
Journal of the American Heart Association

J Am Heart Assoc. 2021;10:e023222. DOI: 10.1161/JAHA.121.023222 1

 

ORIGINAL RESEARCH

Real- Time Arrhythmia Detection Using 
Hybrid Convolutional Neural Networks
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BACKGROUND: Accurate detection of arrhythmic events in the intensive care units (ICU) is of paramount significance in provid-
ing timely care. However, traditional ICU monitors generate a high rate of false alarms causing alarm fatigue. In this work, we 
develop an algorithm to improve life threatening arrhythmia detection in the ICUs using a deep learning approach.

METHODS AND RESULTS: This study involves a total of 953 independent life- threatening arrhythmia alarms generated from 
the ICU bedside monitors of 410 patients. Specifically, we used the ECG (4 channels), arterial blood pressure, and photop-
lethysmograph signals to accurately detect the onset and offset of various arrhythmias, without prior knowledge of the alarm 
type. We used a hybrid convolutional neural network based classifier that fuses traditional handcrafted features with features 
automatically learned using convolutional neural networks. Further, the proposed architecture remains flexible to be adapted 
to various arrhythmic conditions as well as multiple physiological signals. Our hybrid-  convolutional neural network approach 
achieved superior performance compared with methods which only used convolutional neural network. We evaluated our 
algorithm using 5- fold cross- validation for 5 times and obtained an accuracy of 87.5%±0.5%, and a score of 81%±0.9%. 
Independent evaluation of our algorithm on the publicly available PhysioNet 2015 Challenge database resulted in overall clas-
sification accuracy and score of 93.9% and 84.3%, respectively, indicating its efficacy and generalizability.

CONCLUSIONS: Our method accurately detects multiple arrhythmic conditions. Suitable translation of our algorithm may signifi-
cantly improve the quality of care in ICUs by reducing the burden of false alarms.

Key Words: convolutional neural networks ■ false alarms ■ intensive care unit monitors ■ machine learning ■ multi- class classification

Intensive care units (ICUs) are generally equipped 
with physiological monitoring systems to alert the 
caregivers about the onset of an adverse condition. 

However, the majority of such alarms are triggered 
because of innocuous conditions such as motion arti-
facts and electrode problems. Although such a system 
generally does not miss many true alarms, it gener-
ates false alarms (FAs) at rates as high as 88.8%.1,2 
Frequent FAs can cause delirium in patients and also 
gradually impact the responsiveness of the staff to 
alarms. Indeed, reducing the harm associated with 
clinical alarm systems has been consistently listed as a 
National Patient Safety Goal from 2012 to 2020.3

Various algorithms have been developed to address 
FAs in ICUs. Early attempts used only ECG signals to 
alert the onset of an arrhythmic condition.4,5 Recent 
algorithms that included the arterial blood pressure 
(BP) signal with the ECG signals have reported signif-
icant reduction in FA burden.6– 9 Algorithms based on 
wavelet transform, data mining, and machine learn-
ing approaches have been reported to further reduce 
FAs.10– 13 To foster the development of such algorithms, 
the “PhysioNet/Computing in Cardiology Challenge 
2015: Reducing False Arrhythmia Alarms in the ICU” 
was introduced, especially for the scenario where prior 
knowledge of the alarm event is available. In response 
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to the challenge, many time domain and frequency do-
main techniques were proposed.14– 18 Although such 
methods achieve impressive performance when the 
alarm type is known, detecting the presence of an un-
known arrhythmia remains challenging. Consequently, 
such methods remain as an add- on to existing mon-
itoring systems to filter FAs. However, it has been 
observed that the alarm type on the monitor and the 
underlying arrhythmia may sometimes mismatch and 
hence alarm suppression based on a mismatched ar-
rhythmia type can result in catastrophic consequences.

In the same vein, the “China Physiological Signal 
Challenge 2018”19 and the recent “PhysioNet/
Computing in Cardiology Challenge 2020: Classification 
of 12- lead ECGs”, provided a large repository of 12- 
lead ECG recordings from various databases, with the 
goal of identifying the clinical diagnosis. In such data-
bases, although an annotation is provided for the entire 
record, the actual onset and offset of the arrhythmia 
remain unavailable. Furthermore, the aforementioned 
databases include only the ECG signals for analy-
sis. It is important to note that certain life- threatening 

conditions including ventricular tachycardia/ventricu-
lar fibrillation (VT/VF) can be better diagnosed if other 
vital- sign signals such as arterial BP and photoplethys-
mogram are included.

To date, most reported methods have relied in pro-
cessing handpicked features that are tailored to the sig-
nals and the arrhythmia at hand. Recently developed 
algorithms have reported significant improvement in 
performance by using automated feature learning with 
deep learning methods.20– 22 A method proposed by 
Hannun et al23 used a deep convolutional neural net-
work (CNN) architecture to detect twelve arrhythmia 
types from a single ECG recorded from an ambula-
tory device. Methods that combine CNNs with recur-
rent neural networks have been reported to achieve 
improved performance on ECG classification.24– 26 
However, these methods do not classify certain life- 
threatening arrhythmias including extreme bradycardia 
(EB), extreme tachycardia (ET), asystole and VF.

Given that deep learning methods, in particular 
CNNs have been proven effective and the preferred 
tools for various classification tasks,27 in this study 
we propose to use a hybrid- CNN technique that 
fuses conventional handcrafted features with the fea-
tures learned from CNN. Such a network, when ap-
propriately trained, is expected to enjoy the benefits 
of automated learning as well as traditional features. 
Furthermore, the proposed approach is expected to 
be suitable for different arrhythmias, without requiring 
major architectural changes.

METHODS
Data Availability
The training data set will be available to any investigator 
upon request.

Code Availability
The code will be available to any investigator upon 
request.

Ethical Approval and Consent to 
Participate
The study was approved by the Institutional Review 
Board of Massachusetts General Hospital. We 
also used data from the “PhysioNet/Computing in 
Cardiology Challenge 2015: Reducing False Arrhythmia 
Alarms in the ICU”. The data used are open source 
and are available at https://physi onet.org/conte nt/chall 
enge- 2015/1.0.0/.

Data Set
The study was approved by the Institutional Review 
Board of Massachusetts General Hospital. Adhering to 

CLINICAL PERSPECTIVE

What Is New?
• We proposed a novel arrhythmia detection al-

gorithm that uses handcrafted features along 
with features learned from a machine learning 
algorithm.

• While conventional intensive care unit moni-
tors use single physiological signals to raise 
an alarm, our algorithm uses information from 
multiple physiological signals simultaneously to 
reduce the incidence of false alarms in the in-
tensive care unit.

What Are the Clinical Implications?
• Deployment of the proposed method could 

reduce the number of false intensive care unit 
alarms, making the organization, integration, 
and interpretation of the enormous amount of 
intensive care unit data less time- consuming 
and more efficient.

Nonstandard Abbreviations and Acronyms

CNN convolutional neural network
EB extreme bradycardia
ET extreme tachycardia
FA false alarm
SR sinus rhythm

https://physionet.org/content/challenge-2015/1.0.0/
https://physionet.org/content/challenge-2015/1.0.0/
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the institutional review board guidelines, we obtained 
de- identified data from the bedside monitors of the 
ICUs of Massachusetts General Hospital. The data 
consist of the ECG (4 channels), arterial BP, and photo-
plethysmogram waveforms recorded using 2 different 
device manufacturers. We used streaming data with 
the information corresponding to the time and type of 
the alarm recorded by the monitoring system.

The Association for the Advancement of Medical 
Instrumentation standards require that the alarm be 
raised within 10 seconds from the start of the event. 
Accordingly, we created a running 5- second window 
buffer for the 15 seconds of data before the onset of 
the alarm. We considered only alarms correspond-
ing to asystole, extreme tachycardia (ET), extreme 
bradycardia (EB), ventricular tachycardia (VT), ven-
tricular fibrillation (VF). and atrial fibrillation (AF). The 
definitions/criteria for each arrhythmia were taken 
from the PhysioNet 2015 challenge,16 and are listed in 
Table 1. Further, we used the open source data from 
the “PhysioNet/Computing in Cardiology Challenge 
2015: Reducing False Arrhythmia Alarms in the ICU”,16 

as an independent data set to evaluate the proposed 
algorithm. The data are available at https://physi onet.
org/conte nt/chall enge- 2015/1.0.0/. The data consist 
of 300 seconds long records of 2- lead ECG, BP, and 
photoplethysmogram signals before an alarm, as ac-
quired by the bedside ICU monitors. The data also 
contain the corresponding annotations for each alarm, 
namely the alarm type and whether the alarm is true or 
false. We considered ≥15 second windows from each 
record and annotated it to mark the onset and offset of 
each arrhythmia (please, see Data S1 for details).

Human Annotations: Ground Truth and 
Arrhythmia Onset and Offset
We built a custom- made user interface to mark the 
onset and offset of noise portions and those of ar-
rhythmia, corresponding to aystole, EB, ET, VF, and VT 
in each channel of ECG, BP, and photoplethysmogram 
signals. Based on the arrhythmia definitions/criteria 
listed in Table 1, the onset and offset of each arrhyth-
mia record has been manually annotated by 2 experts. 
For complex cases, a third expert independently re-
viewed the record, and the majority view was used 
as the final annotation. Finally, we annotated noise 
and sinus rhythm (SR) portions in each of the chan-
nels of ECG, BP, and photoplethysmogram waveforms 
for further training and validations of our algorithms. 
Specifically, we annotated 953 independent alarms 
from 410 critical care subjects with diverse medical 
conditions. It has been observed that the alarm type 
indicated by the monitor may not correspond with the 
true alarm type. Table 2 provides the number of alarms 
raised for each event and their correspondence to the 
true underlying condition. About 50% of VF alarms 
that required immediate attention corresponded with 
a different arrhythmia type. Favorably, 80% of these 
mismatched alarms corresponded with VT. However, 
surprisingly, 22.6% of the EB alarms that require im-
mediate attention corresponded with ET. Therefore, it 
becomes imperative to develop standalone arrhythmia 
detectors without considering the monitor alarm type.

Table 1. Definitions of the 7 Classes

Class Definition

Aystole No heartbeats at all for a period of 4 s or more

EB Heart rate is lower than 40 beats per minute; fewer than 5 
beats occur within a period of 6 s

ET Heart rate is higher than 140 beats per min; more than 17 
beats occur within a period of 6.85 s

VF A rapid fibrillatory, flutter, or oscillatory waveform for at 
least 4 s

VT Five or more consecutive ventricular beats within a period 
of 2.4 s (a heart rate of 100 beats per min)

SR Heart rate between 40 and 100 beats per min, for 8 s

AF Tachyarrhythmia characterized by predominantly 
uncoordinated atrial activation with consequent 
deterioration of atrial mechanical function

AF indicates atrial fibrillation; EB, extreme bradycardia; ET, extreme 
tachycardia; SR, sinus rhythm; VF, ventricular fibrillation; and VT, ventricular 
tachycardia.

Table 2. Number of Records in Each Alarm Type and Their Correspondence to the Gold Standard

Alarm annotation by clinicians
Total 
records PPV

% of mismatched 
true alarmsAystole EB ET VF VT AF SR

Alarm type from 
monitor

Aystole 19 2 2 0 4 18 123 168 11.31 29.63

EB 0 60 7 0 0 66 132 265 22.64 10.45

ET 0 1 39 0 3 96 89 228 17.11 9.3

VF 0 0 2 10 8 5 21 46 21.74 50

VT 0 1 5 3 132 26 79 246 53.66 6.38

Total records 19 64 55 13 147 211 444 953

AF indicates atrial fibrillation; EB, extreme bradycardia; ET, extreme tachycardia; PPV, positive predictive value; SR, sinus rhythm; VF, ventricular fibrillation; 
and VT, ventricular tachycardia.

https://physionet.org/content/challenge-2015/1.0.0/
https://physionet.org/content/challenge-2015/1.0.0/
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Based on the gold standard annotations indicat-
ing the onset and offset of each arrhythmia, we de-
rived the ground truth labels of the 4-  and 8- second 
windows, as follows: A 4- second window is marked 
as VT if there are at least 5 beats meeting the VT 
criteria. In particular, the onset of VT is determined 
by the approximate midpoint between the first ven-
tricular beat and the previous sinus beat. In the 
same vein, the offset is determined by the approx-
imate midpoint between the last ventricular beat 
and the next sinus beat or the offset is considered 
as the end of the record if the arrhythmia persists 
until the end of the record. Similarly, the window is 
marked as VF only if the entire 4- second duration is 
marked as VF by the clinician. An 8- second window 
is considered as EB if the heart rate is <40 beats 
per minute in the given window. While the window 
is considered as ET, if at least 17 beats occur in 
the window with heart rate >140 beats per minute. 
Finally the window is considered as AF or SR if the 
entire window falls under the AF and SR criteria, 
respectively.

Performance Metrics
To report the performance of the classifier, along with 
the overall accuracy, we report the percent score (in-
spired from PhysioNet/Computing in Cardiology 2015 
challenge) that heavily penalizes false negatives, to re-
duce or eliminate the lack of emergency care during 
a life- threatening event. The classifier’s accuracy and 
score values are calculated as:

where, |TP|, |TN|, |FP|, and |FN| refer to the counts of 
true positives, true negatives, false positives, and false 
negatives, respectively. Contrary to accuracy, the score 
value weighs the FNs, 5 times more than the FPs. We 
also report the classifier’s sensitivity 

(

Se =
|TP|

|TP|+ |FN|

)

 and 
positive predictive value 

(

PPV =
|TP|

|TP|+ |FP|

)
, in each window 

(4 or 8 seconds), respectively.
To estimate the performance of the proposed 

method on unseen data, we performed k- fold cross- 
validation (with stratified random sampling) on the 
available data. We assessed the 5- fold cross- validation 
performance of our method, and then took the sum per-
formance across all the folds to represent the classifier 
performance on the entire data. Further, to account for 
the randomness associated with model training and 
stochastic selection of k- folds, we repeated the 5- fold 
cross validation, 5 times, and reported the mean and 
SD of the classifier performance.

Data Preprocessing
Baseline- wander was corrected using median filters of 
window sizes 200 and 600 milliseconds, respectively.28 
Next, R- wave peak locations were identified using an 
R- wave detector that fuses information from multiple 
channels of ECG.12 We excluded, across all channels, 
portions of records of ECG signals with amplitude 
<0.5  mV as being of low quality (normally, an alarm 
should be raised that would require lead repositioning to 
improve contact), resulting to a total of 1262.2 seconds 
of data being removed from the analysis. After data ex-
clusion, the remaining 13032.8  seconds of data were 
used in the analysis. The proportion of data within each 
class were, SR=44.82%, AF=23.27%, VT=16.57%, 
VF=1.63%, EB=6.2%, ET=6.57%, and asystole=0.93%.

Block Schematic for Arrhythmia Detectors
In general, the majority of false alarms are attributed 
to noise, artifacts, or connection problems in ≥1 chan-
nels/signals. Accordingly, the first step is to identify 
such conditions. To this end, we first pass each signal 
through a noise detector and identify the signals that 
are corrupted with noise.

Next, depending on the arrhythmia type, we use ei-
ther a window length of 4 or 8 seconds, respectively. 
Specifically, arrhythmias such as asystole, VT, and VF 
can be detected based only on 4  seconds of data, 
while EB, ET, AF, and SR require 8 seconds of data. As 
shown in Figure 1, we use a multi- tiered approach for 
arrhythmia detection. In particular, noise in each chan-
nel of ECG, BP, and photoplethysmogram is identified 
in Tier- 0, and only those channels that are non- noisy 
are passed to the later stages. VT and VF are iden-
tified in Tier- 1, ET and EB are identified in Tier- 2, and 
finally Tier- 3 distinguishes between AF and SR signals. 
At each tier, we use a classifier that is specific to the 
arrhythmia under consideration. In general, such clas-
sifiers are usually based on the handpicked arrhythmia 
dependent futures. As suggested earlier, we propose 
a hybrid- CNN based generalizable building block that 
can be trained to serve as a classifier at different tiers.

Hybrid Architecture as a Building Block
We consider a hybrid- CNN architecture comprising 
multiple convolutional layers and a fully connected 
layer with handcrafted features augmented before the 
output layer, as shown in Figure 2.

Handcrafted Features

We extracted a set of signal specific features from each 
ECG channel, as well as the BP and photoplethysmo-
gram signals, to determine if the corresponding signal is 
noisy. Furthermore, a set of arrhythmia- specific features, 
which characterize each arrhythmia class, were also 

Accuracy=
|TP| + |TN|

|TP| + |TN| + |FP| + |FN|
,

Score=
|TP| + |TN|

|TP| + |TN| + |FP| +5∗ |FN|
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extracted.12 Details of these features are made available 
in the Data S1 (Tables S1 through S4). Missing ECG fea-
ture values were replaced with the average feature value 
from non- noisy channels of ECG. Whereas for BP and 
photoplethysmogram features, NaN values in the training 
and test set are replaced with the median value of the 
corresponding non- NaN feature values in the training set.

Hybrid- CNN Architecture

The input consists of a convolution layer with a single 
filter for all ECG channels and a different filter for each 
of the photoplethysmogram and BP channels. Each 

filter operates on the corresponding signal and an out-
put is obtained by convolving the signal with the filter 
weights. Further, each filter component is assumed to 
have the same length. The convolved output is passed 
through a rectified linear unit and is pooled to reduce 
the dimension by a factor of 2. Next the output from 
the ECG, BP, and photoplethysmogram filters are con-
catenated and passed to the later stages. The filters of 
the subsequent layer fuse the information from all the 
channels into a single vector followed by rectified linear 
unit activation and pooling. The convolution, non- linear 
activation and pooling are treated as a single layer, 
which is repeated until penultimate layer (the second 
to last layer). The handcrafted features are augmented 
to the flattened convolution features, before fully con-
necting to the output layer.

Choice of Network Parameters
We used CNNs as building blocks to achieve the de-
sired classification at each tier of the overall classifier. 
While training the CNNs, we used the binary cross en-
tropy and the categorical cross entropy cost functions 
for binary and multi class classification tasks respec-
tively. We also optimized the classifier performance by 
varying the number of filters, filter length, and pooling 
operations, to determine the effect of the convolution 
filter length as well as the network capacity, in terms of 
the number of trainable parameters.

RESULTS
Noise Detector Performance Evaluation
Before proceeding to the evaluation of the overall algo-
rithm performance, we first evaluated the performance 
of the noise detector using 5- fold cross- validation. 
Based on the manual annotations corresponding with 
the onset and offset of the noise segment, we ex-
tracted 4  seconds of clean and noisy data windows 
from each record in the training and test folds. We 
developed signal specific noise detectors for ECG, 
BP, and photoplethysmogram signals using (1) a fully 
connected network with handcrafted features, (2) only 
CNN and (3) hybrid- CNN.

Using each classifier, we obtained the probability of 
determining whether the test window is a clean or noisy 
signal. Using this approach, we compared various 
classifiers using mean receiver operating characteristic 
curves, over 5- fold. The overall optimal operating point 
is provided by the hybrid- CNN classifier with a sensi-
tivity and specificity of 94.0% and 91.9%, respectively.

The performance of the ECG noise classifier is 
shown in Figure S1. The desired operating point is ob-
tained by computing the point on the receiver operating 
characteristic curve that is closest to the ideal classi-
fier, ie, sensitivity=1 and specificity=1. The area under 

Figure 1. Block schematic of the proposed classifier.
ABP indicates arterial blood pressure; AF, atrial fibrillation; 
EB, extreme bradycardia; ET, extreme tachycardia; PPG, 
photoplethysmogram; VF, ventricular fibrillation; and VT, 
ventricular tachycardia.
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the curve of the ECG noise classifier for feature- based, 
only CNN, and hybrid CNN classifiers were 93.56%, 
96.97%, and 97.17%, respectively. While the hybrid CNN 
and only CNN classifiers achieved similar performance, 
both classifiers achieved significant performance im-
provement compared with the only feature- based noise 
detector, perhaps because the features extracted from 
a short (4 seconds) window may not adequately cap-
ture the noise characteristics. The hybrid- CNN BP noise 
classifier provided a sensitivity and specificity of 88.6% 
and 90.9% respectively, and the hybrid- CNN pho-
toplethysmogram noise classifier provided a sensitivity 
and specificity of 98.5% and 94.9%, respectively.

The proposed noise detectors appeared to be 
robust to the morphological changes in the signals 
during arrhythmic events, and have not classified any 
arrhythmia records as noise.

Algorithm Performance Evaluation
The data are processed sequentially in windows of 4 
and 8 seconds while striding with 0.5- second steps. 

Next, each 4- second window of data is passed through 
the noise detector, and the noisy channels of ECG, BP, 
and photoplethysmogram signals are masked with 
zeros. If all ECG channels are noisy, the correspond-
ing 4- second window is considered noisy, and dis-
regarded. Otherwise, the window is passed through 
Tier- 1 classifier to detect the presence of VT or VF. An 
8- second window that does not contain a 4- second 
window of either noise, VT or VF, is passed on to the 
Tier- 2 classifier to detect EB or ET; if EB/ET arrhyth-
mias are not found, the 8- second window is marked as 
AF or SR based on the Tier- 3 classifier output.

We developed 3 classifiers, with: (1) handcrafted 
features alone, (2) CNN, and (3) hybrid- CNN. We op-
timized the performance of only CNN and hybrid- CNN 
by varying the number of filters and the filter length. The 
performance for each hyper- parameter configuration is 
presented in Table 3. In terms of network capacity, for 
a Tier- 1 classifier, the minimum and maximum number 
of trainable parameters in a hybrid- CNN were 15 457 
(filter size=5, number of filters=4) and 3 134 669 (filter 
size=500, number of filters=32), respectively. Similarly, 

Figure 2. Hybrid-  convolutional neural network architecture that fuses the information from learned and handcrafted 
features.
ABP indicates arterial blood pressure; CNN, convolutional neural network; and PPG, photoplethysmogram.
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for only CNN classifier the minimum and maximum 
number of trainable parameters were 1015 (filter size=5, 
number of filters=4) and 3 120 227 (filter size=500, num-
ber of filters=32), respectively. It should be noted that 
the network capacity is increased with the filter size and 
the number of filters; also, the capacity of the hybrid net-
work is greater than the equivalent only CNN classifier, 
because of the inclusion of the handcrafted features.

Interestingly, an increased network capacity does 
not translate to improved performance. It is observed 
that the hybrid- CNN achieved a slightly improved per-
formance over only CNN classifier. Also, the perfor-
mance increased with filter size, reached a peak, and 
then decreased. Intuitively, a small convolution filter 
operates on a short temporal window within the signal, 
and may not fully exploit the temporal dependency ef-
ficiently. On the other hand, a long filter also achieves 
low performance because, while observing for a signif-
icant duration, CNN filters might fuse and encode the 
information from the entire beat into few filter outputs. 
A similar observation is reported in earlier work,26 and 
the choice of filter dimension plays a crucial role in de-
termining the classifier performance. For hybrid- CNN, 
a filter dimension of 50, 8 filters, and maximum pooling 
operation, among all classifiers, achieved the highest 
accuracy and score, of 87.6% and 81.4%, respectively.

To account for the stochasticity in model conver-
gence as well as the randomness in the choice of 
data in each fold, we performed 5 times 5- fold cross- 
validation and reported the mean and SD of the clas-
sifier performance, for optimal hyper- parameters. 
Our hybrid- CNN model, only- CNN model, and only 
feature- based classifiers achieved a mean (±SD) accu-
racy of 87.5% (±0.48), 81.2% (±0.94) and 84.3% (±1.35) 
and a score of 81.0% (±0.89), 64.6% (±4.1) and 80.7% 
(±0.48), respectively. Favorably, the low SD indicates 

that our method generalizes well to new data. Further, 
we verified the statistical similarity between hybrid- 
CNN and only feature- based classifier using McNemar 
test,29,30 and we observed that the Tier- 1, Tier- 2, and 
Tier- 3 classifiers are significantly different (P<0.001). 
The classification performance in terms of sensitivity, 
PPV, and accuracy, specific to each rhythm are pre-
sented in Table  4 and Table  S5. For asystole classi-
fication, the SD is zero as it gets detected through a 
deterministic process, before passing through the clas-
sifier. The majority of EB and ET misclassifications are 
borderline cases in which the heart rate is close to 40 
and 140 beats per minute, respectively. Such misclas-
sifications can be corrected setting a hard- threshold 
on the heart rate, although such minor misclassifica-
tions are unlikely to have a meaningful clinical impact. 
Finally, although the present work appears to have a 
poor sensitivity for VF detection, all the misclassified 
VF signals are assigned as VT and in practice, alarms 
will be raised for 100% of the VF signals. Furthermore, 
clinical differentiation of VT from VF is somewhat arbi-
trary and therefore, binning the alarms together serves 
to maximize clinical utility.

Next, we attempted to understand the improvement 
in the performance of hybrid CNN compared with only 
CNN approach and feature- based approach. To this 
end, we used a Gradient- Weighted Class Activation 
Map31 to visualize the discriminatory parts of the signal 
that generated the output of a CNN- based classifier 
(please, see Figure  S2). Also, we used permutation- 
importance32 to depict the importance of handcrafted 
features in a feature- based classifier (please, see 
Figures S3A through S3C). It appears, that since each 
arrhythmia is characterized by an associated morphol-
ogy and well defined features, capturing these features 
using a hand engineered feature extraction approach 

Table 3. Performance of Various Network Architectures

Filter size No. of filters Pooling

Hybrid- CNN classifier Only- CNN classifier

Overall 
accuracy (%) Score (%)

Overall 
accuracy (%) Score (%)

5 4 Max pooling 83.71 79.05 72.81 61.39

5 8 Max pooling 86.37 81.11 82.45 68.10

25 8 Max pooling 86.93 80.14 85.75 72.92

50 8 Max pooling 87.64 81.44 81.40 64.81

75 8 Max pooling 87.53 81.40 79.91 64.33

50 8 Average pooling 77.14 57.20 72.67 52.00

50 32 Max pooling 69.33 56.46 84.25 66.86

100 8 Max pooling 76.82 62.39 78.23 64.33

500 8 Max pooling 62.33 56.41 74.16 61.98

500 32 Max pooling 52.83 52.83 76.09 60.80

Only feature- based classifier 86.72 80.48

CNN indicates convolutional neural network.
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helps in classification; although CNNs attempt to char-
acterize these features, a hybrid approach would com-
bine the benefits of both approaches.

Algorithm Performance Comparison
Thereafter, we compared the performance of the 
present method with the existing bedside monitoring 
systems (Table 4). Although the existing monitors con-
tinuously process data to detect arrhythmias, the exact 
onset and offset locations of arrhythmias remain una-
vailable. In this setting, assuming that the existing sys-
tems do not miss any arrhythmic events, we compared 
the PPV of our proposed system to those of the bed-
side monitors used in the PhysioNet 2015 challenge,16 
MIMIC (Medical Information Mart for Intensive Care) 
II study,8 and the alarm fatigue study from University 
of California, San Francisco1 (Table 4). Specifically, we 
computed the PPV as the ratio of the reported true 
alarms to the total alarms raised corresponding to that 
particular arrhythmia. We aim to maximize the PPV 
while maintaining high sensitivity.

For 5 life- threatening arrhythmias, our method 
achieved an average PPV and sensitivity of 82.9% 
and 93.5%, respectively. The monitor- based average 
PPV of the current study (based on clinician’s anno-
tations), PhysioNet 2015 challenge and MIMIC II study 

are 25.29, 39.63, and 46.14, respectively. Among the 
common arrhythmias used in the present and the 
University of California, San Francisco studies (asys-
tole, VT, and VF), we achieved a PPV of 78.57 with a 
sensitivity of 92.2% while the University of California, 
San Francisco study exhibited a PPV of 37.9%.

Independent Data Set Validation
We used data from PhysioNet 2015 challenge,16 as 
an independent data set to validate the proposed al-
gorithm. Record- wise annotations indicating signal 
quality, rhythm type, and the onset and offset of each 
arrhythmia are presented in Table S6. In particular, we 
used 2- channel ECG, BP, and photoplethysmogram 
signals as input and processed 4-  and 8- second long 
data, while striding with 0.5- second steps. Although 
the proposed network is trained with 4- channel ECG, 
BP, and photoplethysmogram, it remains adaptable 
and effective even with 2 missing channels of ECG. 
In Table 5, we report the confusion matrix of the pro-
posed classifier with an overall accuracy and score of 
93.93% and 84.32%, respectively. While VF arrhyth-
mia achieved a lesser sensitivity and PPV, all the VF 
misclassifications correspond to VT and in practice an 
alarm would have been raised for each VF incidence. 
The score of the proposed hybrid CNN is close to the 

Table 4. Sensitivity, PPV, Accuracy and Score for Each Rhythm Following 5- Times 5- fold Cross- Validation (Highlighted in 
Grey), as Well as the Positive Predictive Value Observed by Bedside Monitors

Rhythm
Sensitivity 
(%) PPV (%) Accuracy (%) Score (%)

PPV (%) Current 
study (clinical 
annotations)

PPV (%) 
Physionet 2015 
Challenge

PPV (%) 
MIMIC II 
study

PPV (%) 
UCSF 
study

Aystole 100.00±0.00 61.58±0.00 99.42±0.00 99.42±0.00 11.31 16.67 9.33 32.83

EB 99.29±0.78 82.64±3.04 98.65±0.27 98.65±0.26 22.64 50 70.71 NA

ET 91.55±0.85 96.11±0.96 99.20±0.02 98.64±0.11 17.11 94.92 76.93 NA

VF 79.45±9.84 78.83±12.51 99.29±0.33 99.29±0.33 21.74 10.34 20.33 67.72

VT 97.33±0.60 95.13±0.99 98.73±0.21 98.22±0.27 53.66 26.23 53.42 13.00

AF 89.99±1.13 74.41±1.44 90.48±0.42 84.61±0.89 NA NA NA NA

SR 80.33±1.41 94.74±0.81 89.16±0.45 NA NA NA NA NA

AF indicates atrial fibrillation; EB, extreme bradycardia; ET, extreme tachycardia; MIMIC, Medical Information Mart for Intensive Care; NA, not applicable; PPV, 
positive predictive value; SR, sinus rhythm; USCF, University of California, San Francisco; VF, ventricular fibrillation; and VT, ventricular tachycardia.

Table 5. Performance of Hybrid CNN Classifier on an Independent Validation Data Set From the PhysioNet 2015 Challenge

Aystole EB ET VF VT SR Sensitivity (%)

Aystole 28 0 0 0 0 0 100

EB 0 227 0 0 0 15 93.80

ET 0 0 932 0 35 186 80.83

VF 0 0 0 10 12 0 45.45

VT 0 0 0 17 142 9 84.52

SR 17 25 69 0 62 5584 96.99

PPV (%) 62.22 90.08 93.11 37.04 56.57 96.38 Accuracy = 93.93%  
Score = 84.32%

CNN indicates convolutional neural network; EB, extreme bradycardia; ET, extreme tachycardia; PPV, positive predictive value; SR, sinus rhythm; VF, 
ventricular fibrillation; and VT, ventricular tachycardia.
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top scoring entry of the challenge,33 with a score of 
85.04%. Favorably, the proposed algorithm in this arti-
cle is trained to detect AF in addition to the arrhythmia 
considered in the challenge and is flexible to be ex-
tended to other arrhythmias. Only CNN based classi-
fier achieved an overall accuracy and score of 88.18% 
and 68.96% (please, see the confusion matrix in the 
Table 6), respectively, and only feature based classifier 
achieved an overall accuracy and score of 88.4% and 
72.48%, respectively (please, see the confusion matrix 
in the Table 7).

DISCUSSION
The majority of ICU abnormal heart rhythm triggered 
monitor alarms are found to be false,1 primarily attrib-
utable to noise and artifacts in the physiological sig-
nals, which often result from patient motion or loose 
electrodes. Excessive numbers of false alarms create 
a noisy environment and cause alarm desensitization 
among caregivers. In the present study, we observed 
that about 74.7% of the critical ECG arrhythmia alerts 
are false alarms. In particular, individual arrhythmia 
rates vary between 46.3% and 88.6%, which are ob-
servations consistent with the reported ICU FA rates 
ranging between 40% and 90%.5,8

Various attempts have been made to address the 
issue of FAs. Recent algorithms that used machine 
learning techniques and prior information with respect 
to the alarm type have reported significant improve-
ment in FA suppression.17,18,34,35 However in practice it 
has been observed that, although some of the critical 
arrhythmia alarms are true, the condition indicated on 
the monitor may not indicate the true underlying arrhyth-
mia. For instance, in our database, 22.6% of EB alarms 
that require attention correspond to ET. Therefore, it 
is imperative to develop arrhythmia detectors without 
prior knowledge of the alarm type. In this report, we 
present a standalone arrhythmia alerting system that 
identified life- threatening arrhythmias without prior 
knowledge of the arrhythmia type. Several conclusions 
can be drawn from this study: first, a hybrid- CNN ap-
proach performs better than either only CNN or only 
feature- based approaches; second, the proposed 
method can be adapted to use multiple modules such 
as signal- specific noise detectors and arrhythmia de-
tectors; third, our algorithm is flexible to operate on dif-
ferent duration signals and can be extended to other 
arrhythmias with suitable training; fourth, the proposed 
hybrid- CNN algorithm would have suppressed 77.05% 
of the FA generated by an existing monitoring system, 
without prior knowledge of the underlying alarm, which 

Table 6. Performance of Only CNN Classifier on an Independent Validation Data Set From the PhysioNet 2015 Challenge

Aystole EB ET VF VT SR Sensitivity (%)

Aystole 28 0 0 0 0 0 100.00

EB 0 184 0 0 0 51 78.30

ET 0 0 675 23 11 409 60.38

VF 0 0 0 18 2 2 81.82

VT 0 0 0 12 100 40 65.79

SR 4 68 64 55 110 5346 94.67

PPV (%) 87.50 73.02 91.34 55.56 11.92 91.42 Accuracy = 88.18%  
Score = 68.96%

CNN indicates convolutional neural network; EB, extreme bradycardia; ET, extreme tachycardia; PPV, positive predictive value; SR, sinus rhythm; VF, 
ventricular fibrillation; and VT, ventricular tachycardia.

Table 7. Performance of Only Feature- Based Classifier on an Independent Validation Data Set from the PhysioNet 2015 
Challenge

Aystole EB ET VF VT SR Sensitivity (%)

Aystole 28 0 0 0 0 0 100.00

EB 0 203 0 0 0 32 86.38

ET 0 0 572 2 149 316 55.05

VF 0 0 0 15 5 2 68.18

VT 0 0 0 18 107 44 63.31

SR 4 62 54 14 130 5418 95.35

PPV (%) 87.50 76.60 91.37 30.61 27.37 93.22 Accuracy = 88.40%  
Score = 72.48

EB indicates extreme bradycardia; ET, extreme tachycardia; PPV, positive predictive value; SR, sinus rhythm; VF, ventricular fibrillation; and VT, ventricular 
tachycardia.
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is superior to any other algorithm8,9,36; fifth, our clas-
sifier generalizes well with an excellent performance 
when validated in an independent data set.

Early attempts in heart rhythm classification have 
extensively analyzed the signal morphology in sin-
gle and multiple channels of ECG signals.4,5 Recent 
algorithms have determined that BP and pho-
toplethysmogram improve the arrhythmia detection 
performance,6– 9 considering, for example, that ar-
rhythmias such as VT and VF are accompanied with 
a drop in BP. Although various algorithms consider 
the information from BP and photoplethysmogram 
signals, features from each physiological signal are 
extracted independently. In contrast, our proposed 
solution fuses the information from multiple physio-
logical signals through convolution filters and learns 
suitable features to achieve the desired classifica-
tion goals. In addition, we also augment the learned 
features with handcrafted features to fully exploit the 
benefits of feature engineering and feature learning. 
Further, the proposed algorithm is flexible and effec-
tive when independently validated using PhysioNet 
2015 challenge data, even when 2 ECG channels are 
missing. For 5 life- threatening arrhythmias (asystole, 
ET, EB, VT, and VF) recorded from the bedside mon-
itors, the monitor- based average PPV (based on cli-
nician’s annotations) was 25.29%, resulting in 74.71% 
of false alarms. Using the same data, the proposed 
method achieved an average PPV of 82.9% result-
ing in 17.1% of false alarms. In practice, our proposal 
would have suppressed 77.05% of the false alarms 
generated by an existing monitoring system. Further, 
the proposed method facilitates real- time operation 
by raising an alarm as soon as the arrhythmia criteria 
are met.

AF is the most frequent arrhythmia in the ICU 
across all populations, with an incidence ranging 
from 47.4% to 61%.37 Although the majority of ICU 
physiologic monitors (ie, the GE EK- Pro), are capa-
ble of detecting and alarming when AF is present (al-
beit they do not include classification of atrial flutter 
or atrioventricular block), the AF alarm is often kept 
inaudible, because AF is considered a non- critical 
alarm. However, because of the high incidence of AF 
in the ICU and its impact on electrocardiographic fea-
tures, it is imperative to include AF within an arrhyth-
mia detection algorithm.

With the ever- increasing use of wearable and 
mobile- based devices for ambulatory patient mon-
itoring, multiple physiological signals including ECG, 
BP, and photoplethysmogram can be monitored 
from the comfort of the home, thus providing abun-
dant information for the accurate detection of ab-
normal heart rhythms such as those described in 
this study.

CONCLUSIONS
In this study, we proposed a method for detect-
ing critical arrhythmias encountered in ICUs using 
a hybrid- CNN based approach. In particular, we 
sought to accurately identify different life- threatening 
arrhythmias and reduce the burden of FA fatigue. In 
the process, we developed a generalizable hybrid- 
CNN architecture that fuses the hand- picked fea-
tures with those learned by the CNN. Although only 
CNN based classifiers learn suitable features from 
the data to optimize the classification performance, 
CNNs augmented by hand engineered features that 
characterize various arrhythmic conditions resulted in 
improved overall arrhythmia detection accuracy. The 
hybrid approach gave superior performance to both 
traditional handcrafted feature- based methods and 
CNN based methods. While the proposed method 
is developed to process 4 and 8  seconds of data, 
the method remains generic to a variable process-
ing window duration. Further, our method also retains 
the flexibility of including new arrhythmia detectors 
and novel handcrafted arrhythmia specific features, 
if needed, by simply reconfiguring and training the 
hybrid- CNN modules appropriately.

Study Limitations
ICUs encompass patient groups with diverse medi-
cal conditions and a wide variety of abnormal heart 
rhythms and generated alarms. Ideally all monitor 
alarms should be considered for analysis, however, 
because of the resource- intensive nature of the man-
ual data annotations, this study was confined to the 
presented critical alarms. In addition, similarly to other 
studies, because of the limited available labeled data, 
the trained models are prone to overfit to the training 
data. To this end, we have used early stopping of clas-
sifier training based on the validation accuracy and, 
evaluated the model’s generalizability on an external 
database. In summary, while the proposed method is 
developed to suppress only false critical alarms, the 
framework remains generic and can be extended 
to other conditions via suitable training and network 
modifications.
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SUPPLEMENTAL MATERIAL 

 



 
 

Data S1 

 

Feature Extraction  

We extracted hand crafted features from the electrocardiogram (ECG), blood pressure 

(BP), and photoplethysmogram (PPG) signals to be used in the noise, tier-1, tier-2 and tier-3 

classifiers. The majority of these features have been used in a recent study aiming to reducing 

false ICU alarms with prior knowledge of the alarm type12.  

In addition to those features, we considered arrhythmia specific features based on the 

heart rate (HR) as well as a set of features related to atrial fibrillation (AF) based on heart beat 

intervals and P-wave morphology. List of all the features used in the present work are described 

below. 

 

Electrocardiographic Features 

Periodicity Measure ECG signals generally follow a periodic rhythm in normal cases and in 

most arrhythmic cases except asystole and ventricular fibrillation (VF). One of the strongest 

markers of good signal quality for ECG is the degree of periodicity. Once R peaks are identified 

we obtain all peak-to-peak time periods and put them in an array 𝐼 = [𝐼1, 𝐼2, … 𝐼𝑛]. For highly 

periodic signals the standard deviation would be small for this array of time periods. We calculate 

the periodicity measure by equation (1):  

 

𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐𝑖𝑡𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  1 − 𝑠𝐼/𝐼 ̅                                  (1) 

 

where, 𝑠𝐼 is the standard deviation of the array 𝐼 and 𝐼 ̅is the mean value of the array 𝐼.  Periodicity 

measure is close to zero for highly aperiodic signal and close to unity for highly periodic signals. 

Sharpness Measure A good quality ECG has sharp QRS complexes except in the cases of 

VF and VT. We quantify the sharpness, Si, of the ith QRS complex by measuring the minimum 

absolute slope around the QRS complex. We calculate the sharpness for each QRS within the 

window of analysis and put it in an array 𝑆 = [𝑆1, 𝑆2, … , 𝑆𝑛]. The sharpness measure for an ECG 

signal within a window of analysis is given by equation (2): 



 
 

 

 𝑆ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = (
2

𝜋
) ∗ tan−1(𝑆̅)                        (2) 

 

where, 𝑆̅ is the mean of the array 𝑆. Sharpness measure can take values between 0 and 1. An 

ECG signal with highly sharp QRS complexes has values close to 1.  

Correlation Measure As a QRS complex is a repeating pattern in the ECG, it generally has 

a high beat-to-beat correlation. We calculate the correlation between n successive QRS complex 

detection and store them in an array 𝐶 = [𝐶1, 𝐶2, … , 𝐶𝑛−1]. Correlation measure is given by 

equation (3): 

 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (𝐶̅) =
1

𝑛−1
∑ 𝐶𝑖

𝑖=𝑛−1
𝑖=1                                        (3) 

 

Correlation measure can take a value between 0 and 1. If two QRS complexes are identical then 

correlation measure is 1, while it is low for QRS complexes with different morphologies.  

Peak Height Stability Measure Stable peak heights would often indicate high signal 

quality. Therefore, we invented the peak height stability measure. Each peak height is found by 

subtracting the amplitude of the ECG signal at the R peak detection by the mean amplitude of 

the ECG signal. All the peak heights within the window of analysis are stored in an array 𝛿𝑃 =

[𝛿𝑃1, 𝛿𝑃2, … , 𝛿𝑃𝑛]. We find the peak height stability measure by equation (4):  

 

𝑃𝑒𝑎𝑘 ℎ𝑒𝑖𝑔ℎ𝑡 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  1 − 𝑠𝛿𝑃/𝛿𝑃̅̅̅̅                                 (4) 

 

where, 𝑠𝛿𝑃 is the standard deviation of 𝛿𝑃 and 𝛿𝑃̅̅̅̅  is the mean of the array 𝛿𝑃.  

Complexity Measure Complexity measure is derived from the viewpoint of dynamical 

systems. The complexity measure was calculated by comparison and accumulation operations 

from a string of zeros and ones, which is a reconstruction of the original ECG data for a specific 

window length and an appropriate threshold. This complexity measure has been shown to 

effectively detect sinus rhythm, VT and VF. 



 
 

 Dominant Frequency Dominant frequency is the frequency at which the power spectrum 

has its highest power.18 For VF, the dominant frequency should be in the range of 2.5-8Hz.  

Maximum Power to Total Power Ratio We hypothesized that during VF the ECG would 

have most of its power in a single frequency. Therefore, we invented this feature which is the 

maximum power to total power ratio in the frequency domain to examine how concentrated the 

power is in a single frequency. ECGs during VF would have a higher maximum power to total 

power ratio than normal ECGs. 

Co-dominant Frequencies This refers to the number of significant frequency components 

besides the dominant frequency. These frequency components have minimum peak heights of 

0.2 in the normalized power spectrum.35 This is another measure that describe how concentrated 

the power is at the dominant frequency. 

Low Frequency Power Dominant After applying the method of amplitude envelope, one 

can conclude which frequency power band is the most dominant at a certain point in time. During 

VF, the low frequency power band should be the most dominant as VF resembles a signal of 

frequency 2.5-8Hz.18  Therefore, we invented a binary feature, Low Frequency Power Dominant, 

to indicate whether low frequency power was dominant for 4 seconds continuously for VF 

alarms. 

Bandwidth Here we define the bandwidth of the ECG signal as the difference between 

the last and first frequencies in the normalized power spectrum that exceeds power of 0.5. During 

VF, the bandwidth of the ECG signal would decrease significantly.  

Mean Frequency The frequency spectrum is characterized by its mean frequency which is 

the sum of the product of the spectrum intensity and its respective frequency, divided by the 

total sum of spectrum intensity. This is shown in equation (5): 

 

𝑓𝑚𝑒𝑎𝑛 =
∑ 𝐼∗𝑓

∑ 𝐼
                                          (5) 

 

where, 𝑓 is the frequency and 𝐼 is the spectrum intensity. 

Median frequency The frequency spectrum is also characterized by its median frequency. 

To find the median frequency, one has to calculate the total power of the whole spectrum first. 



 
 

Then, the median frequency is the frequency at which the cumulative power (sum of all the 

power for lower frequencies) first exceeds half of the total power.  

Ratio of maximum power to total power ratio We hypothesized that during VF the ECG 

would have most of its power in a single frequency. Therefore, we invented this feature which is 

the maximum power to total power ratio in the frequency domain to examine how concentrated 

the power is in a single frequency. ECGs during VF would have a higher maximum power to total 

power ratio than normal ECGs. 

Ratio of Maximum power below 12Hz to average between 15Hz and 20Hz Is a frequency 

domain feature estimated by computing the ratio of maximum power below 12Hz to the average 

power between 15Hz and 20Hz. 

Ratio of Maximum power below 12Hz to maximum power above 15Hz Is obtained by 

computing the ratio of maximum power below 12hz to the maximum power above 15Hz. 

Five consecutive ventricular tachycardia beats We created a binary feature that indicated 

whether the ECG signals met the criteria of VT. If a sequence of five consecutive VT beats was 

found and these VT beats all occurred within 2.4 seconds, then this binary feature would be given 

the value of one. Otherwise, this binary feature would be given the value of zero. 

Maximum heartrate over five beats Is the maximum heartrate estimated within a given 

window by considering five consecutive beats. 

Maximum difference between low frequency sub peaks Is a frequency domain feature to 

identify the signature of VT and VT. It is obtained by taking the maximum difference between the 

low frequency sub peaks. 

Not Enough Beats We created this binary feature to indicate whether there are enough 

heartbeats within the window of analysis for calculation of heart rate for classifying tachycardia 

alarms. The number of heartbeats required for calculation of heart rate for tachycardia is 17. 

Heart Rate Heart rate is determined from the R peak detection. For exreme tachycardia, 

the fastest average heart rate from a sequence of 17 consecutive heart beats is extracted from 

the 8 second of the records. For extreme bradycardia, the slowest average heat rate from a 

sequence of 5 consecutive heart beats is extracted from 8 second of the records.  



 
 

Minimum Heart rate Is the minimum heart rate within the given 8 second window 

estimated based on 5 consecutive heart beats.  

Number of beats slower than 40 bpm Is the count of those heartbeats with heart rate 

lower than 40 beats per minute. 

Number of heartbeats is the count of number of heartbeats within the given 8 second 

input data. 

HR criterion of ventricular tachycardia (VT) We created a binary feature that indicated 

whether the HR met the criteria of VT. Specifically, if the HR is greater than 100 beats per minute 

and less than 140 beats per minute, then this binary feature would be set to one. Otherwise, this 

binary feature would be set to zero.  

HR criterion of extreme bradycardia (EB) We created a binary feature that indicated 

whether the HR met the criteria of EB. Specifically, if the minimum HR for five consecutive beats 

is less than 40 beats per minute, then this binary feature would be set to one. Otherwise, this 

binary feature would be set to zero. 

HR criterion of extreme tachycardia (ET) We created a binary feature that indicated 

whether the HR met the criteria of ET. Specifically, if the maximum HR for 17 consecutive beats 

is greater than 140 beats per minute, then this binary feature would be set to one. Otherwise, 

this binary feature would be set to zero.  

P-waveMean: Mean P-wave peak amplitude of detected beats in the 8 s window. 

P-waveStd Standard deviation of the P-wave peak amplitude of detected beats in the 8 s 

window. 

P-waveAreaMean Mean of the P-wave area, between P-wave onset and P-wave offset of 

detected beats in the 8 s window. 

P-waveAreaStd Standard deviation of the P-wave area, between P-wave onset and P-

wave offset of detected beats in the 8 s window. 

PR_Mean Mean of the PR interval duration of detected beats in the 8 s window. 

PR_Std Standard deviation of the PR interval duration of detected beats in the 8 s window. 

 

 



 
 

Blood Pressure and PPG Features 

Decreasing δP During VT, blood pressure and PPG amplitude would often gradually 

decrease. Therefore, the binary feature, decreasing δP, was invented to indicate whether the 

amplitude of the BP signal or PPG signal keep on decreasing. 

No peaks During VF, there should be no onsets of waveforms in BP and PPG signals 

because the heart is not pumping blood. Therefore, we created two binary features, absence of 

peaks, one for the BP signal and another one for the PPG signal, to indicate whether there are 

onsets of waveforms in the BP and PPG signals for VF alarms. 

Maximum period We calculated the maximum gaps between consecutive onsets of 

waveforms in BP and PPG signals respectively and used them as features. 

Maximum Amplitude before Onset This is the largest amplitude before the onset of the 

largest gap between consecutive valleys in the considered BP or PPG signal. 

Maximum Amplitude after Onset This is the largest amplitude after the largest gap 

between consecutive valleys in the considered BP or PPG signal. 

Minimum pressure at largest gap Minimum amplitude value before the occurrence of 

largest gap between consecutive onsets of waveforms is used as a feature. 

PPG Amplitude Decrease This is a binary feature that indicates whether the signal  

amplitude decreases after the onset of the largest gap. 

Periodicity Measure The periods between the onsets of n waveforms were calculated and 

stored in an array 𝐼 = [𝐼1, 𝐼2, … , 𝐼𝑛−1].  For highly periodic signals the standard deviation would 

be small for this array of time periods. The equation used for calculating periodicity measure for 

BP or PPG is the same as that for ECG as illustrated in equation (1).   

δP Stability Measure When the signal quality is high, the value of the maximum amplitude 

minus the minimum amplitude for each waveform would be quite stable during sinus rhythm in 

BP and PPG signals. Such values were calculated for all detected waveforms within the window 

of analysis and stored in an array 𝛿𝑃 = [𝛿𝑃1, 𝛿𝑃2, … , 𝛿𝑃𝑛]. δP Stability Measure was calculated 

using equation (4). 

Correlation Measure High-quality BP and PPG signals are often very regular. Therefore, 

we calculated the cross-correlation coefficients between n consecutive waveforms and put them 



 
 

in an array 𝐶 = [𝐶1, 𝐶2, … , 𝐶𝑛−1]. The correlation measure for the BP or PPG signals within a 

window of analysis is the mean of these cross-correlation coefficients, and it can be obtained 

from equation (6). 

Minimum heart rate Is the heart rate estimated from the corresponding BP and PPG 

signals using five consecutive beats within the given window of 8 seconds. 

Number of beats slower than 40 bpm Is a count of number of beats with heart rate lower 

than 40 beats per minute. 

Maximum heart rate Is the maximum heart rate with in a given window estimated by 

considering 16 consecutive beats. 

Not enough beats to detect extreme tachycardia Is binary feature set to 1 if more than 16 

beats are detected within the given window.  

The specific set of features used in each classifier are listed in the Tables S1-S4. 

 

PhysioNet Data Annotation  

We used the open source training data from the “PhysioNet/Computing in Cardiology 

Challenge 2015: Reducing False Arrhythmia Alarms in the ICU16” as an independent dataset to 

evaluate the proposed algorithm. The database consists of 750 intensive care unit (ICU) records 

with two channels of electrocardiographic (ECG) signals and either one of the arterial blood 

pressure (BP) and photoplethysmogram (PPG) signals, or both.  

Also, the time when the bed side monitor raised an alarm, and the annotation indicating 

whether the alarm is true or false are provided. We first re-annotated the data to identify the 

time instance at which the definition/criteria for the alarm are met. The rhythm of each record 

has been marked based on the consensus of two cardiologists, while remaining blind to each 

other, as well as to the annotations of the database.  We considered 15 s of data (i) in sinus 

rhythm, (ii) prior to false alarms, and (iii) prior to the true alarm time and marked the onset and 

offset times, for each of the five life threatening arrhythmia corresponding to asystole, extreme 

bradycardia, extreme tachycardia, ventricular tachycardia (VT) and ventricular fibrillation (VF). 

Rhythms not belonging to any of the five aforementioned arrhythmias, were deemed 

inconclusive and not included in the analysis (Table 5). We also marked the signal quality for each 



 
 

of the available physiological signals that was used for noise/artefact detection by our algorithm. 

Record-wise annotation details are provided in Table 5, below.  

 

Explainability of Convolutional Neural Networks and Feature Based Classifiers 

The ability to explain the decision of the classification algorithm enhances its significance 

in its clinical deployment. We used the gradient-weighted class activation mapping (grad-CAM) 

technique to explain the decision making process of the convolutional neural network (CNN) 

classifier. In particular, grad-CAM identifies those regions within the input data which result in its 

classification into a specific class, by using CNN layer feature maps and the gradient of a loss 

function with respect to the feature maps.  

Specifically, let’s assume that the output of a convolution layer 𝐿 produces 𝐾 feature 

maps, 𝐴𝑘  ∈ ℝ𝑀×1, with each element indexed by 𝑖. So 𝐴𝑖
𝑘  refers to the activation at location 𝑖 of 

the feature map 𝐴𝑘. Now for a given class 𝑐, a weight vector 𝑊 = [𝑤1, 𝑤2 … 𝑤𝑘], is obtained from 

the mean of the gradient of the score (𝑌𝑐) with respect to the feature map as shown in equation 

(5): 

𝑤𝑘
𝑐 =  ∑

𝜕 𝑌𝑐

𝜕𝐴𝑖
𝑘      (5) 

 

Finally, the weighted combination of all 𝐾 feature maps at layer 𝐿, given by ∑𝑤𝑘𝐴𝑘 

generates the grad-CAM heatmap, which is subsequently normalized and resampled to the 

original signal dimension to depict the regions of interest on the input signal. In Figure S2, we 

visualized the class activation map of the fourth convolutional layer of the Tier-3 classifier. 

Specifically, we plot the first ECG channel with the gray level proportional to the output of grad-

CAM. Some of the important regions (in light grey) for classification correspond to a missing P-

wave and a beat with irregular preceding and following RR intervals. Such features agree with 

the clinical diagnosis of AF.  

To understand the feature based classifier, we used the permutation importance32 

technique to score the importance of each input feature. Specifically, each feature is randomly 

permuted within the original dataset to generate a permuted feature dataset. Now a feature 

weight is computed by taking the difference in the performance of the classifier on the original 



 
 

data and on the permuted feature datasets. Finally, the feature importance score depicting the 

relative importance of each feature is obtained by normalizing the feature weights.  

Feature importance scores for Tier-1, Tier-2 and Tier-3 classifiers are shown in the Figure 

S3A, Figure S3B and Figure S3C respectively. The two most important features for Tier-1 

classification are the median frequency and the ratio of maximum power to total power. Both 

are frequency domain features that characterize the VT and VF signals that are classified in Tier-

1 (Figure S3A).  

Similarly important features for Tier-2 classification are ECG heart rate, ECG number of 

beats at a heart rate slower than 40 beats per minute and not enough ECG beats to detect 

extreme tachycardia. Such features are relevant in clinical practice for detecting extreme 

bradycardia and extreme tachycardia signals that are classified in Tier-2 (Figure S3B).  

In the same vein, important features of Tier-3 classifier are the standard deviation of heart 

rate and P-waveAreaMean, that correlate with AF diagnosis. Indeed the feature importance 

scores are not surprising and most relevant clinical features are driving the classifier decisions, 

thus increasing the confidence in the classifier for practical deployment (Figure S3C). 

To summarize, a CNN based classifier automatically extracts features from the signal to 

optimize the classifier performance. However, such features may not be intuitive to a clinician. 

In contrast, a feature based classifier clearly assigns high score to those features used in clinical 

practice, but may not achieve the highest classification performance. An optimal hybrid CNN 

approach that uses both automated feature learning along with handcrafted features achieves 

improved performance compared to only CNN and only feature based approaches. 

 

 

 

 

 

 

 

 



 
 

Table S1. List of hand-crafted features used in noise classifier.  

 

 

 

EC
G

 
 

Periodicity measure 

Sharpness measure 

Correlation measure 

Peak height stability measure 

maxSignalEnergyBeyond_12Hz 
 

B
P

 
 

Periodicity measure 

δP Stability measure 

Correlation measure 

 

P
P

G
 

 

Periodicity measure 

δP Stability measure 

Correlation measure 

 

 

Features are extracted from 4 s of data from each channel of ECG, BP and PPG waveforms. 

  



 
 

Table S2. List of hand-crafted features used in tier-1 classifier.  

 
 

EC
G

 
 

Heart rate criterion of ventricular tachycardia 

Heart rate 

Complexity measure 

Bandwidth 

Dominant frequency 

Mean frequency 

Median frequency 

Maximum amplitude 

Maximum power to total power ratio 

Co-dominant frequencies above 0.2  

Co-dominant frequencies above 0.5  

Low frequency power dominant 

Ratio of Maximum power to total power  

Ratio of Maximum power below 12Hz to average between 15Hz and 20Hz 

Ratio of Maximum power below 12Hz to maximum power above 15Hz. 

Five consecutive ventricular tachycardia beats 

Sharpness measure 

Correlation measure 

Maximum heartrate over  five beats 

Maximum difference between low frequency sub peaks 

 

B
P

 
 

No peaks  

Decreasing δP 

 

P
P

G
 

 

Decreasing δP 

 

Features are extracted from 4 s of data from each channel of ECG, BP and PPG waveforms. 

  



 
 

Table S3. List of hand-crafted features used in tier-2 classifier.  

 

 

 

EC
G

 
 

Heart rate 

Heart rate criterion of extreme bradycardia 

Heart rate criterion of extreme tachycardia 

Minimum Heart rate  

Number of beats slower than 40 bpm 

Periodicity measure 

Sharpness measure 

Correlation measure 

Peak height stability measure 

Maximum heart rate 

Not enough beats to detect extreme tachycardia  

Number of heartbeats 

 

B
P

 
 

Maximum period 

Maximum amplitude before onset 

Maximum amplitude  after onset 

Minimum pressure at largest gap 

Amplitude decrease 

Periodicity measure 

δP Stability measure 

Correlation measure 

Minimum heart rate 

Number of beats slower than 40 bpm 

Maximum heart rate 

Not enough beats to detect extreme tachycardia  

 

P
P

G
 

 

Maximum period 

Maximum amplitude before onset 

Maximum amplitude  after onset 

Amplitude decrease 



 
 

Periodicity measure 

δP Stability measure 

Correlation measure 

Minimum heart rate 

Number of beats slower than 40 bpm 

Maximum heart rate 

Not enough beats to detect extreme tachycardia  

 

 

Features are extracted from 8 s of data from each channel of ECG, BP and PPG waveforms. 

  



 
 

Table S4. List of hand-crafted features used in tier-3 classifier.  

 

 

EC
G

 
 

Mean heart rate 

Standard deviation of heart rate 

P-waveMean 

P-waveStd 

P-waveAreaMean 

P-waveAreaStd 

PR_Mean 

PR_Std 

 

 

Features are extracted from 8 s of data from each channel of ECG, BP and PPG waveforms. 

  



 
 

Table S5. Sensitivity, positive predictive value (PPV) and accuracy for each rhythm following 5-

times 5-fold cross-validation using only CNN and only feature based classifiers.  

 

 

 

 

AS: asystole; EB: extreme bradycardia; ET: extreme tachycardia; VF: ventricular fibrillation; VT: 

ventricular tachycardia; AF: atrial fibrillation; SR: sinus rhythm. 

 

 

 

 

 

 

 

 

 

  

Rhythm 

Only-CNN Only features 

Sensitivity 

(%) 
PPV (%) 

 

Accuracy (%) 

Sensitivity 

(%) 
PPV (%) 

 

Accuracy (%) 

AS 100.00+0.00 61.58+0.00 99.42+0.00 100.00+0.00 61.58+0.00 99.42+0.00 

EB 95.41+1.65 79.7+5.4 98.17+0.53 99.7+0.30 79.58+3.48 98.38+0.31 

ET 77.63+4.30 74.12+6.53 96.77+0.65 91.99+3.06 92.71+1.94 98.99+0.17 

VF 82.05+6.94 84.46+17.3 99.38+0.4 66.04+2.67 66.15+2.56 98.89+0.06 

VT 97.36+0.56 88.15+2.9 97.39+0.55 96.41+0.80 93.10+1.72 98.21+0.24 

AF 89.99+1.13 71.08+1.85 86.36+1.04 93.63+1.93 68.11+2.80 88.23+1.02 

SR 79.59+1.04 85.91+2.08 84.89+0.99 72.02+4.01 97.08+2.08 86.49+1.25 



 
 

Table S6. Record-wise annotation for “PhysioNet/Computing in Cardiology Challenge 2015: 

Reducing False Arrhythmia Alarms in the ICU” training data.  

 

Record Signal Quality Rhythm True 

alarm 

time (s) 

Arrhythmia 

ECG1 ECG2 ABP PPG Onset 

(s)  

Offset 

(s) 

a103l Bad Bad 
 

Good Noise/artifacts 300 
  

a104s Bad Bad 
 

Good Noise/artifacts 300 
  

a105l Bad Bad 
 

Good Noise/artifacts 300 
  

a109l Good Good Good 
 

Paced 300 
  

a123l Bad Bad Bad Bad Noise/artifacts 300 
  

a134s Bad Bad Good Good Noise/artifacts 300 
  

a142s Good Good Bad Bad Asystole 300 295.5 300 

a145l Good Bad 
 

Bad Inconclusive 300 
  

a152s Bad Bad 
 

Good Noise/artifacts 300 
  

a161l Good Good 
 

Good Asystole 299 294.3 299 

a163l Good Good 
 

Good Normal Sinus Rhythm 300 
  

a165l Good Good 
 

Good Normal Sinus Rhythm 300 
  

a167l Good Good Bad Bad Paced 298 
  

a170s Bad Bad Bad Bad Noise/artifacts 300 
  

a171l Good Good Good Bad Normal Sinus Rhythm 300 
  

a172s Good Good Bad Bad Paced 294 
  

a178s Bad Bad Good Good Noise/artifacts 300 
  

a185l Good Good 
 

Bad Asystole 299.5 295.1 299.5 

a186s Good Bad 
 

Bad Paced 300 
  

a203l Good Good 
 

Bad Asystole 293 288.3 293 

a219l Good Bad 
 

Bad PVCs 300 
  

a223l Bad Good Good Good Bundle branch block 300 
  



 
 

a225l Bad Good Good Good Bundle branch block 300 
  

a226s Bad Good Good Good Bundle branch block 300 
  

a239l Good Good 
 

Good Normal Sinus Rhythm 300 
  

a266s Bad Bad 
 

Bad Noise/artifacts 300 
  

a267l Bad Bad 
 

Good Noise/artifacts 300 
  

a272s Good Good Good Good Normal Sinus Rhythm 300 
  

a273l Good Bad Good Good Normal Sinus Rhythm 300 
  

a278s Good Good 
 

Good Normal Sinus Rhythm 300 
  

a279l Bad Bad 
 

Good Noise/artifacts 300 
  

a287l Good Bad Good 
 

Normal Sinus Rhythm 300 
  

a288s Good Bad Good 
 

Normal Sinus Rhythm 300 
  

a297l Bad Bad Good Good Noise/artifacts 300 
  

a301l Good Good 
 

Good Normal Sinus Rhythm 300 
  

a302s Good Good 
 

Good Normal Sinus Rhythm 300 
  

a306s Bad Bad 
 

Good Noise/artifacts 300 
  

a310s Good Good Good Good Bundle branch block 300 
  

a311l Good Good Good Good Bundle branch block 300 
  

a315l Good Good 
 

Good Bundle branch block 300 287.2 300 

a345l Good Good Bad Bad Extreme bradycardia 296 281 296 

a363l Bad Bad Good Good Noise/artifacts 300 
  

a372s Good Good 
 

Bad Asystole 299 294.9 299 

a376s Bad Bad 
 

Bad Noise/artifacts 300 
  

a377l Bad Bad 
 

Good Noise/artifacts 300 
  

a378s Bad Bad 
 

Bad Noise/artifacts 300 
  

a382s Bad Bad Bad Good Inconclusive 300 
  

a385l Good Good 
 

Bad Cardiopulmonary 

resuscitation 

15 
  

a386s Bad Bad 
 

Bad Inconclusive 300 
  



 
 

a391l Bad Bad 
 

Bad Noise/artifacts 300 
  

a396s Bad Bad 
 

Good Noise/artifacts 300 
  

a397l Good Good 
 

Good Normal Sinus Rhythm 300 
  

a420s Good Good 
 

Good PVCs 300 
  

a422s Good Good 
 

Good Bundle branch block 300 
  

a429l Good Good Good 
 

Paced 300 
  

a435l Bad Bad 
 

Bad Noise/artifacts 300 
  

a436s Bad Bad 
 

Good Noise/artifacts 300 
  

a439l Bad Bad 
 

Good Noise/artifacts 300 
  

a442s Good Good 
 

Bad Asystole 291 287 291 

a443l Good Good 
 

Bad Paced 300 
  

a446s Good Good 
 

Bad Asystole 295.5 291.2 295.5 

a449l Good Good 
 

Bad Asystole 300 295.2 300 

a457l Bad Bad 
 

Good Noise/artifacts 300 
  

a461l Bad Bad Good Bad Inconclusive 300 
  

a462s Bad Bad Good Good Noise/artifacts 300 
  

a465l Bad Bad Good Good Noise/artifacts 300 
  

a490s Bad Bad Good Bad Noise/artifacts 300 
  

a512s Good Bad 
 

Good Bundle branch block 300 
  

a514s Bad Bad 
 

Bad Bundle branch block 300 
  

a526s Bad Bad Good Good Noise/artifacts 300 
  

a527l Bad Bad Good Bad Noise/artifacts 300 
  

a539l Incon

clusiv

e 

Incon

clusiv

e 

Bad Bad Inconclusive 300 
  

a550s Bad Bad 
 

Good Noise/artifacts 300 
  

a555l Good Good Good Good Normal Sinus Rhythm 300 
  

a555l Good Good Good Good Normal Sinus Rhythm 135 
  



 
 

a555l Good Good Good Good Normal Sinus Rhythm 120 
  

a555l Good Good Good Good Normal Sinus Rhythm 150 
  

a555l Good Good Good Good Normal Sinus Rhythm 165 
  

a555l Good Good Good Good Normal Sinus Rhythm 180 
  

a555l Good Good Good Good Normal Sinus Rhythm 195 
  

a555l Good Good Good Good Normal Sinus Rhythm 90 
  

a555l Good Good Good Good Normal Sinus Rhythm 105 
  

a555l Good Good Good Good Normal Sinus Rhythm 210 
  

a555l Good Good Good Good Normal Sinus Rhythm 255 
  

a555l Good Good Good Good Normal Sinus Rhythm 285 
  

a555l Good Good Good Good Normal Sinus Rhythm 225 
  

a555l Good Good Good Good Normal Sinus Rhythm 240 
  

a555l Good Good Good Good Normal Sinus Rhythm 270 
  

a556s Good Good Good Good Normal Sinus Rhythm 300 
  

a558s Good Good Good Good Normal Sinus Rhythm 300 
  

a582s Bad Bad 
 

Bad Noise/artifacts 300 
  

a584s Good Good Good 
 

Paced 300 
  

a591l Bad Bad 
 

Bad Noise/artifacts 300 
  

a599l Bad Bad 
 

Good Noise/artifacts 300 
  

a603l Good Good 
 

Bad Paced 300 
  

a604s Good Good 
 

Good Asystole 298 293.6 298 

a606s Bad Bad 
 

Bad Noise/artifacts 300 
  

a608s Bad Bad 
 

Good Noise/artifacts 300 
  

a624s Good Bad 
 

Good Normal Sinus Rhythm 300 
  

a631l Good Bad 
 

Good Noise/artifacts 300 
  

a639l Bad Bad Good 
 

Paced 299.5 
  

a645l Bad Bad 
 

Good Noise/artifacts 300 
  

a650s Bad Bad 
 

Good Noise/artifacts 300 
  



 
 

a651l Bad Bad Good Good Inconclusive 300 
  

a653l Good Good Good 
 

Asystole 301 296.6 301 

a653l Good Good Good 
 

Bundle branch block 135 
  

a654s Good Good 
 

Bad Drop beat 300 
  

a661l Bad Bad 
 

Bad Noise/artifacts 300 
  

a667l Bad Bad 
 

Bad Noise/artifacts 300 
  

a668s Bad Bad 
 

Bad Noise/artifacts 300 
  

a670s Good Good Good 
 

Paced 300 
  

a673l Bad Bad 
 

Bad Noise/artifacts 300 
  

a675l Bad Bad Good 
 

Noise/artifacts 300 
  

a694s Good Good 
 

Good Normal Sinus Rhythm 300 
  

a699l Bad Bad 
 

Bad Noise/artifacts 300 
  

a705l Good Bad 
 

Bad Noise/artifacts 300 
  

a712s Bad Bad 
 

Bad Noise/artifacts 300 
  

a715l Good Good Good 
 

Paced 300 
  

a723l Bad Bad Good 
 

Noise/artifacts 300 
  

a735l Bad Bad Bad Good Noise/artifacts 300 
  

a740s Good Bad 
 

Good Normal Sinus Rhythm 300 
  

a746s Bad Good 
 

Good Normal Sinus Rhythm 300 
  

a750s Bad Bad 
 

Bad Noise/artifacts 300 
  

a754s Good Good Good 
 

Paced 300 
  

a776s Bad Bad Good 
 

Paced 299.75 
  

a778s Bad Bad Bad Good Noise/artifacts 300 
  

a780s Bad Good Bad Bad Noise/artifacts 300 
  

a785l Bad Bad 
 

Bad Noise/artifacts 300 
  

a796s Good Good 
 

Bad Asystole 298 293.8 298 

a798s Bad Good 
 

Good Noise/artifacts 300 
  

a802s Good Good 
 

Bad Normal Sinus Rhythm 300 
  



 
 

a807l Good Good Bad 
 

Paced 300 
  

a810s Good Good Good Good VT 300 290 295 

a810s Good Good Good Good Normal Sinus Rhythm 135 
  

a810s Good Good Good Good Normal Sinus Rhythm 15 
  

a810s Good Good Good Good Normal Sinus Rhythm 120 
  

a810s Good Good Good Good Normal Sinus Rhythm 135 
  

a810s Good Good Good Good Normal Sinus Rhythm 30 
  

a810s Good Good Good Good Normal Sinus Rhythm 45 
  

a810s Good Good Good Good Normal Sinus Rhythm 60 
  

a810s Good Good Good Good Normal Sinus Rhythm 75 
  

a810s Good Good Good Good Normal Sinus Rhythm 90 
  

a819l Bad Bad 
 

Good Noise/artifacts 300 
  

a822s Good Good Good 
 

Paced 300 
  

a825l Bad Bad 
 

Good Noise/artifacts 300 
  

a847l Good Good Good 
 

Paced 300 
  

b124s Good Good 
 

Good Extreme bradycardia 299 290 299 

b125l Good Good 
 

Good Normal Sinus Rhythm 299 
  

b126s Good Good 
 

Good Extreme bradycardia 300 291.5 300 

b183l Good Good 
 

Good Extreme bradycardia 300 291.7 300 

b183l Good Good 
 

Good Normal Sinus Rhythm 15 
  

b184s Bad Bad 
 

Good Noise/artifacts 300 
  

b187l Bad Bad 
 

Good Paced 300 
  

b215l Bad Bad Bad Good Noise/artifacts 300 
  

b216s Good Bad Bad Good Noise/artifacts 300 
  

b220s Good Good 
 

Bad Bundle branch block 300 290 300 

b227l Good Good 
 

Good Extreme bradycardia 300 292.5 300 

b228s Good Good 
 

Good Extreme bradycardia 300 292.6 300 

b228s Good Good 
 

Good Normal Sinus Rhythm 15 
  



 
 

b229l Good Good 
 

Good Extreme bradycardia 300 292 300 

b231l Good Bad Bad Good Noise/artifacts 300 
  

b231l Good Good Good Good Normal Sinus Rhythm 135 
  

b231l Good Good Good Good Normal Sinus Rhythm 15 
  

b265l Good Good 
 

Good Extreme bradycardia 300 286 300 

b265l Good Good 
 

Good Normal Sinus Rhythm 15 
  

b268s Good Good Good 
 

Paced 300 
  

b269l Good Good 
 

Bad Extreme bradycardia 300 289.5 300 

b285l Good Good Good 
 

Paced 300 
  

b286s Good Good Good 
 

Paced 300 
  

b299l Good Good 
 

Good Extreme bradycardia 300 285 300 

b308s Bad Bad 
 

Good Noise/artifacts 300 
  

b313l Good Good 
 

Good Normal Sinus Rhythm 300 
  

b313l Good Good 
 

Good Normal Sinus Rhythm 135 
  

b313l Good Good 
 

Good Normal Sinus Rhythm 15 
  

b314s Bad Bad 
 

Bad Noise/artifacts 300 
  

b330s Bad Bad Good Good Noise/artifacts 300 
  

b331l Bad Bad Good Good Noise/artifacts 300 
  

b332s Bad Bad Good Good Noise/artifacts 300 
  

b339l Good Good Bad Good Normal Sinus Rhythm 300 
  

b339l Good Good Good Good Normal Sinus Rhythm 15 
  

b340s Good Good Bad Good Normal Sinus Rhythm 300 
  

b340s Good Good Good Good Normal Sinus Rhythm 135 
  

b340s Good Good Good Good Normal Sinus Rhythm 15 
  

b341l Good Good 
 

Good Normal Sinus Rhythm 300 
  

b341l Good Good 
 

Good Normal Sinus Rhythm 15 
  

b349l Good Good Good 
 

Bundle branch block 300 
  

b349l Good Good Good 
 

Bundle branch block 135 
  



 
 

b349l Good Good Good 
 

Bundle branch block 15 
  

b379l Good Good 
 

Good Paced 300 
  

b387l Good Good Good Bad Normal Sinus Rhythm 300 
  

b388s Good Good Good Good Normal Sinus Rhythm 300 
  

b389l Good Good Bad Good Normal Sinus Rhythm 300 
  

b428s Bad Good 
 

Good Paced 300 
  

b451l Good Bad 
 

Good PACs 300 
  

b455l Good Good Good Good Extreme bradycardia 300 289.7 298.7 

b456s Good Good Good Good Extreme bradycardia 300 290.5 299 

b484s Good Bad Bad Good Normal Sinus Rhythm 300 
  

b485l Good Bad Good Good Noise/artifacts 300 
  

b486s Good Bad Bad Bad Normal Sinus Rhythm 300 
  

b486s Good Good Good Good Normal Sinus Rhythm 15 
  

b487l Good Good 
 

Bad Normal Sinus Rhythm 300 
  

b488s Good Good 
 

Good Normal Sinus Rhythm 300 
  

b494s Good Good Good 
 

Paced 300 
  

b495l Good Good Good 
 

Paced 300 
  

b497l Good Good 
 

Good Paced 300 
  

b515l Good Good Good Good Extreme bradycardia 300 286 298 

b516s Good Good Good Good Extreme bradycardia 300 285 300 

b517l Good Good Good Good Extreme bradycardia 300 286 298 

b528s Bad Bad Bad Good Noise/artifacts 300 
  

b537l Good Good 
 

Good Extreme bradycardia 300 290.4 297.5 

b538s Good Good 
 

Good Extreme bradycardia 300 290.3 300 

b553l Good Good 
 

Bad Paced 300 
  

b554s Good Good 
 

Good Paced 300 
  

b560s Good Good Good Good Extreme bradycardia 300 286.5 300 

b561l Good Good Good Good Extreme bradycardia 300 285 300 



 
 

b562s Good Good Good Good Extreme bradycardia 300 286 300 

b578s Good Good Good 
 

Paced 300 
  

b587l Bad Bad 
 

Bad Noise/artifacts 300 
  

b588s Good Good 
 

Bad Extreme bradycardia 300 293 299.9 

b588s Good Good 
 

Good Normal Sinus Rhythm 135 
  

b588s Good Good 
 

Good Normal Sinus Rhythm 15 
  

b600s Bad Bad Good Good Noise/artifacts 300 
  

b617l Good Good 
 

Bad Bundle branch block 300 
  

b656s Good Good 
 

Good Extreme bradycardia 300 291.2 300 

b659l Good Good Bad Bad Extreme bradycardia 300 289.5 300 

b664s Good Good 
 

Good Extreme bradycardia 300 292.8 300 

b669l Bad Bad 
 

Good Noise/artifacts 300 
  

b672s Good Good 
 

Good Paced 300 
  

b681l Bad Bad Good Good Noise/artifacts 300 
  

b684s Good Good Bad Good Normal Sinus Rhythm 300 
  

b685l Good Good 
 

Good Normal Sinus Rhythm 300 
  

b685l Good Good 
 

Good Normal Sinus Rhythm 15 
  

b695l Bad Bad Good Good Noise/artifacts 300 
  

b703l Good Good 
 

Bad Normal Sinus Rhythm 300 
  

b706s Bad Bad Bad Good Noise/artifacts 300 
  

b708s Good Good Good 
 

Paced 300 
  

b722s Good Good Good 
 

Paced 300 
  

b730s Good Good 
 

Good Normal Sinus Rhythm 300 
  

b734s Good Good 
 

Good Normal Sinus Rhythm 300 
  

b734s Good Good 
 

Good Normal Sinus Rhythm 15 
  

b753l Good Good 
 

Bad Normal Sinus Rhythm 300 
  

b757l Good Good Good 
 

Paced 300 
  

b764s Good Good 
 

Good Extreme bradycardia 300 285 300 



 
 

b794s Good Good 
 

Good Extreme bradycardia 300 291.7 300 

b794s Good Good 
 

Good Normal Sinus Rhythm 135 
  

b794s Good Good 
 

Good Normal Sinus Rhythm 15 
  

b820s Good Good 
 

Good Extreme bradycardia 300 287.4 300 

b824s Good Good Good 
 

Paced 300 
  

b824s Good Good Good 
 

Normal Sinus Rhythm 135 
  

b824s Good Good Good 
 

Normal Sinus Rhythm 195 
  

b824s Good Good Good 
 

Normal Sinus Rhythm 210 
  

b824s Good Good Good 
 

Normal Sinus Rhythm 225 
  

b824s Good Good Good 
 

Normal Sinus Rhythm 240 
  

b824s Good Good Good 
 

Normal Sinus Rhythm 255 
  

b824s Good Good Good 
 

Normal Sinus Rhythm 270 
  

b824s Good Good Good 
 

Normal Sinus Rhythm 285 
  

b824s Good Good Good 
 

Normal Sinus Rhythm 15 
  

b832s Good Bad 
 

Good Noise/artifacts 300 291.3 300 

b835l Bad Bad Good Good Noise/artifacts 300 
  

b838s Good Good 
 

Good Extreme bradycardia 300 292.3 300 

b839l Good Bad 
 

Bad Extreme bradycardia 300 290 300 

b840s Good Good 
 

Bad Normal Sinus Rhythm 300 
  

b841l Good Good Good 
 

Paced 300 
  

b849l Good Bad 
 

Good Normal Sinus Rhythm 300 
  

f120s Good Good Good Good VT 300 289 300 

f121l Good Good Good Good VT 300 291.8 298 

f129l Good Good Good Bad ST elevation 300 
  

f130s Good Good Good Bad ST elevation 300 
  

f137l Good Bad 
 

Good Paced 300 
  

f138s Bad Bad 
 

Bad Paced 300 
  

f144s Bad Good 
 

Bad Normal Sinus Rhythm 300 
  



 
 

f189l Bad Bad 
 

Good Noise/artifacts 300 
  

f190s Good Bad 
 

Bad Paced 300 
  

f196s Good Good Good 
 

PVCs 300 
  

f196s Good Good Good 
 

PVCs 135 
  

f196s Good Good Good 
 

PVCs 15 
  

f196s Good Good Good 
 

PVCs 120 
  

f196s Good Good Good 
 

Normal Sinus Rhythm 30 
  

f196s Good Good Good 
 

Normal Sinus Rhythm 45 
  

f196s Good Good Good 
 

PVCs 60 
  

f196s Good Good Good 
 

PVCs 75 
  

f196s Good Good Good 
 

PVCs 90 
  

f196s Good Good Good 
 

PVCs 105 
  

f236s Good Bad Good 
 

Noise/artifacts 300 
  

f237l Bad Bad Good 
 

Noise/artifacts 300 
  

f260s Bad Bad 
 

Bad Noise/artifacts 300 
  

f261l Bad Bad 
 

Good Noise/artifacts 300 
  

f281l Bad Good 
 

Good Noise/artifacts 300 
  

f304s Good Bad 
 

Good Noise/artifacts 300 
  

f321l Bad Bad 
 

Bad Noise/artifacts 300 
  

f346s Bad Bad Bad Bad Noise/artifacts 300 
  

f352s Good Bad Good Good PVCs 300 
  

f362s Bad Bad Good Bad Noise/artifacts 300 
  

f362s Good Good Good Good Normal Sinus Rhythm 135 
  

f362s Good Good Good Good Normal Sinus Rhythm 15 
  

f362s Good Good Good Good Normal Sinus Rhythm 120 
  

f362s Good Good Good Good Normal Sinus Rhythm 150 
  

f362s Good Good Good Good Normal Sinus Rhythm 165 
  

f362s Good Good Good Good Normal Sinus Rhythm 30 
  



 
 

f362s Good Good Good Good Normal Sinus Rhythm 180 
  

f362s Good Good Good Good Normal Sinus Rhythm 195 
  

f362s Good Good Good Good Normal Sinus Rhythm 45 
  

f362s Good Good Good Good Normal Sinus Rhythm 60 
  

f362s Good Good Good Good Normal Sinus Rhythm 75 
  

f362s Good Good Good Good Normal Sinus Rhythm 90 
  

f362s Good Good Good Good Normal Sinus Rhythm 105 
  

f407l Bad Bad Good Good Noise/artifacts 300 
  

f408s Bad Bad Good Good Noise/artifacts 300 
  

f414s Bad Bad 
 

Bad Noise/artifacts 300 
  

f415l Bad Bad 
 

Bad Noise/artifacts 300 
  

f440s Bad Bad Good 
 

Noise/artifacts 300 
  

f441l Bad Bad Good 
 

Noise/artifacts 300 
  

f450s Good Good 
 

Bad VF 294 289.3 294 

f474s Bad Bad 
 

Bad Noise/artifacts 300 
  

f493l Good Good Good 
 

Paced 300 
  

f499l Good Good 
 

Good VT 300 291.8 300 

f500s Good Bad Good Good Noise/artifacts 300 
  

f529l Bad Bad Bad Good Noise/artifacts 300 
  

f530s Bad Bad Bad 
 

Noise/artifacts 300 
  

f543l Good Good Bad Bad VF 214 207.8 214 

f544s Good Good Good Bad VF 298 293.9 298 

f544s Good Good Good Good Normal Sinus Rhythm 135 
  

f544s Good Good Good Good Normal Sinus Rhythm 15 
  

f545l Good Good Bad Bad VF 27 21.9 27 

f563l Good Good Good Bad VF 296 290 296 

f572s Bad Bad Good 
 

Noise/artifacts 300 
  

f576s Bad Bad Good 
 

Noise/artifacts 300 
  



 
 

f586s Bad Good 
 

Good Noise/artifacts 300 
  

f592s Good Good Good 
 

Bundle branch block 300 
  

f593l Bad Good 
 

Good Normal Sinus Rhythm 300 
  

f602s Bad Bad 
 

Bad Noise/artifacts 300 
  

f605l Good Good 
 

Good Bundle branch block 300 
  

f605l Good Good 
 

Good Bundle branch block 15 
  

f610s Bad Bad 
 

Bad Noise/artifacts 300 
  

f613l Good Bad 
 

Bad Noise/artifacts 300 
  

f618s Good Bad 
 

Good Normal Sinus Rhythm 300 
  

f637l Good Bad 
 

Good Normal Sinus Rhythm 300 
  

f642s Good Bad 
 

Good Noise/artifacts 300 
  

f657l Bad Bad Bad Good Noise/artifacts 300 
  

f691l Bad Bad 
 

Bad Noise/artifacts 300 
  

f697l Good Good Good Good VF 92 87.5 92 

f751l Bad Good Good 
 

PVCs 300 
  

f768s Bad Bad 
 

Bad Noise/artifacts 300 
  

f768s Good Good 
 

Good PVCs 210 
  

f768s Good Good 
 

Good PVCs 45 
  

f789l Good Bad 
 

Good Noise/artifacts 300 
  

f792s Bad Bad 
 

Bad Noise/artifacts 300 
  

f799l Bad Bad 
 

Bad Noise/artifacts 300 
  

f829l Bad Good 
 

Bad Inconclusive 300 
  

t106s Good Good 
 

Bad Extreme Tachycardia 300 290.8 300 

t107l Good Good 
 

Good Extreme Tachycardia 300 285.5 300 

t108s Good Good 
 

Bad Extreme Tachycardia 300 292.4 300 

t110s Good Good Good 
 

Extreme Tachycardia 300 285 300 

t112s Bad Good 
 

Bad Extreme Tachycardia 300 285 300 

t114s Good Bad 
 

Bad Extreme Tachycardia 300 285.5 300 



 
 

t116s Bad Bad Good 
 

Noise/artifacts 300 
  

t117l Good Good 
 

Bad Extreme Tachycardia 300 285 300 

t118s Good Good 
 

Bad Extreme Tachycardia 300 290.5 300 

t149l Good Good 
 

Good Extreme Tachycardia 300 285 300 

t150s Good Good 
 

Bad Extreme Tachycardia 300 286.5 300 

t151l Good Good 
 

Bad Extreme Tachycardia 300 287 300 

t156s Good Good 
 

Bad Extreme Tachycardia 299 291 299 

t157l Good Good 
 

Good Normal Sinus Rhythm 300 
  

t157l Good Good 
 

Good Normal Sinus Rhythm 135 
  

t157l Good Good 
 

Good Normal Sinus Rhythm 15 
  

t173l Good Good Good Good Extreme Tachycardia 300 285 300 

t173l Good Good Good Good Normal Sinus Rhythm 135 
  

t173l Good Good Good Good Normal Sinus Rhythm 120 
  

t173l Good Good Good Good Normal Sinus Rhythm 135 
  

t173l Good Good Good Good Normal Sinus Rhythm 150 
  

t173l Good Good Good Good Normal Sinus Rhythm 165 
  

t173l Good Good Good Good Normal Sinus Rhythm 30 
  

t173l Good Good Good Good Normal Sinus Rhythm 210 
  

t173l Good Good Good Good Normal Sinus Rhythm 255 
  

t173l Good Good Good Good Normal Sinus Rhythm 45 
  

t173l Good Good Good Good Normal Sinus Rhythm 60 
  

t173l Good Good Good Good Normal Sinus Rhythm 75 
  

t173l Good Good Good Good Normal Sinus Rhythm 90 
  

t173l Good Good Good Good Normal Sinus Rhythm 105 
  

t173l Good Good Good Good Normal Sinus Rhythm 15 
  

t174s Good Good Good Good Extreme Tachycardia 300 285 300 

t175l Good Good Good Good Extreme Tachycardia 300 285 300 

t191l Good Good 
 

Good Extreme Tachycardia 300 292 300 



 
 

t191l Good Good 
 

Good Normal Sinus Rhythm 180 
  

t191l Good Good 
 

Good Normal Sinus Rhythm 195 
  

t191l Good Good 
 

Good Normal Sinus Rhythm 210 
  

t191l Good Good 
 

Good Normal Sinus Rhythm 225 
  

t191l Good Good 
 

Good Normal Sinus Rhythm 240 
  

t191l Bad Good 
 

Good Noise/artifacts 255 
  

t191l Good Good 
 

Good Normal Sinus Rhythm 270 
  

t191l Good Good 
 

Good Normal Sinus Rhythm 285 
  

t192s Good Good 
 

Good Normal Sinus Rhythm 299.5 
  

t193l Good Good 
 

Good Extreme Tachycardia 300 293 300 

t195l Good Good 
 

Good PVCs 300 
  

t208s Bad Good Good 
 

Extreme Tachycardia 299.5 292 299.5 

t209l Good Good Good 
 

Normal Sinus Rhythm 299.5 
  

t213l Good Good Good Good Extreme Tachycardia 300 289 300 

t214s Good Good Good Good Extreme Tachycardia 300 290 300 

t214s Good Good Good Good Normal Sinus Rhythm 135 
  

t214s Good Good Good Good Normal Sinus Rhythm 15 
  

t214s Good Good Good Good Extreme Tachycardia 120 110 120 

t214s Good Good Good Good Extreme Tachycardia 150 135.8 145.6 

t214s Good Good Good Good PVCs 165 
  

t214s Good Good Good Good Normal Sinus Rhythm 30 
  

t214s Good Good Good Good Normal Sinus Rhythm 180 
  

t214s Good Good Good Good Normal Sinus Rhythm 45 
  

t214s Good Good Good Good Normal Sinus Rhythm 60 
  

t214s Good Good Good Good Normal Sinus Rhythm 75 
  

t214s Good Good Good Good Normal Sinus Rhythm 90 
  

t214s Good Good Good Good Extreme Tachycardia 105 90.9 99.33 

t234s Good Good 
 

Good Extreme Tachycardia 300 290.5 300 



 
 

t234s Good Good 
 

Good Normal Sinus Rhythm 135 
  

t234s Good Good 
 

Good Normal Sinus Rhythm 30 
  

t234s Good Good 
 

Good Normal Sinus Rhythm 45 
  

t234s Good Good 
 

Good Normal Sinus Rhythm 60 
  

t234s Good Good 
 

Good Normal Sinus Rhythm 75 
  

t234s Good Good 
 

Good Normal Sinus Rhythm 15 
  

t235l Good Good 
 

Good Extreme Tachycardia 300 292 300 

t235l Good Good 
 

Good Normal Sinus Rhythm 135 
  

t235l Good Good 
 

Good Normal Sinus Rhythm 30 
  

t235l Good Good 
 

Good Normal Sinus Rhythm 45 
  

t235l Good Good 
 

Good Normal Sinus Rhythm 60 
  

t235l Good Good 
 

Good Normal Sinus Rhythm 75 
  

t238s Good Good 
 

Good Extreme Tachycardia 300 290.5 300 

t240s Good Good 
 

Good Extreme Tachycardia 299 291 300 

t240s Good Good 
 

Good Normal Sinus Rhythm 135 
  

t240s Good Good 
 

Good Normal Sinus Rhythm 30 
  

t240s Good Good 
 

Good Normal Sinus Rhythm 45 
  

t240s Good Good 
 

Good Normal Sinus Rhythm 60 
  

t240s Good Good 
 

Good Normal Sinus Rhythm 75 
  

t240s Good Good 
 

Good Normal Sinus Rhythm 90 
  

t240s Good Good 
 

Good Normal Sinus Rhythm 15 
  

t249l Good Good Good Good Extreme Tachycardia 300 290 300 

t251l Good Good Good Good Extreme Tachycardia 300 291.5 300 

t252s Good Good Good Good Extreme Tachycardia 300 285.5 300 

t263l Bad Bad 
 

Bad Noise/artifacts 300 
  

t264s Good Good 
 

Good Extreme Tachycardia 300 292 300 

t270s Good Good 
 

Good Extreme Tachycardia 300 292.7 300 

t276s Good Good Good 
 

Extreme Tachycardia 300 292 300 



 
 

t277l Good Good Good 
 

Extreme Tachycardia 300 291.5 300 

t277l Good Good Good 
 

Normal Sinus Rhythm 135 
  

t277l Good Good Good 
 

Extreme Tachycardia 30 18.6 26 

t277l Good Good Good 
 

Normal Sinus Rhythm 45 
  

t277l Good Good Good 
 

Normal Sinus Rhythm 60 
  

t277l Good Good Good 
 

Normal Sinus Rhythm 75 
  

t277l Good Good Good 
 

Normal Sinus Rhythm 90 
  

t277l Good Good Good 
 

Normal Sinus Rhythm 15 
  

t284s Good Good Bad 
 

Extreme Tachycardia 300 291 300 

t300s Good Good 
 

Bad Extreme Tachycardia 300 287.8 300 

t305l Good Good Bad 
 

Extreme Tachycardia 300 291.2 300 

t320s Bad Good 
 

Bad PVCs 300 
  

t333l Good Good Good 
 

Extreme Tachycardia 300 292.5 300 

t333l Good Good Good 
 

Normal Sinus Rhythm 135 292 299 

t335l Good Good Good 
 

Extreme Tachycardia 300 292.1 299.5 

t342s Good Good 
 

Good Extreme Tachycardia 300 290.2 300 

t342s Good Good 
 

Good Extreme Tachycardia 135 120.5 129.7 

t343l Good Good 
 

Bad Extreme Tachycardia 300 292.3 300 

t344s Good Good 
 

Good Extreme Tachycardia 300 289.7 300 

t350s Good Good 
 

Good Extreme Tachycardia 300 292 300 

t351l Good Good 
 

Good Extreme Tachycardia 300 292 300 

t356s Good Good 
 

Good Extreme Tachycardia 300 292.5 300 

t357l Good Good 
 

Good Normal Sinus Rhythm 300 
  

t358s Good Good 
 

Bad Extreme Tachycardia 300 289 300 

t383l Good Good Good 
 

Paced 300 
  

t383l Good Good Good 
 

Normal Sinus Rhythm 135 
  

t383l Good Good Good 
 

Normal Sinus Rhythm 15 
  

t384s Good Good Good 
 

Paced 300 
  



 
 

t393l Good Good 
 

Bad Extreme Tachycardia 300 285 300 

t394s Good Good 
 

Good Extreme Tachycardia 300 285 300 

t406s Good Good Good Good Extreme Tachycardia 300 285.5 300 

t409l Bad Bad Good Good Inconclusive 300 
  

t410s Good Good 
 

Bad Extreme Tachycardia 300 285 300 

t411l Good Good 
 

Bad Extreme Tachycardia 300 285 300 

t412s Good Good Good 
 

Extreme Tachycardia 300 290 298.5 

t413l Good Good Good 
 

Extreme Tachycardia 300 288.2 300 

t416s Good Good 
 

Good Normal Sinus Rhythm 300 
  

t417l Good Good Good 
 

Extreme Tachycardia 300 292 300 

t417l Good Good Good 
 

Normal Sinus Rhythm 135 
  

t417l Good Good Good 
 

Normal Sinus Rhythm 15 
  

t418s Good Good Good 
 

Normal Sinus Rhythm 300 
  

t418s Good Good Good 
 

Normal Sinus Rhythm 135 
  

t424s Good Good Good 
 

Normal Sinus Rhythm 300 
  

t425l Good Good Bad 
 

Normal Sinus Rhythm 300 
  

t430s Good Good 
 

Bad Extreme Tachycardia 300 285 300 

t434s Good Good 
 

Good Extreme Tachycardia 300 285 300 

t444s Good Good 
 

Good Extreme Tachycardia 294 285 294 

t445l Good Good 
 

Bad Extreme Tachycardia 296 285 296 

t447l Good Good 
 

Good Extreme Tachycardia 298 285 298 

t458s Good Good 
 

Good Extreme Tachycardia 298 289 298 

t467l Good Bad 
 

Bad Noise/artifacts 300 
  

t468s Good Good 
 

Good Extreme Tachycardia 300 291.4 300 

t469l Good Good 
 

Good Normal Sinus Rhythm 300 
  

t469l Good Good 
 

Good Normal Sinus Rhythm 135 
  

t477l Good Good 
 

Bad PVCs 300 
  

t478s Good Good 
 

Good Normal Sinus Rhythm 300 
  



 
 

t478s Good Good 
 

Good Normal Sinus Rhythm 135 
  

t478s Good Good 
 

Good Normal Sinus Rhythm 15 
  

t496s Good Good Good 
 

Paced 300 
  

t503l Bad Bad 
 

Bad Noise/artifacts 300 
  

t504s Bad Bad 
 

Bad Noise/artifacts 300 
  

t506s Good Bad 
 

Bad Noise/artifacts 300 291.7 300 

t507l Good Bad 
 

Bad Normal Sinus Rhythm 292 
  

t508s Good Good 
 

Bad Extreme Tachycardia 300 290 300 

t509l Good Good 
 

Good Extreme Tachycardia 300 291.5 300 

t520s Bad Bad 
 

Bad Noise/artifacts 300 
  

t521l Good Good 
 

Bad Bundle branch block 300 285 300 

t524s Good Good 
 

Bad PVCs 300 285 300 

t546s Bad Good 
 

Good Noise/artifacts 300 285 300 

t547l Bad Good 
 

Good Extreme Tachycardia 300 285 300 

t565l Good Good 
 

Good Extreme Tachycardia 300 290.9 300 

t565l Good Good 
 

Good Normal Sinus Rhythm 135 
  

t565l Good Good 
 

Good Normal Sinus Rhythm 15 
  

t567l Good Good 
 

Good Extreme Tachycardia 300 290.5 300 

t577l Good Good 
 

Good Extreme Tachycardia 300 291.7 300 

t577l Good Good 
 

Good Normal Sinus Rhythm 15 
  

t580s Bad Good 
 

Bad PVCs 300 
  

t589l Good Good 
 

Good PVCs 300 285 300 

t594s Good Good Good 
 

Extreme Tachycardia 300 292.9 300 

t594s Good Good Good 
 

Normal Sinus Rhythm 135 
  

t595l Bad Good 
 

Bad Extreme Tachycardia 300 292.6 300 

t614s Good Good 
 

Good Normal Sinus Rhythm 300 
  

t622s Good Good 
 

Bad Extreme Tachycardia 300 291.2 300 

t662s Good Good 
 

Good Extreme Tachycardia 300 287.6 300 



 
 

t662s Good Good 
 

Good Normal Sinus Rhythm 135 
  

t662s Good Good 
 

Good PVCs 15 
  

t665l Good Good 
 

Good Extreme Tachycardia 300 285 300 

t677l Good Good Good 
 

Extreme Tachycardia 300 292.1 300 

t677l Good Good Good 
 

Normal Sinus Rhythm 135 
  

t678s Bad Good 
 

Good Noise/artifacts 300 
  

t679l Good Good 
 

Good Extreme Tachycardia 299 291.6 299 

t680s Good Good Good Bad Extreme Tachycardia 300 291.8 300 

t683l Good Good 
 

Bad VT 300 293.4 300 

t688s Good Good 
 

Bad Extreme Tachycardia 300 285 300 

t689l Good Good 
 

Good Paced 300 
  

t690s Good Good Good 
 

Extreme Tachycardia 300 288.4 300 

t693l Good Good 
 

Good Extreme Tachycardia 300 285.5 300 

t698s Good Good 
 

Good Extreme Tachycardia 300 285 300 

t700s Good Good 
 

Good PVCs 300 
  

t702s Good Good Good 
 

Extreme Tachycardia 298.5 290.8 298.5 

t702s Good Good Good 
 

Normal Sinus Rhythm 15 
  

t707l Good Good Good 
 

Paced 299.5 
  

t709l Good Good Good 
 

Extreme Tachycardia 299.5 290.1 299.5 

t716s Good Good 
 

Good Extreme Tachycardia 299.5 291.8 299.5 

t717l Bad Good 
 

Bad Noise/artifacts 300 
  

t719l Bad Good Good 
 

Bundle branch block 300 
  

t731l Good Good Good Good Normal Sinus Rhythm 300 
  

t737l Good Good 
 

Good Extreme Tachycardia 299.5 291.3 299.5 

t739l Good Good Good Bad PVCs 300 
  

t741l Good Good 
 

Good Extreme Tachycardia 299.5 292 299.5 

t742s Bad Good 
 

Bad PVCs 294 
  

t744s Good Good 
 

Good Extreme Tachycardia 300 289.4 300 



 
 

t745l Bad Good 
 

Bad Extreme Tachycardia 298.5 291 298.5 

t747l Good Good 
 

Good Extreme Tachycardia 300 292.4 300 

t752s Good Good 
 

Good Extreme Tachycardia 300 291.8 300 

t752s Good Good 
 

Good Normal Sinus Rhythm 135 
  

t752s Good Good 
 

Good Normal Sinus Rhythm 15 
  

t755l Good Good 
 

Bad Extreme Tachycardia 299 288.9 299 

t760s Good Good Good Good Extreme Tachycardia 300 291.8 300 

t762s Good Good 
 

Bad Extreme Tachycardia 300 292.6 300 

t771l Good Good 
 

Bad Bundle branch block 300 
  

t777l Good Good Good 
 

ST elevation 299.5 291.3 300 

t786s Good Good 
 

Bad Extreme Tachycardia 298.5 291.2 298.5 

t787l Good Good 
 

Good Normal Sinus Rhythm 300 
  

t790s Good Good 
 

Bad Extreme Tachycardia 300 292.5 300 

t800s Good Good 
 

Good Extreme Tachycardia 300 285 300 

t801l Good Good 
 

Bad Extreme Tachycardia 300 290.8 298.3 

t812s Good Good 
 

Good Extreme Tachycardia 300 289.9 300 

t816s Good Good Good Bad Extreme Tachycardia 300 285 300 

t817l Good Good 
 

Good ST elevation 300 
  

t821l Good Good 
 

Bad Extreme Tachycardia 300 292.4 300 

v100s Good Good 
 

Bad Normal Sinus Rhythm 300 
  

v101l Good Good 
 

Bad Normal Sinus Rhythm 300 
  

v102s Good Good 
 

Bad Normal Sinus Rhythm 300 
  

v111l Good Good 
 

Good Normal Sinus Rhythm 300 
  

v113l Bad Bad 
 

Bad Noise/artifacts 300 
  

v115l Bad Bad 
 

Good Noise/artifacts 300 
  

v119l Good Good Bad Bad VT 300 296.2 300 

v122s Good Good Bad Bad VT 300 293.6 300 

v127l Bad Bad 
 

Bad Noise/artifacts 300 
  



 
 

v128s Bad Bad 
 

Bad Noise/artifacts 300 
  

v131l Good Good Good 
 

VT 299 296.2 299 

v132s Good Good 
 

Good VT 298.25 295.5 298.25 

v133l Good Good Good 
 

VT 298.5 295.5 298.5 

v133l Good Good Good 
 

Normal Sinus Rhythm 135 
  

v135l Good Good Good Bad Normal Sinus Rhythm 300 
  

v136s Good Good Good Good VT 300 296.5 300 

v139l Good Good 
 

Good Paced 298 
  

v140s Good Good Good Good Extreme Tachycardia 300 285 300 

v141l Bad Bad Bad Bad Noise/artifacts 300 
  

v143l Good Good 
 

Bad Inconclusive 300 
  

v146s Good Good 
 

Good VT 300 285 300 

v147l Bad Bad Bad Good Noise/artifacts 300 
  

v148s Bad Bad Bad Good Noise/artifacts 300 
  

v153l Good Bad 
 

Good Normal Sinus Rhythm 300 
  

v154s Good Bad Good Good Normal Sinus Rhythm 300 
  

v155l Good Bad 
 

Good Normal Sinus Rhythm 300 
  

v158s Good Good 
 

Good VT 300 296.1 300 

v159l Good Good 
 

Good Bundle branch block 300 285 300 

v160s Good Good Good Bad PVCs 300 285 300 

v162s Good Good Good Good NSVT 300 285 300 

v164s Good Good 
 

Good Normal Sinus Rhythm 300 
  

v166s Good Good Good Good Normal Sinus Rhythm 300 
  

v168s Good Good Good Bad Bundle branch block 300 
  

v169l Good Bad Bad Good Noise/artifacts 300 
  

v176s Bad Bad Good Good Noise/artifacts 300 
  

v177l Good Good Good Good Normal Sinus Rhythm 300 
  

v179l Good Bad Good Good Normal Sinus Rhythm 300 
  



 
 

v180s Good Good Good Good Normal Sinus Rhythm 300 
  

v181l Bad Good Bad Bad Normal Sinus Rhythm 300 
  

v182s Good Good Bad Good Normal Sinus Rhythm 300 
  

v188s Good Good 
 

Good CPR 300 285 300 

v194s Good Good 
 

Good VT 298.5 296.5 298.5 

v194s Good Good 
 

Good Normal Sinus Rhythm 135 
  

v197l Good Good Good 
 

VT 299 295.7 299 

v197l Good Good Good 
 

Normal Sinus Rhythm 135 
  

v198s Bad Good 
 

Good Noise/artifacts 300 
  

v199l Good Good 
 

Good VT 298.5 295.5 298.3 

v199l Good Good 
 

Good Normal Sinus Rhythm 135 
  

v200s Bad Bad Good Good Noise/artifacts 300 
  

v201l Good Good Good Good PVCs 300 
  

v201l Good Good Good Good PVCs 15 
  

v202s Bad Bad Good Bad Noise/artifacts 300 
  

v204s Bad Bad 
 

Bad Noise/artifacts 300 
  

v205l Bad Good Good Bad Noise/artifacts 300 
  

v206s Good Good 
 

Good VT 289 286.7 289 

v206s Good Good 
 

Good Normal Sinus Rhythm 135 
  

v207l Bad Bad 
 

Good Noise/artifacts 300 
  

v210s Good Good 
 

Good Normal Sinus Rhythm 300 
  

v210s Good Good 
 

Good Normal Sinus Rhythm 135 
  

v210s Good Good 
 

Good Normal Sinus Rhythm 15 
  

v210s Good Good 
 

Good Normal Sinus Rhythm 120 
  

v210s Good Good 
 

Good Normal Sinus Rhythm 135 
  

v210s Good Good 
 

Good Normal Sinus Rhythm 30 
  

v210s Good Good 
 

Good Normal Sinus Rhythm 285 
  

v210s Good Good 
 

Good Normal Sinus Rhythm 45 
  



 
 

v210s Good Good 
 

Good Normal Sinus Rhythm 60 
  

v210s Good Good 
 

Good Normal Sinus Rhythm 75 
  

v210s Good Good 
 

Good Normal Sinus Rhythm 90 
  

v210s Good Good 
 

Good Normal Sinus Rhythm 105 
  

v211l Good Good 
 

Good Normal Sinus Rhythm 300 
  

v212s Bad Good 
 

Good Noise/artifacts 300 
  

v217l Bad Bad Good Good Noise/artifacts 300 
  

v218s Bad Bad Bad Good Noise/artifacts 300 
  

v221l Good Good Good Good VT 295.5 292.9 295.8 

v222s Bad Good Good Good PVCs 300 
  

v224s Good Good Good Good PVCs 300 
  

v230s Bad Bad Bad Good Noise/artifacts 300 
  

v232s Bad Bad Bad Bad Noise/artifacts 300 
  

v233l Bad Bad Bad Good Noise/artifacts 300 
  

v241l Bad Bad Good Good Noise/artifacts 300 
  

v242s Bad Bad 
 

Good Noise/artifacts 300 
  

v243l Bad Bad 
 

Bad Noise/artifacts 300 
  

v244s Bad Good 
 

Good Normal Sinus Rhythm 300 
  

v245l Bad Bad 
 

Good Noise/artifacts 300 
  

v246s Good Good Good Good Normal Sinus Rhythm 300 
  

v247l Bad Bad Good Good Noise/artifacts 300 
  

v248s Bad Bad Good Bad Noise/artifacts 300 
  

v250s Bad Bad 
 

Good Noise/artifacts 300 
  

v253l Good Good Good Good VT 294 291.3 293.8 

v253l Good Good Good Good PVCs 135 
  

v253l Good Good Good Good PVCs 150 
  

v253l Good Good Good Good PVCs 195 
  

v253l Good Good Good Good PVCs 210 
  



 
 

v253l Good Good Good Good PVCs 255 
  

v253l Good Good Good Good PVCs 270 
  

v253l Good Good Good Good PVCs 60 
  

v253l Good Good Good Good PVCs 75 
  

v253l Good Good Good Good PVCs 105 
  

v254s Good Good Good Good VT 292 288.9 291.8 

v254s Good Good Good Good PVCs 135 
  

v254s Good Good Good Good Normal Sinus Rhythm 15 
  

v254s Good Good Good Good PVCs 135 
  

v254s Good Good Good Good PVCs 150 
  

v254s Good Good Good Good PVCs 30 
  

v254s Good Good Good Good PVCs 45 
  

v254s Good Good Good Good PVCs 60 
  

v254s Good Good Good Good PVCs 105 
  

v255l Good Good Good Good VT 296 291.5 296 

v255l Good Good Good Good PVCs 135 
  

v256s Good Good 
 

Good Normal Sinus Rhythm 300 
  

v257l Good Good 
 

Good Normal Sinus Rhythm 300 
  

v258s Good Good 
 

Bad Bundle branch block 300 
  

v259l Good Good 
 

Bad Bundle branch block 300 
  

v262s Good Bad 
 

Bad Noise/artifacts 300 
  

v271l Good Good 
 

Good Normal Sinus Rhythm 300 
  

v274s Good Bad 
 

Good Noise/artifacts 300 
  

v274s Good Good 
 

Good Normal Sinus Rhythm 135 
  

v275l Good Bad 
 

Good NSVT 295 291.8 295.2 

v280s Good Good 
 

Bad PVCs 300 
  

v282s Good Good 
 

Bad Normal Sinus Rhythm 300 
  

v283l Good Bad Good 
 

Noise/artifacts 300 
  



 
 

v283l Good Good Good 
 

Normal Sinus Rhythm 135 
  

v283l Good Good Good 
 

Normal Sinus Rhythm 15 
  

v289l Bad Good Good 
 

Normal Sinus Rhythm 300 
  

v290s Good Good Good 
 

VT 300 296.2 300 

v291l Good Good Good Good Normal Sinus Rhythm 300 
  

v292s Good Good Good Good Normal Sinus Rhythm 300 
  

v292s Good Good Good Good Normal Sinus Rhythm 135 
  

v292s Good Good Good Good Normal Sinus Rhythm 15 
  

v293l Good Good Good Good Normal Sinus Rhythm 300 
  

v294s Bad Bad Good 
 

Noise/artifacts 300 
  

v295l Bad Bad Good 
 

Noise/artifacts 300 
  

v296s Bad Bad Good 
 

Noise/artifacts 300 
  

v298s Bad Bad Good Good Noise/artifacts 300 
  

v303l Good Good 
 

Good Extreme Tachycardia 300 285.7 297.8 

v307l Bad Bad 
 

Bad Noise/artifacts 300 
  

v309l Good Good Good Bad VT 297.5 294.5 297.5 

v309l Good Good Good Good Normal Sinus Rhythm 135 
  

v312s Good Good Good Good Normal Sinus Rhythm 300 
  

v316s Good Good 
 

Good Normal Sinus Rhythm 300 
  

v316s Good Good 
 

Good Normal Sinus Rhythm 135 
  

v316s Good Good 
 

Good Normal Sinus Rhythm 15 
  

v317l Bad Good 
 

Good Noise/artifacts 300 
  

v318s Good Good Bad Good VT 295 291 295 

v319l Bad Bad Good Good Noise/artifacts 300 
  

v322s Good Good 
 

Bad PVCs 300 
  

v323l Good Good Bad Good PVCs 300 
  

v323l Good Good Good Good Normal Sinus Rhythm 135 
  

v324s Good Bad Good Good Noise/artifacts 300 
  



 
 

v325l Good Bad Good Good Noise/artifacts 300 
  

v326s Good Bad 
 

Good Normal Sinus Rhythm 300 
  

v327l Good Good 
 

Good PVCs 300 
  

v327l Good Good 
 

Good Normal Sinus Rhythm 135 
  

v327l Good Good 
 

Good PVCs 15 
  

v328s Good Good Good 
 

PVCs 300 
  

v329l Good Good Good 
 

Paced 298 
  

v334s Good Good Good 
 

VT 300 296 299.6 

v334s Good Good Good 
 

Normal Sinus Rhythm 135 
  

v334s Good Good Good 
 

Normal Sinus Rhythm 15 
  

v336s Good Bad Bad Good Noise/artifacts 300 
  

v337l Good Bad Bad Good Noise/artifacts 300 
  

v338s Good Bad Bad Good Noise/artifacts 300 
  

v338s Good Good Good Good Normal Sinus Rhythm 15 
  

v347l Good Bad Bad Good Noise/artifacts 300 
  

v348s Good Good 
 

Bad VT 300 294 300 

v353l Good Bad Good Good PVCs 300 
  

v354s Good Good 
 

Good Normal Sinus Rhythm 300 
  

v355l Bad Bad 
 

Bad Noise/artifacts 300 
  

v359l Bad Good Good 
 

Noise/artifacts 300 
  

v359l Good Good Good 
 

Normal Sinus Rhythm 135 
  

v359l Good Good Good 
 

Normal Sinus Rhythm 15 
  

v360s Bad Bad Good 
 

Noise/artifacts 300 
  

v361l Bad Bad Good Good Noise/artifacts 300 
  

v364s Bad Bad Good Good Noise/artifacts 300 
  

v365l Good Good Bad Good Normal Sinus Rhythm 300 
  

v366s Good Bad 
 

Good Noise/artifacts 300 
  

v367l Good Bad 
 

Bad Noise/artifacts 300 
  



 
 

v368s Good Good 
 

Good VT 293 289.4 294 

v369l Good Good 
 

Good VT 300 295.5 300 

v370s Good Good Bad Bad Normal Sinus Rhythm 300 
  

v371l Bad Bad Good Good Noise/artifacts 300 
  

v373l Good Bad Good Good Noise/artifacts 300 
  

v374s Good Bad Good Good Noise/artifacts 300 
  

v375l Good Bad 
 

Bad Noise/artifacts 300 
  

v375l Good Good 
 

Good Normal Sinus Rhythm 135 
  

v375l Good Good 
 

Good Normal Sinus Rhythm 15 
  

v380s Bad Bad 
 

Good Noise/artifacts 300 
  

v381l Good Good Good Good Normal Sinus Rhythm 300 
  

v390s Good Bad Bad Good Extreme Tachycardia 300 285 300 

v392s Good Good Good Good VT 300 285 289 

v395l Good Good 
 

Good Normal Sinus Rhythm 300 
  

v398s Bad Bad Good Bad Noise/artifacts 300 
  

v399l Bad Bad Bad Bad Noise/artifacts 300 
  

v400s Bad Bad 
 

Good Noise/artifacts 300 
  

v401l Bad Bad 
 

Bad Noise/artifacts 300 
  

v402s Good Good 
 

Bad Normal Sinus Rhythm 300 
  

v403l Good Good Good Good Normal Sinus Rhythm 300 
  

v404s Good Good 
 

Good VT 300 292 300 

v405l Bad Good Good Bad Noise/artifacts 300 
  

v419l Good Good 
 

Good Normal Sinus Rhythm 300 
  

v421l Good Good 
 

Good PVCs 300 
  

v423l Good Bad 
 

Bad Normal Sinus Rhythm 300 
  

v426s Good Good 
 

Good Normal Sinus Rhythm 300 
  

v427l Good Bad 
 

Good Noise/artifacts 300 
  

v431l Bad Bad Bad Good Noise/artifacts 300 
  



 
 

v432s Bad Bad Bad Good Noise/artifacts 300 
  

v433l Good Good 
 

Good Normal Sinus Rhythm 300 
  

v437l Good Bad Good Bad Noise/artifacts 300 
  

v438s Good Bad 
 

Good Noise/artifacts 300 
  

v448s Bad Bad 
 

Bad Noise/artifacts 298 
  

v452s Bad Bad 
 

Good Noise/artifacts 300 
  

v453l Good Bad 
 

Good Noise/artifacts 300 
  

v454s Good Bad 
 

Good Noise/artifacts 300 
  

v459l Good Bad Good 
 

Noise/artifacts 300 
  

v460s Bad Bad Good Bad Noise/artifacts 300 
  

v463l Bad Bad Bad 
 

Noise/artifacts 300 
  

v464s Good Bad Good Good PVCs 300 
  

v466s Bad Bad Bad Bad Noise/artifacts 300 
  

v470s Bad Bad 
 

Bad Noise/artifacts 300 
  

v471l Good Good 
 

Good VT 300 297.8 300 

v472s Bad Bad Bad Bad Noise/artifacts 300 
  

v473l Good Good Bad Good Normal Sinus Rhythm 300 
  

v475l Bad Bad 
 

Bad Noise/artifacts 300 
  

v476s Bad Bad 
 

Good Noise/artifacts 300 
  

v479l Bad Bad Good 
 

Noise/artifacts 300 
  

v480s Bad Bad Good 
 

Noise/artifacts 300 
  

v481l Good Good Good Good Bundle branch block 300 
  

v482s Good Good Bad Good Bundle branch block 300 
  

v483l Good Good Good Good Bundle branch block 300 
  

v489l Bad Bad Good Bad Noise/artifacts 300 
  

v491l Bad Bad Good Bad Noise/artifacts 300 
  

v492s Bad Bad Bad Bad Noise/artifacts 300 
  

v498s Good Bad Bad Good Noise/artifacts 300 
  



 
 

v501l Good Bad Good Good Noise/artifacts 300 
  

v502s Good Bad Good Good Noise/artifacts 300 
  

v505l Good Good 
 

Bad Normal Sinus Rhythm 300 
  

v510s Bad Good 
 

Good Normal Sinus Rhythm 300 
  

v511l Bad Bad 
 

Good Noise/artifacts 300 
  

v513l Bad Good 
 

Good Noise/artifacts 300 
  

v513l Good Good 
 

Good Normal Sinus Rhythm 135 
  

v513l Good Good 
 

Good Normal Sinus Rhythm 15 
  

v518s Bad Bad Good Good Noise/artifacts 300 
  

v519l Good Bad Good Good Noise/artifacts 300 
  

v522s Good Good Good 
 

VT 300 290.8 299.2 

v522s Good Good Good 
 

Normal Sinus Rhythm 135 
  

v522s Good Good Good 
 

Normal Sinus Rhythm 15 
  

v523l Good Good Good 
 

VT 300 286.9 291.7 

v525l Good Good 
 

Good VT 299 296.7 299 

v531l Bad Bad Bad Bad Noise/artifacts 300 
  

v532s Good Good 
 

Good PVCs 300 
  

v533l Good Good 
 

Good PVCs 300 
  

v534s Good Good 
 

Good Normal Sinus Rhythm 300 
  

v535l Bad Bad Bad Good Noise/artifacts 300 
  

v536s Bad Bad Bad Good Noise/artifacts 300 
  

v540s Good Good Bad Bad VF 217 212 217 

v541l Good Good Good Good VF 300 295.9 300 

v541l Good Good Good Good Normal Sinus Rhythm 135 
  

v542s Good Good Good Good VT 300 289.7 293 

v548s Good Good 
 

Good Normal Sinus Rhythm 300 
  

v549l Good Good 
 

Good Normal Sinus Rhythm 300 
  

v551l Bad Bad Good Bad Noise/artifacts 300 
  



 
 

v552s Good Bad Good Bad Noise/artifacts 300 
  

v557l Good Good Good Good Normal Sinus Rhythm 300 
  

v557l Good Good Good Good Normal Sinus Rhythm 135 
  

v557l Good Good Good Good Normal Sinus Rhythm 15 
  

v559l Good Good Good Good PVCs 300 
  

v564s Good Good Good Good VT 300 296.5 300 

v566s Bad Bad 
 

Bad Noise/artifacts 300 
  

v568s Bad Bad Good Good Noise/artifacts 300 
  

v569l Bad Good Good Good Noise/artifacts 300 
  

v570s Bad Bad Bad Bad Noise/artifacts 300 
  

v571l Good Good Good Good VT 298 295.8 298 

v573l Good Good Good Good VT 295.5 289.5 295.5 

v573l Good Good Good Good Normal Sinus Rhythm 135 
  

v573l Good Good Good Good Normal Sinus Rhythm 15 
  

v574s Good Good 
 

Good VT 298.5 296.1 298.5 

v574s Good Good 
 

Good Normal Sinus Rhythm 135 
  

v574s Good Good 
 

Good Normal Sinus Rhythm 15 
  

v575l Good Good 
 

Good Bundle branch block 300 
  

v579l Good Good Good 
 

VT 299.5 297 299.5 

v579l Good Good Good 
 

Normal Sinus Rhythm 135 
  

v581l Good Good 
 

Good Normal Sinus Rhythm 300 
  

v583l Good Bad 
 

Bad Noise/artifacts 300 
  

v585l Bad Bad Good 
 

Paced 300 
  

v590s Bad Bad 
 

Bad Noise/artifacts 300 
  

v596s Good Good Good 
 

Paced 300 
  

v597l Good Good 
 

Good VT 298.5 295.4 298.5 

v598s Good Good 
 

Good VT 300 293.5 297.3 

v601l Bad Good 
 

Good Noise/artifacts 300 
  



 
 

v601l Good Good 
 

Good Normal Sinus Rhythm 135 
  

v601l Good Good 
 

Good Normal Sinus Rhythm 15 
  

v607l Good Good Good 
 

VT 298 294.4 298 

v607l Good Good Good 
 

Normal Sinus Rhythm 135 
  

v607l Good Good Good 
 

Normal Sinus Rhythm 15 
  

v609l Bad Bad 
 

Bad Noise/artifacts 300 
  

v611l Bad Bad Good 
 

Noise/artifacts 300 
  

v612s Bad Bad Good Good Noise/artifacts 300 
  

v615l Good Good Good 
 

Paced 300 
  

v616s Good Bad 
 

Bad PVCs 300 
  

v619l Good Good Good 
 

VT 300 295 300 

v620s Good Good Good Good Normal Sinus Rhythm 300 
  

v621l Bad Bad 
 

Bad Noise/artifacts 300 
  

v623l Bad Bad 
 

Good Noise/artifacts 300 
  

v625l Good Good Good 
 

VT 298 295.4 298 

v625l Good Good Good 
 

Normal Sinus Rhythm 135 
  

v626s Good Good Good 
 

VT 300 296.2 300 

v627l Bad Bad 
 

Bad Noise/artifacts 300 
  

v628s Good Good 
 

Good VT 298 295.4 298 

v629l Good Good Good 
 

PVCs 300 
  

v630s Good Good 
 

Good VT 300 296.4 300 

v630s Good Good 
 

Good Normal Sinus Rhythm 135 
  

v630s Good Good 
 

Good Normal Sinus Rhythm 120 
  

v630s Good Good 
 

Good Normal Sinus Rhythm 150 
  

v630s Good Good 
 

Good Normal Sinus Rhythm 165 
  

v630s Good Good 
 

Good Normal Sinus Rhythm 30 
  

v630s Good Good 
 

Good Normal Sinus Rhythm 180 
  

v630s Good Good 
 

Good Normal Sinus Rhythm 195 
  



 
 

v630s Good Good 
 

Good Normal Sinus Rhythm 210 
  

v630s Good Good 
 

Good Normal Sinus Rhythm 225 
  

v630s Good Good 
 

Good Normal Sinus Rhythm 240 
  

v630s Good Good 
 

Good Normal Sinus Rhythm 255 
  

v630s Good Good 
 

Good Normal Sinus Rhythm 270 
  

v630s Good Good 
 

Good Normal Sinus Rhythm 285 
  

v630s Good Good 
 

Good Normal Sinus Rhythm 45 
  

v630s Good Good 
 

Good Normal Sinus Rhythm 60 
  

v630s Good Good 
 

Good Normal Sinus Rhythm 75 
  

v630s Good Good 
 

Good Normal Sinus Rhythm 90 
  

v630s Good Good 
 

Good Normal Sinus Rhythm 105 
  

v630s Good Good 
 

Good Normal Sinus Rhythm 15 
  

v632s Good Good 
 

Good VT 299 296.6 299 

v633l Bad Good 
 

Bad Noise/artifacts 300 
  

v634s Bad Bad 
 

Bad Noise/artifacts 300 
  

v635l Good Good 
 

Good VT 300 296.5 299.9 

v635l Good Good 
 

Good Normal Sinus Rhythm 135 
  

v635l Good Good 
 

Good Normal Sinus Rhythm 120 
  

v635l Good Good 
 

Good Normal Sinus Rhythm 150 
  

v635l Good Good 
 

Good Normal Sinus Rhythm 165 
  

v635l Good Good 
 

Good Normal Sinus Rhythm 30 
  

v635l Good Good 
 

Good Normal Sinus Rhythm 180 
  

v635l Good Good 
 

Good Normal Sinus Rhythm 195 
  

v635l Good Good 
 

Good Normal Sinus Rhythm 210 
  

v635l Good Good 
 

Good Normal Sinus Rhythm 225 
  

v635l Good Good 
 

Good Normal Sinus Rhythm 240 
  

v635l Good Good 
 

Good Normal Sinus Rhythm 255 
  

v635l Good Good 
 

Good Normal Sinus Rhythm 270 
  



 
 

v635l Good Good 
 

Good Normal Sinus Rhythm 285 
  

v635l Good Good 
 

Good Normal Sinus Rhythm 45 
  

v635l Good Good 
 

Good Normal Sinus Rhythm 60 
  

v635l Good Good 
 

Good Normal Sinus Rhythm 75 
  

v635l Good Good 
 

Good Normal Sinus Rhythm 90 
  

v635l Good Good 
 

Good Normal Sinus Rhythm 105 
  

v635l Good Good 
 

Good Normal Sinus Rhythm 15 
  

v636s Good Good 
 

Good Paced 300 
  

v638s Good Good 
 

Good PVCs 300 
  

v638s Good Good 
 

Good PVCs 135 
  

v638s Good Good 
 

Good PVCs 120 
  

v638s Good Good 
 

Good PVCs 150 
  

v638s Good Good 
 

Good Normal Sinus Rhythm 30 
  

v638s Good Good 
 

Good PVCs 180 
  

v638s Good Good 
 

Good PVCs 195 
  

v638s Good Good 
 

Good PVCs 210 
  

v638s Good Good 
 

Good PVCs 225 
  

v638s Good Good 
 

Good PVCs 240 
  

v638s Good Good 
 

Good PVCs 255 
  

v638s Good Good 
 

Good PVCs 270 
  

v638s Good Good 
 

Good PVCs 45 
  

v638s Good Good 
 

Good Normal Sinus Rhythm 60 
  

v638s Good Good 
 

Good Normal Sinus Rhythm 75 
  

v638s Good Good 
 

Good Normal Sinus Rhythm 90 
  

v638s Good Good 
 

Good Normal Sinus Rhythm 105 
  

v640s Bad Bad 
 

Good Noise/artifacts 300 
  

v641l Good Good 
 

Good Normal Sinus Rhythm 300 
  

v641l Good Good 
 

Good Normal Sinus Rhythm 135 
  



 
 

v641l Good Good 
 

Good Normal Sinus Rhythm 120 
  

v641l Good Good 
 

Good Normal Sinus Rhythm 30 
  

v641l Good Good 
 

Good Normal Sinus Rhythm 45 
  

v641l Good Good 
 

Good Normal Sinus Rhythm 60 
  

v641l Good Good 
 

Good Normal Sinus Rhythm 75 
  

v641l Good Good 
 

Good Normal Sinus Rhythm 90 
  

v641l Good Good 
 

Good Normal Sinus Rhythm 105 
  

v641l Good Good 
 

Good Normal Sinus Rhythm 15 
  

v643l Bad Good 
 

Good Noise/artifacts 300 
  

v644s Good Bad 
 

Good Noise/artifacts 300 
  

v644s Good Good 
 

Good Normal Sinus Rhythm 135 
  

v644s Good Good 
 

Good Normal Sinus Rhythm 30 
  

v644s Good Good 
 

Good Normal Sinus Rhythm 45 
  

v644s Good Good 
 

Good Normal Sinus Rhythm 60 
  

v644s Good Good 
 

Good Normal Sinus Rhythm 75 
  

v644s Good Good 
 

Good Normal Sinus Rhythm 90 
  

v646s Good Good Good 
 

Paced 300 
  

v646s Good Good Good 
 

Paced 135 
  

v646s Good Good Good 
 

Paced 30 
  

v646s Good Good Good 
 

Paced 45 
  

v646s Good Good Good 
 

Paced 60 
  

v646s Good Good Good 
 

Paced 75 
  

v646s Good Good Good 
 

Paced 90 
  

v647l Good Good 
 

Bad Normal Sinus Rhythm 300 
  

v647l Good Good 
 

Good Normal Sinus Rhythm 135 
  

v647l Good Good 
 

Good Normal Sinus Rhythm 30 
  

v647l Good Good 
 

Good Normal Sinus Rhythm 45 
  

v647l Good Good 
 

Good Normal Sinus Rhythm 60 
  



 
 

v647l Good Good 
 

Good Normal Sinus Rhythm 75 
  

v647l Good Good 
 

Good Normal Sinus Rhythm 15 
  

v648s Good Good Good Good VT 300 296 300 

v648s Good Good Good Good Normal Sinus Rhythm 135 
  

v648s Good Good Good Good Normal Sinus Rhythm 15 
  

v649l Bad Bad Bad Good Noise/artifacts 300 
  

v652s Good Good 
 

Good VT 300 294.6 298.3 

v655l Bad Bad 
 

Good Noise/artifacts 300 
  

v658s Good Good Good 
 

Normal Sinus Rhythm 300 
  

v658s Good Good Good 
 

Normal Sinus Rhythm 135 
  

v658s Good Good Good 
 

Normal Sinus Rhythm 15 
  

v660s Good Good Good 
 

Paced 300 
  

v663l Bad Bad Good Bad Noise/artifacts 300 
  

v666s Bad Bad 
 

Good Noise/artifacts 300 
  

v671l Good Good 
 

Good Normal Sinus Rhythm 300 
  

v674s Bad Bad Good 
 

Noise/artifacts 300 
  

v676s Bad Good Good 
 

Normal Sinus Rhythm 300 
  

v676s Good Good Good 
 

Normal Sinus Rhythm 135 
  

v682s Good Bad Bad Bad PVCs 300 
  

v686s Bad Bad 
 

Bad Noise/artifacts 300 
  

v687l Bad Bad 
 

Good Noise/artifacts 300 
  

v692s Bad Bad 
 

Bad Noise/artifacts 300 
  

v696s Good Good 
 

Good VT 300 296.5 300 

v701l Good Good Good 
 

VT 297.5 295 297.5 

v701l Good Good Good 
 

Normal Sinus Rhythm 135 
  

v701l Good Good Good 
 

Normal Sinus Rhythm 15 
  

v704s Bad Bad 
 

Good Noise/artifacts 300 
  

v710s Bad Bad 
 

Bad Noise/artifacts 300 
  



 
 

v711l Bad Bad 
 

Good Noise/artifacts 300 
  

v711l Good Good 
 

Good Normal Sinus Rhythm 135 
  

v711l Good Good 
 

Good Normal Sinus Rhythm 15 
  

v713l Good Good 
 

Good VT 300 285 300 

v714s Good Good 
 

Bad VT 300 297 300 

v718s Bad Bad Good 
 

Noise/artifacts 300 
  

v720s Good Good Good Bad Normal Sinus Rhythm 300 
  

v721l Bad Bad Bad Good Noise/artifacts 300 
  

v724s Good Good Good 
 

NSVT 300 
  

v724s Good Good Good 
 

PVC 135 
  

v725l Bad Bad 
 

Bad Noise/artifacts 300 
  

v726s Good Good Good Good VT 299 290.6 294.1 

v727l Bad Bad Good Bad Noise/artifacts 300 
  

v728s Good Good 
 

Good VT 298.5 296.1 298.5 

v729l Good Good Good 
 

VT 300 295.5 297.7 

v732s Good Good 
 

Good Normal Sinus Rhythm 300 
  

v732s Good Good 
 

Good Normal Sinus Rhythm 15 
  

v733l Good Good 
 

Good VT 300 296.4 300 

v736s Bad Good 
 

Bad Noise/artifacts 300 
  

v738s Good Good 
 

Good PVC 300 
  

v743l Bad Bad Good Good Noise/artifacts 300 
  

v748s Good Good 
 

Good VT 300 296.5 300 

v749l Bad Bad Good 
 

Noise/artifacts 300 
  

v756s Good Good Good 
 

Normal Sinus Rhythm 300 
  

v758s Good Good Good Good VT 298 296.4 298 

v759l Good Good Good 
 

NSVT 300 
  

v761l Good Good 
 

Good VT 300 296 298.7 

v763l Bad Bad 
 

Bad Noise/artifacts 300 
  



 
 

v765l Good Good Good 
 

VT 300 297.4 300 

v765l Good Good Good 
 

Normal Sinus Rhythm 135 
  

v765l Good Good Good 
 

Normal Sinus Rhythm 15 
  

v766s Bad Bad 
 

Good Noise/artifacts 300 
  

v767l Bad Good Bad Bad PVC 300 
  

v769l Good Good 
 

Good VT 300 295.7 300 

v769l Good Good 
 

Good Normal Sinus Rhythm 135 
  

v769l Good Good 
 

Good Normal Sinus Rhythm 15 
  

v770s Bad Bad 
 

Bad Noise/artifacts 300 
  

v772s Good Good Good 
 

VT 300 297 300 

v772s Good Good Good 
 

Normal Sinus Rhythm 135 
  

v773l Good Good 
 

Good VT 299 296.6 299 

v774s Bad Bad 
 

Bad Noise/artifacts 300 
  

v775l Bad Bad 
 

Bad Noise/artifacts 300 
  

v779l Good Good Good 
 

PVC 300 
  

v779l Good Good Good 
 

Normal Sinus Rhythm 135 
  

v781l Good Good 
 

Good Bundle branch block 300 
  

v782s Bad Bad 
 

Bad Noise/artifacts 300 
  

v783l Good Good 
 

Good NSVT 300 
  

v784s Good Bad 
 

Good Normal Sinus Rhythm 300 
  

v788s Good Good 
 

Good VT 292 289.8 292 

v791l Bad Bad 
 

Bad Noise/artifacts 300 
  

v793l Good Good Good 
 

VT 299 296.5 299 

v793l Good Good Good 
 

Normal Sinus Rhythm 135 
  

v793l Good Good Good 
 

Normal Sinus Rhythm 15 
  

v795l Bad Bad Good 
 

Noise/artifacts 300 
  

v795l Good Good Good 
 

Normal Sinus Rhythm 135 
  

v795l Bad Bad Good 
 

Noise/artifacts 15 
  



 
 

v797l Good Good Good 
 

VT 300 297.1 300 

v803l Good Good Good Good VT 294 290.7 294 

v804s Bad Bad 
 

Bad Noise/artifacts 300 
  

v805l Bad Bad 
 

Good Noise/artifacts 300 294.8 300 

v805l Good Good 
 

Good Normal Sinus Rhythm 135 
  

v805l Good Good 
 

Good Normal Sinus Rhythm 15 
  

v806s Good Good 
 

Good VT 297.5 295.4 297.5 

v808s Good Good Good 
 

Paced 300 
  

v809l Good Good 
 

Good Normal Sinus Rhythm 300 
  

v811l Bad Bad Good 
 

Noise/artifacts 300 
  

v811l Good Good Good 
 

Normal Sinus Rhythm 135 
  

v811l Good Good Good 
 

Normal Sinus Rhythm 15 
  

v813l Good Good Good 
 

VT 299 296.5 299 

v813l Good Good Good 
 

Normal Sinus Rhythm 135 
  

v814s Bad Bad 
 

Bad Noise/artifacts 300 
  

v815l Good Good Good Good VT 300 285.6 300 

v818s Good Good 
 

Good VT 300 297.1 300 

v823l Good Good 
 

Good VT 297 294 297 

v823l Good Good 
 

Good Normal Sinus Rhythm 135 
  

v826s Bad Good Good Good Noise/artifacts 300 
  

v827l Bad Bad Bad 
 

Noise/artifacts 300 
  

v828s Good Good 
 

Good VT 294 291.4 294 

v830s Good Good Good 
 

Paced 300 
  

v831l Good Good Good Good VT 294 289.7 293.9 

v831l Good Good Good Good Normal Sinus Rhythm 135 
  

v831l Good Good Good Good Normal Sinus Rhythm 15 
  

v833l Good Good Good Good Normal Sinus Rhythm 300 
  

v834s Good Good 
 

Bad NSVT 300 
  



 
 

v836s Good Good Good 
 

Paced 300 
  

v837l Good Good Good 
 

VT 300 296.4 300 

v837l Good Good Good 
 

PVC 135 
  

v842s Good Good Good 
 

Paced 298.25 
  

v843l Bad Bad 
 

Good Noise/artifacts 300 
  

v843l Good Good 
 

Good Normal Sinus Rhythm 15 
  

v844s Good Good Good 
 

Paced 300 
  

v845l Good Good Good 
 

Normal Sinus Rhythm 300 
  

v846s Bad Bad 
 

Bad Noise/artifacts 300 
  

v848s Good Good 
 

Good Normal Sinus Rhythm 300 
  

 

VF: ventricular fibrillation; VT: ventricular tachycardia; PVCs: premature ventricular 

contractions; PACs: premature atrial contractions, NSVT: non-sustained ventricular tachycardia. 

 

 

 



 
 

Figure S1. ROC of ECG noise detector for classifiers based on (i) only features, (ii) only CNN 

approach and (iii) hybrid-CNN approach, with an AUC of 93.56%, 96.97% and 97.17% 

respectively. 

 

 

 



 
 

Figure S2. Gradient-weighted class activation mapping (Grad-CAM) of trained convolutional 

neural network (CNN) corresponding to Tier-3 (normal vs atrial fibrillation) classifier.  

 

 

 

 

 

First channel of ECG signal is represented with the gray level proportional to CAM amplitude, 

which represents the regions of interest on the given signal that leads its classification into an AF 

class by CNN. The most important region within the signal correspond to a missing P-waves and 

an R-peak with irregular rhythm preceding and following RR intervals, which agrees with the 

characteristics of AF. 



 
 

Figure S3. Feature importance scores of only feature based (A) Tier-1 classifier, the most 

important features for classification are median frequency and ratio of maximum power to 

total power, which are characteristics of VT and VF. (B) Tier-2 classifier, with high importance 

score for ECG heart rate, which distinguishes extreme bradycardia, extreme tachycardia and 

other conditions. (C) Tier-3 classifier, in which high importance is assigned to the standard 

deviation of heart rate and mean p-wave area, which are characteristics of atrial fibrillation. 
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