also occur before transcrip- 
tion if the paired, or unpaired, state can be imprinted such 
that when genes express themselves later, they do so with the 
memory of having been paired or not. For example, trans- 
vection may occur at the time of replication. If pairing of ho- 
mologous genes results in paired replication forks, then the 
side by side arrangement of two replication machineries may 
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permit the cross-feeding of information from one replication 
fork to another in a way that allows factors, base modifica- 
tions, or chromatin structure to be transferred from one repli- 
cating gene to its homologue, or to be coordinately deter- 
mined by them. Because imprinting, however accomplished, 
could endure cycles of replication, the consequences of 
transvection might persist long after the critical pairing 
event, as has been proposed by Sabl and Laird (1992). 

Zachar et al. (1985) also focus on events before transcrip- 
tion and propose that pairing functions to colocalize genes 
to the proper nuclear compartment. If diploidy or multigene 
families impose constraints on compartmentalization, so- 
marie pairing certainly would be an elegant solution. With 
the technologies pioneered by Hiraoka et al. (1993) and 
others, it should now be possible to determine whether, in 
the absence of somatic pairing, homologous genes are drawn 
to the same compartment by other means and are therefore 
effectively paired, or whether compartments are duplicated. 
Alternatively, genes may be imprinted by passage through a 
compartment so that there is no need for homologues to re- 
side simultaneously in one. 

Chromatin Proteins 

Because transvection causes genes to be modulated by the 
proximity of their homologues, it can be used to identify loci 
in Drosophila that establish chromatin structure. Thus far, 
two genes that can be mutated to become modifiers of z 1 
eye color have been found to encode chromatin proteins. 
These are Posterior sex combs (Psc) and Suppressor 2 of 
zeste [Su(z)2]. The two genes share a region of homology 
which is also conserved in mammals, highlighting the impli- 
cation of these studies for a general understanding of chro- 
matin (reviewed by Pirrotta, 1991; van Lohuizen et al., 1991; 
Brunk et al., 1991; Martin and Adler, 1993). 

Psc also belongs to a class of homeotic genes called the 
Polycomb group, which regulates two gene complexes, 
bithorax and Antennapedia. Both these complexes are 
graced with transvection (Lewis, 1954; Pattatucci and Kauf- 
man, 1991). Two Polycomb group genes in addition to Psc 
encode proteins that act at the level of chromatin. These are 
Polycomb (PC) and polyhomeotic (ph). It now appears that 
the products of Psc, Su(z)2, Pc, and ph work in concert to 
establish chromatin structure (Franke et al., 1992 and refer- 
ences within; Martin and Adler, 1993). 

Enhancer of zeste [E(z)] also falls in the overlap of the 
modifiers of F eye color and the Polycomb group (Jones 
and Gelbart, 1990; Phillips and Shearn, 1990). E(z) mutant 
tissues that should be undergoing cell proliferation show few 
and abnormal mitotic figures, underlining the possibility that 
proteins mediating transvection may participate in other 
whole chromosome processes at the level of chromatin. 
These processes might include chromosome condensation, 
segregation, replication, recombination, stability, amplifica- 
tion, and dosage compensation. 

The Heterochromatin Connection 

When euchromatic genes are rearranged to be near hetero- 
chromatin, they frequently show variegated expression. The 
opposite is also true. Heterochromatic genes can variegate 
when rearranged to lie near euchromatin (reviewed by Sprad- 
ling and Karpen, 1990; Reuter and Spierer, 1992). Explana- 
tions for this position-effect variegation have invoked the 

spreading of chromatin or other structures in cis across 
the heterochromatin/euchromatin boundary. Reminiscent of 
transvection, spreading in trans between paired homologues 
(reviewed by Tartof and Henikoff, 1991), or even between 
nonhomologous chromosome segments (Wakimoto and 
Hearn, 1990) has also been invoked. 

Numerous enhancers and suppressors of position-effect 
variegation exist, and several identify members of the POly- 
comb group or another class of homeotic genes called the 
trithorax group (reviewed by Paro, 1990; Reuter and Spierer, 
1992). Once again, Psc falls into the overlap (D. A. Sinclair, 
N. J. Clegg, T. A. Grigliatti, and H. W. Brock, manuscript 
submitted for publication). The similarities between the 
modifiers of position-effect variegation and the Polycomb 
group genes are further emphasized by a region of homology 
that is shared between the products of Pc and Su(var)205, a 
modifier encoding the heterochromatin-associated protein 
HP1. This homology is conserved in plants and mammals as 
well (Franke et al., 1992 and references within). 

The biologies of transvection, chromatin, and position- 
effect variegation are drawing together. In this light, it is 
exciting that Hiraoka et al. (1993) find homologous chromo- 
somes initiating pairing at the same time that heterochroma- 
tin becomes condensed. The appearance of heterochromatin 
at the syncytial/cellular blastoderm transition has prompted 
researchers to ask whether such a structural change may play 
a role in gene regulation (Pimpinelli et al., 1985). Now re- 
searchers can further muse over the potential implications of 
the coincidence of two major changes in chromosome struc- 
ture at this critical time in development. 

The author thanks her generous colleagues, in particular George Church 
and Vince Pirrotta, for years of  inspirational conversations on transvection. 
In the interest of  brevity, many primary articles were not cited, and apolo- 
gies are extended to the authors. 
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