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Abstract: To overcome the lack of flexibility of Harris Hawks Optimization (HHO) in switching
between exploration and exploitation, and the low efficiency of its exploitation phase, an efficient
improved greedy Harris Hawks Optimizer (IGHHO) is proposed and applied to the feature selection
(FS) problem. IGHHO uses a new transformation strategy that enables flexible switching between
search and development, enabling it to jump out of local optima. We replace the original HHO
exploitation process with improved differential perturbation and a greedy strategy to improve its
global search capability. We tested it in experiments against seven algorithms using single-peaked,
multi-peaked, hybrid, and composite CEC2017 benchmark functions, and IGHHO outperformed
them on optimization problems with different feature functions. We propose new objective functions
for the problem of data imbalance in FS and apply IGHHO to it. IGHHO outperformed comparison
algorithms in terms of classification accuracy and feature subset length. The results show that
IGHHO applies not only to global optimization of different feature functions but also to practical
optimization problems.

Keywords: Harris Hawks Optimization; global optimization; data imbalance; feature selection

1. Introduction

Gradient-based optimization methods have been widely applied to linear, differen-
tiable, and continuous problems [1]. However, practical problems are increasingly nonlin-
ear, non-differentiable, and discontinuous, rendering gradient-based methods useless. In
contrast, the intelligent algorithms developed rapidly in recent years can effectively solve
practical problems, although they lack rigorous mathematical derivations.

In the twenty-first century, the development of technology has also led to further
research in the field of intelligent algorithms. A series of new metaheuristic algorithms
have been derived. For example, Kaveh et al. [2] propose an efficient hybrid method based
on the Harris Hawk Optimizer and the imperialist competitive algorithm. The Harris Hawk
algorithm has an efficient exploitation strategy but performs poorly in the search for optimal
solutions, which is compensated by the imperialist competitive algorithm. Song et al. [3]
identified the deficiency of the global search capability of the Harris Hawk Optimizer,
and they proposed the persistent-trigonometric-differences mechanism to improve the
global search capability of the HHO; in addition, they improved the energy factor of the
original algorithm to better balance the exploration and exploitation of the algorithm; finally,
they applied it to the parameter identification problem of photovoltaic model parameter
extraction. Zhong et al. [4] proposed an integrated learning Harris Hawk optimization
algorithm with a terminal replacement mechanism. The authors propose to combine the
comprehensive learning strategy with HHO to improve the convergence of the optimizer.

FS is an important data-preprocessing method in machine learning, but it is NP-
hard [5], with a search space of 2n for n features, motivating the use of approximation
algorithms to obtain near-optimal solutions as well as metaheuristic algorithms [6]. Inbarani
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et al. [7] proposed a hybrid FS method for disease detection by combining particle swarm-
based packing methods with rough set theory. Zhang et al. [8] introduced variational
operators to improve the differential evolutionary algorithm and applied this algorithm to
deal with FS. Tubishat et al. [9] applied SALP swarm opposite learning and local search to
FS. Taradeh et al. [10] improved the GSA algorithm with a GA for more effective FS. Mafarja
et al. [11] used tournament and roulette selection to enhance the search and development
process of WOA. Unfortunately, most of these algorithms cannot achieve an effective
balance between exploration and exploitation, which means that a better balance in terms
of efficiency (search time) and outcome (feature subset length) cannot be achieved in the
feature selection problem. This paper applies the improved HHO to the feature selection
problem. Because the optimization mechanism of the HHO algorithm is very similar to the
optimization process of the feature selection problem, each Harris Hawk can be regarded
as a piece of data filled with much redundant information, and the number of data features
can be regarded as the dimension of the Harris Hawk hunting space, the selection process
of data features is equivalent to the optimization process of Harris Hawk hunting, and the
improved algorithm can achieve a better balance between exploration and exploitation.
Next, we will detail the principle of the Harris Hawk algorithm, related applications, and
an overview of our proposed algorithm improvement strategy.

The Harris hawk is a raptor living in southern Arizona in the United States. Heidari
et al. [12] proposed HHO in 2019 after observing cooperative feeding among Harris hawks.
The algorithm has phases of exploration, transition, and development. Due to its simple
principle, few hyperparameters, and fast convergence, HHO is widely used in problems
involving global optimization, machine learning, medical bioinformatics, natural language
processing, and image encryption. Ridha et al. [13] proposed a method to reliably and
accurately identify photovoltaic model parameters by combining HHO with a flower
pollination algorithm. Jia et al. [14] introduced dynamic optimization and a variational
mechanism to improve HHO and applied it to the satellite image segmentation problem.
Kamboj et al. [15] proposed hHHO-SCA, which combined HHO and SCA for nonconvex
and nonlinear problems. Yanan et al. [16] embedded SSA in HHO to improve its search
capability and applied it to FS. Chiwen et al. [17] non-linearized the escape energy factor
by chaotic perturbation to balance the development and exploration of HHO. Bui et al. [18]
combined HHO with artificial neural networks to optimize their performance for landslide
sensitivity analysis. Roy et al. [19] applied HHO to integrated a more effectiveness and
robustness model order reduction.

These applications demonstrate the wide use of HHO to solve practical problems.
However, as with traditional intelligent algorithms, HHO has some drawbacks. Each phase
of the search process is too homogeneous. HHO mainly relies on the escape energy of the
prey, whose range is [−2, 2], to control the hunting process. When its absolute value is
greater than or equal to 1, HHO performs the search phase, and when it is less than 1, HHO
selects one of four exploitation strategies. This means that in its early stage, the algorithm
only performs a search, and in the late stage, it only performs exploitation. This undoubt-
edly causes the algorithm to easily fall into premature convergence. Therefore, HHO can
be improved from the aspects of the update mechanism, addition of new operations, and in
combination with other algorithms. The aspect of the update mechanism is mainly reflected
in exploring and developing to obtain a balance [20–22], which can occur through dynamic
adjustment of the escape energy factor. Adding new operators can enhance performance in
terms of local or global search capability [23,24]. Researchers have also tried to combine
HHO with other intelligent algorithms [25–27].

We propose an efficient improved greedy HHO (IGHHO), starting from the update
mechanism and the incorporation of new operators, replacing the development strategy
of HHO with a hybrid differential and greedy strategy. A new conversion strategy makes
the algorithm more flexibly switch between exploitation and search, which compares the
current particle with the previous global optimum, and if it is better than the previous global
optimum, the algorithm next executes the exploitation strategy; otherwise, it executes the
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search strategy. The performance of IGHHO was tested on the CEC2017 test set [28], which
contains 29 benchmark functions. The ranking method and Wilcoxon rank-sum test results
indicate significant improvement. Results on the FS problem show that the algorithm has
advantages in practical applications. The major involvement of this study is explained
as below:

• A novel efficient IGHHO for global optimization and feature selection.
• The proposed IGHHO has efficient flexibility to switch between search and develop-

ment and has strong development capabilities.
• The performance of IGHHO was better than with other state-of-the-art optimization

techniques.
• The IGHHO is applied for feature selection, and we verify the performance of this

algorithm in an open dataset.

The remainder of this article is organized as follows. Section 2 describes the principle
of HHO and its model, and Section 3 discusses the details of IGHHO and its motivation.
Section 4 describes experiments to test the function. The method is applied to FS in Section 5.
Section 6 relates our conclusions and proposes future research directions.

2. An Overview of HHO

HHO is mainly inspired by the cooperative behavior and the way of chasing during
the Harris Hawk raid [12].

2.1. Exploration

At the beginning of a hunt, Harris hawks randomly stay on high ground to find and
track prey by eye. HHO models this process as Harris hawks randomly perching through
two equal-opportunity strategies,

X(t + 1) =

{
Xrand(t)− w1|Xrand(t)− 2w2X(t)|, random ≥ 0.5

(Xrab(t)− Xm(t))− w3(L + w4(U − L)), random < 0.5
(1)

where X(t + 1) is a Harris hawk’s position in the next iteration; Xrab(t) is the position of the
prey (i.e., the individual with the optimal fitness value); X(t) is a Harris hawk’s position in
the current iteration; w1, w2, w3, w4, and random are random numbers in the range (0,1); U
and L are the upper and lower bound, respectively, of the variables indicating the activity of
the Harris hawk population; Xrand(t) is a randomly selected position in the population; and
Xm(t) is the individual’s average position, calculated from Equation (2), where Number is
the number of Harris hawks in the population.

Xm(t) =
1

Number

number

∑
k=1

Xk(t) (2)

2.2. Exploration to Exploitation

HHO switches from exploration to exploitation according to the change in the escape
energy of the rabbit, based on which it chooses exploitation strategies,

Esc = 2Esc0

(
1− t

Tmax

)
(3)

where Esc is the escape energy of the rabbit, with initial value Esc0, which varies randomly
within (−1, 1); Tmax is the maximum iterations; and t is the current iteration number.

2.3. Exploitation

HHO uses the following strategies to simulate the exploitation process.
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2.3.1. Soft and Hard Encircle

When the prey has no chance to escape (i.e., when the random number r (control factors
in Section 2.4) is greater than 0.5), the flock selects Equation (4) to round up the prey if the
absolute value of its escape energy is greater than or equal to 0.5, and Equation (5) otherwise:

X(t + 1) = ∆X(t)− Esc|JumpXrab(t)− X(t)| (4)

X(t + 1) = Xrab(t)− Esc|∆X(t)| (5)

where ∆X(t) is the difference between the optimal individual and current individual, which
is calculated by Equation (6), and Jump is the distance of random jumps during prey escape,
which is calculated by Equation (7), where w5 is a random number within (0, 1).

∆X(t) = Xrab(t)− X(t) (6)

Jump = 2(1− w5) (7)

2.3.2. Soft Encircle with Advanced Fast Dives

When the prey is about to escape (random is less than 0.5) and the absolute value of
escape energy is greater than 0.5, HHO uses a greedy approach to simulate a Harris hawk
flock surrounding the prey through Equation (10).

P = Xrab(t)− Esc|JumpXrab(t)− X(t)| (8)

Q = P + S ∗ LF(D) (9)

X(t + 1) =
{

P, if f (P) < f (X(t))
Q, if f (Q) < f (X(t))

(10)

Equations (8) and (9) obtain the alternative positions of the particle, and P and
Q are represented by the alternative positions of the particle, respectively. Judging by
Equation (10), if f (P) is smaller than f (X(t)), P is selected as the official position of the
particle, and if f (Q) is smaller than f (X(t)), Q is selected as the official position of the
particle. If both are less than f (X(t)), P is selected as the official position of the particle
according to the order of program execution. If neither is smaller than f (X(t)), the particle
position is not updated.

2.3.3. Hard Encircle with Advanced Fast Dives

When the prey is about to escape (random is less than 0.5) and the absolute value of
its escape energy is less than or equal to 0.5, HHO uses a greedy approach to simulate the
flock pouncing on the prey through Equation (13).

P = Xrab(t)− Esc|JumpXrab(t)− Xm(t)| (11)

Q = P + S ∗ LF(D) (12)

X(t + 1) =
{

P, if f (P) < f (X(t))
Q, if f (Q) < f (X(t))

(13)

2.4. The Overall of HHO

Figure 1 shows the flowchart of the HHO algorithm. HHO relies heavily on the search
and development of escape energy E control algorithm. Exploration is performed when
|Esc| ≥ 1, and exploitation is performed otherwise.
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Figure 1. Flowchart of HHO.

3. Proposed Method
3.1. Differential Perturbation Strategy

The DE algorithm is known for its good population diversity [29], where each iteration
of its particles is perturbed by the weighted difference of two randomly selected particles.
This makes the algorithm rich in population diversity. We propose Equation (14) for the
differential perturbation of particles,

Xd
i (t + 1) = pbestd

i (t) + 2 ∗ rand ∗ (gbestd(t)− pbestd
i (t)) (14)

where d is the dimension of the particle, an integer in the range [1, Dim], where Dim is the
total dimension of the search space; rand is a uniformly distributed random number in the
interval (0, 1); and i is the index number of the current particle.

The first part of Equation (14) is the historical best position of the ith particle, and the
second part is the weighted difference between its best position in the whole population and
its historical best position. When rand is large, the particle convergence speed is high, and
when rand is small, the particle will perform local search based on its historical best position.
Updating the particles by Equation (14) can direct them toward the region where the global
optimal solution is more likely to be found based on their historical optimal positions. This
enhances the algorithm’s optimal search ability while enriching the population diversity.

Our proposed differential perturbation strategy has several advantages: (1) Instead
of using randomly selected particles, it makes full use of the ‘cognition’ of the particles
(historical optimum) and the ‘social cognition’ of the population. (2) The method takes
a random number from (0, 2) as the weight, which effectively balances exploration and
exploitation to avoid convergence that is too fast and that falls into a local optimum, and
exploration does not waste the ‘social cognition’ of the whole population.

3.2. Greedy Strategy

To fully exploit the properties of inter-particle collaboration and knowledge sharing,
we propose a development strategy different from differential perturbation,

P = gbest− E ∗ (gbest− Xi) (15)

temp1 = gbest− α1 ∗ |gbest− Xi| (16)
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temp2 = mean_besti − α2 ∗ |mean_besti − Xi| (17)

Q =
temp1 + temp2

2
(18)

where E in Equation (15) is the escape energy of the particle; α1 and α2 in Equations (16)
and (17) are both weight factors, which can be calculated from Equation (20); mean_besti in
Equation (17) can be calculated from Equation (21), which serves to extract the k particles
with better fitness values than the current particle from the list of individual historical best
of the population.

a = 2 ∗ (1− t
T
) (19)

α = a ∗ (2 ∗ rand− 1) (20)

mean_besti =
k

∑
m=1

pbestk (21)

It is worth noting that the operations in Equations (15)–(21) are performed for each di-
mension of a particle. In Equation (15), the escape energy E decreases linearly with the number
of iterations, implying that the particle converges increasingly quickly. Equations (16)–(18) are
inspired by the GWO, using multiple better particles to guide the direction of the remaining
particles in their search for superiority. However, GWO uses the three best particles, which
will inevitably lead to premature convergence [30], and there are more parameters and
complexity in GWO compared to IGHHO. In general, each particle can provide valuable
information, which is called the particle’s own “advantage” [31]. For example, particles
with good fitness can indicate that the region in which they are located is likely to have the
global optimum, while a particle with a poor fitness can indicate that the current region
has a low probability of having a global optimum. To improve the global search efficiency,
we should avoid being near these regions. To take full advantage of these “advantages”,
we use the optimal particle in the population and the mean of k particles with better fitness
than the current particle as learning objects [32]. This reflects the idea of cooperation and
knowledge sharing of evolutionary algorithms to a certain extent. Therefore, our proposed
equations have the following characteristics: (1) fewer and simpler parameters compared
to GWO; so their impact is slightly reduced; (2) we borrow the greedy strategy of the GWO
algorithm, drawing on the optimal particles in the population and the “advantage” of other
particles to enhance the algorithm’s optimality-seeking stability.

Therefore, in this strategy, the particles are updated according to Equation (22),

X(t + 1) =
{

P, f (P) < f (Q)
Q, f (P) > f (Q)

(22)

3.3. Hybrid Differential Perturbation with Greed

IGHHO exploits the region where the particles are located by Equation (14) or
Equation (22) under the condition that the particles adapt better than before. While Equa-
tion (22) has a stronger exploitation ability, Equation (14) has a stronger search capability. If
Formula (22) is used extensively in the early stage to update the particle position, the parti-
cle will fall into local optimum prematurely. If Formula (14) is used extensively to update
the particle position in the later period, particle optimization will be too slow, resulting in
low efficiency. To balance them, we use the fluctuation of the sine function [33] to alternately
update particle positions using Equations (14) and (22), as shown in Algorithm 1.
where Cr is calculated as,

Cr = 0.5 ∗ (sin(2π ∗ 0.25 ∗ t + π) ∗ t
T
+ 1) (23)
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Algorithm 1 Updating way of exploitation.

1: Calculate Cr according to Equation (23)
2: if rand < Cr then
3: update particle position by Equation (14)
4: else
5: update particle position by Equation (22)
6: end if

As Figure 2 shows, the Cr value is the function of the number of iterations t distribution;
as shown in Figure 2, the value of Cr fluctuates around 0.5, and the fluctuation range of Cr
is gradually increasing with iteration number. This balances the number of executions of
the two strategies so that the particles do not converge too quickly in the early and strongly
converge in the latter.

Figure 2. Distribution graph of Cr.

3.4. Conversion Exploration and Exploitation

The transition between development and search in HHO relies only on the deter-
mination of the escape energy factor, which varies linearly during iteration, making the
algorithm unable to switch flexibly between development and search. Aydilek [34] pro-
posed a hybrid strategy to combine FA and PSO based on the current particle’s superiority
or inferiority. The current particle is compared with the previous global optimum and
updated using FA if it is better; otherwise, it is updated using PSO. However, doing so
would result in a larger proportion of runs for one strategy than for the other and not taking
full advantage of the other strategy. Our proposed algorithm performs the development
phase if the current particle is better than the previous optimal value; otherwise, it performs
the search phase. This allows the particle to take full advantage of previous information
and balances development and search.

According to the above description, the development and search conversion strategy
proposed in this paper is as follows:

Conversion Strategy =

{
Exploration, f (Xi) < f (pbestt−γ

i ) or t ≤ 5
Exploitation, otherwise

(24)
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where f (pbestt−γ
i ) is the optimal value that could be achieved in the previous γ iterations

of the ith particle, and t is the current number of iterations.

3.5. Overall Algorithm

Figure 3 shows the flowchart of IGHHO, which has four input parameters: number
of particles, maximum number of iterations, search space boundary value, and problem
dimension. The IGHHO proposed in this paper differs from the HHO mainly in that the
HHO focuses more on search in the early stage guided by escape energy and more on devel-
opment in the later stage, making the algorithm easy to fall into premature convergence and
poor performance; the IGHHO is flexible to switch between the two, switching strategies
if the particles do not achieve better performance after γ iterations. In the exploitation
stage, the introduction of two exploitation methods makes the algorithm more flexible
based on strengthening the exploitation ability and enriching the population diversity. Two
methods in the development stage add flexibility by strengthening development ability
and enriching population diversity.

Figure 3. Flowchart of IGHHO.

3.6. Computational Complexity Analysis of the Algorithm

In general, the time complexity of the metaheuristic algorithm is mainly composed of
three parts as follows:

1. The initialization of the population. The time complexity of this part is mainly
determined by the population size N and the population dimension D, which generally
does not exceed O (N × D).

2. The computation of the fitness of the initial population. The time complexity of this
part is mainly determined by the population size N and the target cost generated by
the problem, which generally does not exceed O (N × Cost).

3. Main loop. The time complexity of this part is mainly determined by the number of
iterations T, the population size N, the population dimension D, and the target cost
generated by the problem, which generally does not exceed O (T× N × D + T× N ×
Cost).

Moreover, the time complexity of our algorithm also consists of these three main components:

1. Population initialization. The time complexity of this part is comparable to that of
other algorithms, O (N × D).



Entropy 2022, 24, 1065 9 of 22

2. Initial population fitness calculation. The time complexity of this part is also compara-
ble to other algorithms, O (N × Cost).

3. In the main loop. As can be seen in Figure 3, the time complexity of this part of the
algorithm mainly consists of particle position update and fitness calculation. The
particle position is updated by the search strategy and the development strategy
alternately. When the algorithm does not satisfy the judgment condition, the left
branch is executed; that is, the search strategy is executed according to the original
Harris Hawk algorithm. When the algorithm satisfies the judgment condition, the
right branch is executed, that is, the development strategy is executed by Equation (14)
or Equation (20). The time complexity of this part does not exceed O (T × N × D),
and the adaptation calculation does not exceed O (T × N × Cost). Therefore, the
time complexity of the main loop can be expressed as O (T× N × D + T× N × Cost),
which is also comparable to other algorithms.

We can conclude from the above analysis that the time complexity of the proposed
IGHHO is comparable to other algorithms.

The computational complexity of the algorithm consists of three main parts: initializing
the population position, updating the population position, and calculating the particle
fitness. Our proposed IGHHO algorithm has roughly the same framework as the HHO
algorithm, so the computational complexity in these parts is the same. It follows that
O (IGHHO) = O (Initialization Harris hawks) + O(Estimate the fitness of hawks) + T*O
(Update the position of all hawks). Where O (Harris hawks initialization step) = O (N), and
O(Estimate the fitness of hawks) = T*O (N), O (Update the position of all hawks) = O (N*D).
So, the total time complexity is O (IGHHO) = O (N) + T*O (N) + T*O (N*D) = O (T*N*D).

4. Experimental Results and Analysis
4.1. Experimental Design and Parameter Settings

To verify the global search capability of the IGHHO, we tested it on the CEC-2017
test set [28], which contains 29 test functions, of which f1–f2 are single-peaked, f3–f9 are
multi-peaked, f10–f19 are hybrid, and f20–f29 are composite.

All experiments were compiled and run in MATLAB R2020b on a Windows 10 platform
using a Core i7-6700HQ CPU 2.60 GHz with 16 GB of RAM.

We compared IGHHO with SCADE [35], IWOA [36], BMWOA [37], CDLOBA [38],
RCBA [39], BLPSO [40], and CLPSO [41]. We set the number of population particles for
each algorithm to 30, the particle dimension to 30, the boundary values of each dimension
to [−100, 100], and the maximum iterations to 1000. We ran each algorithm 30 times and
took the average as the final result. Table 1 shows the parameter settings for all algorithms.

Table 1. Algorithm parameter settings.

Method Population
(101)

Maximum Generation
(102) Other Parameters

IGHHO 3 10 ub = 100; lb = −100
SCADE 3 10 Cmin = 0.2; Cmax = 0.8; CR = 0.8
IWOA 3 10 w1 = [2 0]; w2 = [−2 −1]; b = 1; mu = 0.1
BMWOA 3 10 w1 = [2 0]; w2 = [−2 −1]; b = 1
CDLOBA 3 10 Qmin = 0; Qmax = 2
RCBA 3 10 Qmin = 0; Qmax = 2
BLPSO 3 10 C1 = [0.2 0.9]; C2 = 1.496; C3 = 1; Esc = 1
CLPSO 3 10 C1 = [0.2 0.9]; C2 = 1.496

4.2. Experimental Results and Analysis

Tables 2–4 list the experimental results of IGHHO and comparison algorithms in the
same environment. Among them, the data of comparison algorithm are quoted from the
simulation results of Zhangze et al. [42]. From Table 2, we can see that IGHHO ranks first
on both single-peaked functions, in the top three on both multi-peaked functions, and first
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on f4 and f7. This shows that IGHHO has good results on the global optimization search
problem, and it has a strong ability to jump out of local optima.

In Table 3, IGHHO ranks first on most hybrid functions, produces order-of-magnitude
differences from second place on f12, f14, and f18, and is not far from first on poorly
performing functions f16 and f19. This demonstrates the effectiveness of our strategy.

From Table 4, it can be seen that the results of IGHHO rank first on eight of the
nine composite functions, and IGHHO is tied with the comparison algorithm in terms
of variance.

Table 2. Comparison results with variants of traditional optimization algorithms on unimodal
functions and simple multimodal functions.

Func IGHHO SCADE CLPSO BLPSO IWOA BMWOA CDLOBA RCBA

f1
Avg (103) 4.68 26,000,000 1,510,000 3,280,000 896,000 273,000 12.2 285
Std (103) 4.96 3,490,000 334,000 597,000 646,000 118,000 5.18 93.8

Rank 1 8 6 7 5 4 2 3

f2
Avg (104) 1.53 7.25 12.8 9.63 21.4 6.83 3.23 4.07
Std (103) 4.22 5.74 27.8 21.4 646,000 7.50 15.2 23

Rank 1 5 7 6 8 4 2 3

f3
Avg (102) 5.06 53.5 9.50 9.07 6.79 6.15 5.10 4.98
Std (101) 2.74 135 10.4 7.48 6.49 4.48 3.22 3.18

Rank 2 8 7 6 5 4 3 1

f4
Avg (102) 7.28 8.60 7.36 7.53 7.96 8.00 8.67 7.98
Std (101) 4.36 1.79 2.22 1.47 5.57 3.97 7.60 6.64

Rank 1 7 2 3 4 6 8 5

f5
Avg (102) 6.55 6.69 6.29 6.30 6.68 6.65 6.69 6.75

Std 8.15 8.22 4.19 3.35 12.8 7.57 8.79 10.5
Rank 3 6.5 1 2 5 4 6.5 8

f6
Avg (103) 1.04 1.24 1.03 1.09 1.25 1.22 2.61 1.92
Std (101) 8.27 2.80 2.30 2.54 8.83 10.5 30.3 32.7

Rank 2 5 1 3 6 4 8 7

f7
Avg (102) 9.69 11 10.4 10.5 10.4 10.1 11.2 10.5
Std (101) 2.27 1.88 2.01 1.48 3.95 3.68 5.43 5.56

Rank 1 7 3.5 5.5 3.5 2 8 5.5

f8
Avg (103) 4.96 9.83 6.83 3.16 8.31 7.46 1.06 8.45
Std (102) 7.68 11.6 18 4.02 26.5 14.6 26.1 30.2

Rank 2 7 3 1 5 4 8 6

f9
Avg (103) 5.77 8.55 7.40 8.71 6.76 7.38 5.53 6.13
Std (102) 7.62 2.72 4.87 3.71 8.38 6.92 6.69 7.20

Rank 2 7 6 8 4 5 1 3

Table 3. Comparison results with variants of traditional optimization algorithms on hybrid functions.

Func IGHHO SCADE CLPSO BLPSO IWOA BMWOA CDLOBA RCBA

f10
Avg (103) 1.23 4.33 2.76 2.16 4.01 1.62 1.34 1.34
Std (101) 4.73 87.8 55.8 32.1 175 16.4 7.77 9.84

Rank 1 8 6 5 7 4 2.5 2.5

f11
Avg (106) 1.15 2700 219 259 79.7 65.9 1.76 7.26
Std (106) 1.09 905 111 66.3 88.9 37.2 1.22 4.85

Rank 1 8 6 7 5 4 2 3

f12
Avg (104) 4.30 112,000 9000 5090 57 40.3 18 17.7
Std (104) 5.18 46,800 5030 2770 38.7 38.7 10.1 10.7

Rank 1 8 7 6 5 4 3 2

f13
Avg (104) 3.98 71.6 31 28.6 191 99.9 2.16 3.02
Std (104) 3.75 40.3 23.6 14.7 201 60.6 2.14 2.65

Rank 3 6 5 4 8 7 1 2
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Table 3. Cont.

Func IGHHO SCADE CLPSO BLPSO IWOA BMWOA CDLOBA RCBA

f14
Avg (103) 6.49 23,100 7550 6050 1580 92.3 90.1 70
Std (103) 8.69 20,200 6030 3360 4590 77.1 66.2 52.4

Rank 1 8 7 6 5 4 3 2

f15
Avg (103) 2.87 4.21 3.26 3.64 3.48 3.43 3.57 3.63
Std (102) 3.26 2.64 2.39 2.07 6.03 3.2 4.36 3.91

Rank 1 8 2 7 4 3 5 6

f16
Avg (103) 2.46 2.67 2.34 2.41 2.66 2.45 2.92 2.80
Std (102) 2.35 1.75 1.58 1.55 2.65 2.26 3.50 3.55

Rank 4 6 1 2 5 3 8 7

f17
Avg (105) 2.41 103 20.4 49.8 54.4 34.7 2.75 3.29
Std (105) 2.81 72.4 13.1 23.2 64.4 30.9 2.87 2.35

Rank 1 8 4 6 7 5 2 3

f18
Avg (103) 7.63 64,800 6120 9490 1160 749 323 357
Std (103) 5.22 28,800 4620 6460 2330 1170 83 257

Rank 1 8 6 7 5 4 2 3

f19
Avg (103) 2.73 2.89 2.58 2.69 2.80 2.66 2.96 2.99
Std (102) 2.22 1.37 1.53 1.26 1.86 2.39 2.18 2.30

Rank 4 6 1 3 5 2 7 8

Table 4. Comparison results with variants of traditional optimization algorithms on composition functions.

Func IGHHO SCADE CLPSO BLPSO IWOA BMWOA CDLOBA RCBA

f20
Avg (103) 2.49 2.60 2.52 2.54 2.58 2.55 2.6 2.61
Std (101) 6.31 3.19 3.8 1.47 4.92 5.46 6.13 6.5

Rank 1 6.5 2 3 5 4 6.5 8

f21
Avg (103) 5.14 5.8 4.71 2.79 7.28 4.8 7.10 7.24
Std (103) 2.42 7.85 1.82 0.0616 1.99 2.99 1.22 1.47

Rank 4 5 2 1 8 3 6 7

f22
Avg (103) 2.88 3.07 2.92 2.93 3.04 2.96 3.19 3.42
Std (101) 7.13 4.44 3.00 2.25 9.73 8.17 13.4 19.4

Rank 1 6 2 3 5 4 7 8

f23
Avg (103) 3.04 3.22 3.11 3.09 3.21 3.09 3.33 3.50
Std (101) 6.96 4.14 2.60 1.87 10.5 8.02 10.4 13.9

Rank 1 6 4 2.5 5 2.5 7 8

f24
Avg (103) 2.9 3.72 3.1 3.12 3.05 3.03 2.93 2.9
Std (101) 1.37 23.6 3.89 4.88 4.52 3.95 2.89 2.13

Rank 1 8 6 7 5 4 3 2

f25
Avg (103) 5.97 7.99 6.13 6.25 7.58 6.67 10 9.13
Std (103) 1.7 0.465 0.588 0.762 1.07 1.24 2.11 2.17

Rank 1 6 2 3 5 4 8 7

f26
Avg (103) 3.30 3.54 3.35 3.39 3.38 3.31 3.50 3.45
Std (101) 4.99 6.64 2.92 2.21 7.90 4.77 19.2 12.3

Rank 1 8 3 5 4 2 7 6

f27
Avg (103) 3.24 4.89 3.78 3.55 3.44 3.41 3.38 3.24
Std (101) 2.28 39.4 11.8 5.28 7.89 4.47 65.5 5.49

Rank 1 8 7 6 5 4 3 2

f28
Avg (103) 4.31 5.43 4.47 4.6 4.88 4.73 5.23 5.25
Std (102) 3.03 3.15 2.34 1.41 4.62 3.3 5.49 4.95

Rank 1 8 2 3 5 4 6 7

f29
Avg (105) 1.09 1710 94.9 117 59.6 55.8 8.7 25.2
Std (105) 1.81 576 56.6 44.4 51.3 37 6.92 21.2

Rank 1 8 6 7 5 4 2 3
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Overall, IGHHO is superior to BMWOA , SCADE, CDLOBA, CLPSO, IWOA, BLPSO,
and RCBA on all types of test functions in CEC-2017. This is also evident from the results
of the Wilcoxon signed-rank test [43] in Table 5, where n/w/t/l indicate the number of
functions on which IGHHO is superior, equal, or inferior, respectively, to the comparison al-
gorithm in n problems. It can be seen that IGHHO is superior to all comparison algorithms.

Table 5. Results of Wilcoxon signed-rank tests.

Wilcoxon Signed-Rank Test

p-Value (10−6) n/w/t/l

IGHHO vs. SCADE 3 29/29/0/0
IGHHO vs. CLPSO 114 29/24/0/5
IGHHO vs. BLPSO 292 29/24/0/5
IGHHO vs. IWOA 3 29/29/0/0
IGHHO vs. BMWOA 31 29/26/0/3
IGHHO vs. CDLOBA 73 29/27/0/2
IGHHO vs. RCBA 29 29/27/0/2

4.3. Convergence Analysis

In order to better show the optimization performance of IGHHO, this section sets
up experiments to analyze the convergence of the proposed algorithms. We compare the
proposed algorithm with the recently proposed HHO [12], SSA [6], SMA [44], BOA [45],
WOA [11], and ALO [46] for analysis. For fairness, the population size of each algorithm is
set to 30, the maximum number of iterations is set to 1000, the particle dimension is set to
30, the search space is [−100, 100], and the evaluation function is cec2017. The experimental
results are shown in Figures 4 and 5 shown, and it is obvious that the proposed IGHHO
has better convergence in the optimization process. For example, IGHHO ranks in the top 2
among the comparative algorithms in terms of convergence speed of functions f1, f2, f3, f4,
f6, f7, f8, f9, f10, f11, f12, f13, f14, f15, f16, f17, f18, f20, f21, f22, f23, f24, f25, f27, f28, and f29.
The above indicates that the proposed algorithm convergence is very competitive among
the comparative algorithms.

(a) f1 (b) f2 (c) f3

(d) f4 (e) f5 (f) f6
Figure 4. Cont.
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(g) f7 (h) f8 (i) f9

(j) f10 (k) f11 (l) f12

(m) f13 (n) f14 (o) f15

(p) f16 (q) f17
Figure 4. Comparison of convergence curves of IGHHO and related methods (1).

(a) f18 (b) f19 (c) f20
Figure 5. Cont.
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(d) f21 (e) f22 (f) f23

(g) f24 (h) f25 (i) f26

(j) f27 (k) f28 (l) f29
Figure 5. Comparison of convergence curves of IGHHO and related methods (2).

5. Application to FS

FS is an integral part to improve classification performance by removing irrelevant
and redundant features for fast computation [47]. The wrapper method based on the
population intelligence algorithm is widely used due to its simple algorithm and ease of
implementation. The method treats the model as a black box [48], evaluates the feature
subset using classifiers or other learning models, and continuously improves its quality.
Based on this, we apply IGHHO to the FS problem.

5.1. Model Description

We use the feature subset obtained by evaluating the K-Nearest Neighbor (KNN)
classifier. Considering the impact of the data imbalance problem on feature selection [49,50],
we designed the objective function by weighting the second-order classification error rate
and the length of the feature subset,

f itness = µ · balanced_error + (1− µ) · s f
n f

(25)

where s f is the length of the selected feature subset; n f is the total number of features in
the dataset; µ is a factor to balance the classification error rate with the length of the feature
subset, and

balanced_error =
1
n
∗

n

∑
k=1

(1− TPk
|Sk|

)2 (26)

where n is the number of problem classes, TPk is the number of correctly classified in-
stances in class k, and Sk is the number of all instances in class k. To better classify classes
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with few instances, we use the square of the classification error rate to penalize poorly
performing classes.

The reason for this consideration is that some classes in the dataset have very few
instances, while others have very many instances. For example, for a binary classification
problem with 10 instances, problem A has only one instance, while problem B has nine
instances. The classifier can easily achieve 90% classification accuracy by simply classifying
all instances as problem B, which seems efficient, but the algorithm will perform poorly on
real-world problems. To consider only the classification error rate will cause the selected
feature subset to contain more redundant features, which will greatly increase the algo-
rithm’s computational complexity, especially for high-dimensional problems. Therefore,
we consider the size of the feature subset as an objective function so as to minimize the
ratio of the number of selected features to that of all features.

5.2. Dataset Descriptions

To verify the performance of IGHHO in FS, we tested it on 13 publicly available
datasets in the UCI Machine Learning Repository [51]. As shown in Table 6, these datasets
are low-, medium-, and high-dimensional, and there are fewer samples of high-dimensional
data, which are highly unbalanced datasets, which are more problematic in FS.

Table 6. Dataset.

Dataset Features Instance Class

Wine 13 178 3
Zoo 16 101 7
Waveform noise 40 5000 3
Lung 57 27 3
Sonar 60 208 2
Hill_Valley 101 606 2
Clean1 168 476 2
Madelon 500 2600 2
Isolet 617 1559 26
CNAE 857 1080 9
Colon 2000 62 2
Leukemia 7129 72 2
Arcene 10,000 200 2

5.3. Experimental Configuration and Parameter Settings

Since some data have fewer samples, we used five-fold cross-validation, dividing the
dataset into five parts, taking four for training and one for testing. Only the training set was
used for FS, and the test set was input to the KNN model to evaluate the FS performance.

We compared our FS method to HHO [12], EPO [52], SSA [6], SMA [44], BOA [45],
WOA [11], and ALO [46], which were based on advanced metaheuristics. For a fair
comparison, the algorithms had consistent configurations, with a population size of 10,
maximum of 50 iterations, 20 runs to take the mean value, and KNN parameter set to 5.

5.4. Experimental Results and Analysis

Experimental results comparing IGHHO with other algorithms on the FS problem are
presented in Table 7. From the total classification accuracy results, the proposed IGHHO
algorithm ranks in the top three on all datasets, ranks first on the datasets Zoo, Wave-
form_noise, Lung, Sonar, Isolet, Leukemia, Arcene, and Colon, and even achieves 100%
classification accuracy on the dataset Leukemia. In contrast, the EPO algorithm ranked first
on only three datasets, and its classification accuracy was only 0.57% better than IGHHO;
the SMA algorithm ranked first on only two datasets, Clean1 and Colon, and it is worth
noting that on the dataset Clean1, IGHHO achieved only 0.1% less classification accuracy
than the first place, while on the dataset Colon, IGHHO tied with SMA for first place; the
ALO algorithm ranked first only on dataset CNAE, and again, IGHHO was only 1.57% less
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than it; HHO, SSA, BOA, and WOA algorithms did not achieve first place on any dataset.
In terms of the average ranking, our proposed improved algorithm ranks 1.58 on average,
pulling away from the second place of 2.88 and the third place of 3.69. This all indicates
that our improved algorithm is dominant relative to the comparison algorithm.

Table 7. Comparison of classification accuracy of IGHHO and other methods.

Dataset IGHHO HHO EPO SSA SMA BOA WOA ALO

Wine/Rank 96.00 95.14 96.57 96.14 93.86 93.29 95.14 95.71
3 5 1 2 7 8 6 4

Zoo/Rank 94.75 91.50 94.75 94.25 92.50 90.50 92.50 93.25
1 7 2 3 5.5 8 5.5 4

Waveform_noise/Rank 83.45 82.35 81.09 82.26 79.96 79.47 82.83 82.75
1 4 6 5 7 8 2 3

Lung/Rank 96.00 81.00 91.00 79.00 79.00 77.00 85.00 83.00
1 5 2 6 7 8 3 4

Sonar/Rank 92.32 89.02 92.20 90.85 88.17 87.68 90.12 90.49
1 6 2 3 7 8 5 4

Hill_Valley/Rank 61.45 58.97 62.02 58.72 58.18 57.56 59.79 59.21
2 5 1 6 7 8 3 4

Clean1/Rank 96.53 93.11 94.16 92.74 96.63 90.74 92.47 93.53
2 5 3 6 1 8 7 4

Madelon/Rank 80.54 77.77 84.08 78.24 75.63 73.81 77.37 79.34
2 5 1 4 7 8 6 3

Isolet/Rank 84.50 83.23 83.25 83.83 82.57 82.38 83.42 84.39
1 6 5 3 7 8 4 2

CNAE/Rank 86.83 86.39 77.96 82.69 77.89 77.55 87.59 88.40
3 4 6 5 7 8 2 1

Colon/Rank 96.25 90.00 90.42 85.83 96.25 86.67 91.67 89.58
1.5 5 4 8 1.5 7 3 6

Leukemia/Rank 100.00 96.43 99.64 97.86 99.64 95.36 97.50 98.21
1 7 2.5 5 2.5 8 6 4

Arcene/Rank 93.88 91.00 92.63 87.75 92.38 87.38 90.00 90.13
1 4 2 7 3 8 6 5

Count 20.5 68 37.5 63 69.5 103 58.5 48
AvgRank 1.58 5.23 2.88 4.85 5.35 7.92 4.50 3.69
TotalRank 1 6 2 5 7 8 4 3

On the other hand, Figure 6 gives a box plot analysis of the classification accuracy
between IGHHO and the comparison algorithm. We can see that the average classification
accuracy of IGHHO is nearly 90%, which is much higher than that of the comparison
algorithm. The optimal and lowest classification accuracy are also dominant compared
with the comparison algorithm. Combined with the above analysis, the IGHHO algorithm
proposed in this paper has some advantages over the traditional optimization algorithm in
improving the classification accuracy of feature selection.

From the average size of the features selected by IGHHO and the comparison algo-
rithms, as shown in Figures 7–10, it can be observed that IGHHO achieves the shortest
feature subset length on six datasets, EPO on five, and SMA on two. However, looking at
its data, the IGHHO algorithm achieved a feature subset length nearly 32% shorter than
the second place on the dataset Wine, and the final filtered feature subset length was 43%
shorter overall compared to other comparative algorithms; nearly 43% shorter than the
second place on Zoo and 45% shorter overall; nearly 65% shorter than the second place on
Lung and 75% shorter overall; nearly 82% shorter than the second place on Colon and 94%
shorter overall; nearly 88% shorter than the second place on Leukemia and 92% shorter
overall; nearly 82% shorter than second place on Colon and 94% shorter than overall; and
nearly 88% shorter than second place on Leukemia and 92% shorter than overall. For
the dataset Waveform_nosie, IGHHO did not achieve outstanding feature subset lengths;
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for the dataset Sonar, IGHHO achieved about the same results as EPO, while both had a
significant advantage over the other comparison algorithms (nearly 45% reduction); for
the dataset Hill Valley, IGHHO achieved second place; for the dataset Clean1, IGHHO
achieves the second place with an average reduction of 61% compared to the 4th, 5th, 6th,
7th, and 8th places; for the dataset Madelon, IGHHO ranks third and has a big disadvan-
tage compared to the first place, but it still achieves good results compared to the other
comparison algorithms (34% reduction in feature subset length). Finally, for Arcene, a
dataset with a very large number of features, IGHHO ranks second and has a significant
advantage (almost 86% reduction). Overall, the IGHHO algorithm proposed in this paper
has some advantages over the comparison algorithm in terms of the length of the selected
feature subset.

Figure 6. Boxplots of IGHHO versus other optimization methods for classification accuracy.

Figure 7. Comparison of selected feature length of IGHHO and related methods (With dataset Wine,
Zoo, Waveform_noise, Lung, Sonar and Hill_Valley).
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Figure 8. Comparison of selected feature length of IGHHO and related methods (With dataset Clean1
and Madelon).

Figure 9. Comparison of selected feature length of IGHHO and related methods (With dataset isolet,
CNAE and Colon).

Figure 10. Comparison of selected feature length of IGHHO and related methods (With dataset
Leukemia and Arcene).

Table 8 compares the average computation time of IGHHO and other algorithms on
the FS problem, from which it is clear that SMA is the fastest, and IGHHO shows a slight
overall advantage. In terms of the IGHHO algorithm and the HHO algorithm, IGHHO
is almost twice as faster as HHO on the medium-dimensional datasets Clean1, Madelon,
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Isolet, and CNAE and ranks in the top three, which is a competitive advantage over other
comparative algorithms; on the other hand, it is about three times faster than the HHO
algorithm on the high-dimensional datasets Colon, Leukemia and Arcene and ranks first
(second on the dataset Colon), which is a significant advantage over other comparative
algorithms. IGHHO’s good performance in operational efficiency is not surprising because
we introduced a differential perturbation and greedy strategy in the development stage
of the algorithm, which gives the algorithm the possibility to explore unknown regions
while having high-intensity development capability in the late iteration. This dramatically
accelerates the operational efficiency of the algorithm. This advantage is highly prominent
when dealing with high-dimensional problems. In summary, the improvement of the HHO
algorithm is successful.

Table 8. Average computational time of IGHHO and other algorithms on FS problems.

Dataset IGHHO HHO EPO SSA SMA BOA WOA ALO

Wine/Rank 3.02 4.21 2.64 2.76 0.29 2.76 2.62 2.79
7 8 3 5 1 4 2 6

Zoo/Rank 2.95 4.16 2.72 2.72 0.37 2.73 2.59 2.76
7 8 3 4 1 5 2 6

Waveform_noise/Rank 15.60 30.68 10.59 15.07 2.35 12.81 20.15 22.28
5 8 2 4 1 3 6 7

Lung/Rank 2.70 3.74 2.44 2.37 0.60 2.38 2.25 2.66
7 8 5 3 1 4 2 6

Sonar/Rank 2.78 4.13 2.57 2.59 0.70 2.59 2.48 2.86
6 8 3 5 1 4 2 7

Hill_Valley/Rank 2.99 4.41 2.78 3.01 0.39 2.95 2.76 3.35
5 8 3 6 1 4 2 7

Clean1/Rank 2.98 4.85 2.72 3.09 1.06 3.01 2.99 3.98
3 8 2 6 1 5 4 7

Madelon/Rank 36.30 88.45 13.26 48.84 7.47 40.69 52.57 64.98
3 8 2 5 1 4 6 7

Isolet/Rank 18.51 38.02 8.72 24.62 6.25 21.48 27.71 30.02
3 8 2 5 1 4 6 7

CNAE/Rank 20.85 46.98 10.20 17.94 7.09 15.45 27.86 33.87
5 8 2 4 1 3 6 7

Colon/Rank 2.67 5.77 3.63 3.71 1.94 3.62 3.28 14.16
2 7 5 6 1 4 3 8

Leukemia/Rank 3.16 9.09 5.20 6.00 4.63 5.76 5.35 44.62
1 7 3 6 2 5 4 8

Arcene/Rank 5.12 16.83 7.99 16.49 6.28 14.69 10.68 66.85
1 7 3 6 2 5 4 8

Count 55 101 38 65 15 54 49 91
AvgRank 4.23 7.77 2.92 5.00 1.15 4.15 3.77 7.00
TotalRank 5 8 2 6 1 4 3 7

6. Discussion

The purpose of this study is to propose an efficient search mechanism to solve the
feature selection problem for low and high-dimensional datasets. Using a hybrid approach,
this study proposes integrating greedy and differential in the development phase of HHO
and introducing a dynamic conversion strategy in the conversion mechanism of algorithm
development and search to enhance the global search capability of the algorithm while
giving it a non-weak local search capability. Through the previous experimental analysis
and comparative study, with the help of numerical optimization and feature selection
problems, we demonstrate the effectiveness of the proposed method.

Our proposed method has the following advantages:

• IGHHO can efficiently search for optimization problems of varying difficulty and
complexity. The optimization solutions generated by IGHHO have better fitness
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values compared to various other advanced optimization methods, as shown in
Tables 2–4 and 7.

• Statistically, the solutions generated by IGHHO are significantly different from those
generated by other advanced optimization methods, as shown in Table 5.

• Although there is no difference between IGHHO and HHO in terms of computational
complexity, IGHHO can produce more efficient solutions than HHO, especially for
high-dimensional problems; see Table 8.

• To verify the effectiveness of IGHHO for the feature selection problem, the datasets
selected for this study vary widely in feature size, from 13 features to 10,000 features,
providing an adequate test environment for validating the optimization strategy; see
Table 6.

• In terms of the length of the filtered feature subsets, IGHHO achieved good results on
all datasets, with an overall minimum average reduction of 34% and a maximum of
94% compared to other comparative methods. See Figures 7–10.

• In terms of classification accuracy, IGHHO filtered feature subsets helped the learning
algorithm KNN produce an average accuracy of 89.42% on all classification datasets,
with a maximum accuracy of 100%; see Table 7 and Figure 6.

• The design principle of IGHHO is so simple that researchers can easily build on our
algorithm with further enhancements.

In addition to the advantages, our proposed IGHHO has the following limitations:

• IGHHO is derived from HHO, and thus, it is relatively computationally expensive
compared to other optimization methods for low-dimensional problems; see Table 8.

• IGHHO is a stochastic-based optimization technique, and the subset of features it
filters out may vary from run to run, which inevitably confuses users.

• In this study, the packing-based KNN algorithm is used as the learning method for
feature selection, but the KNN algorithm has unavoidable limitations such as slow
running efficiency.

7. Conclusions and Future Directions

We proposed an IGHHO. We improved the development phase using differential
perturbations and a greedy strategy to enhance population diversity. A new transformation
strategy made the algorithm flexible in switching between search and development, which
enhanced its global search capability. The performance of IGHHO was verified on the
CEC2017 test set with different features. In addition, we proposed a new objective function
to address data imbalance in FS and applied IGHHO to the FS problem to verify its
effectiveness in practical applications. The obtained results demonstrated the improvement
over the HHO algorithm in computational accuracy and search efficiency. The proposed
algorithm was seen to be efficient and reliable for practical optimization problems. However,
IGHHO has some drawbacks. In the FS problem, although IGHHO generally outperformed
comparison algorithms, it did not account for the majority of first rankings. In the next
work, we will try to study a more efficient optimization strategy, try to propose a new
improve algorithm with better performance, and apply it to other practical problems.
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