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The wide use of the mouse model of polymicrobial sepsis has provided important

evidence for events occurring in infectious sepsis involving septic mice and septic

humans. Nearly 100 clinical trials in humans with sepsis have been completed, yet

there is no FDA-approved drug. Our studies of polymicrobial sepsis have highlighted the

role of complement activation products (especially C5a anaphylatoxin and its receptors

C5aR1 and C5aR2) in adverse effects of sepsis. During sepsis, the appearance of these

complement products is followed by appearance of extracellular histones in plasma,

which have powerful proinflammatory and prothrombotic activities that cause cell injury

and multiorgan dysfunction in septic mice. Similar responses occur in septic humans.

Histone appearance in plasma is related to complement activation and appearance of

C5a and its interaction with its receptors. Development of the cardiomyopathy of sepsis

also depends on C5a, C5a receptors and histones. Neutralization of C5a with antibody

or absence of C5aR1 blocks appearance of extracellular histones and cell and organ

failure in sepsis. Survival rates in septic mice are greatly improved after blockade of C5a

with antibody. We also review the various strategies in sepsis that greatly reduce the

development of life-threatening events of sepsis.
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BACKGROUND

Development of infectious sepsis in humans often results in a series of events that can lead to
death. In spite of nearly 100 clinical trials, no drug has been approved by the FDA for use in septic
patients. The mouse model of infectious sepsis is polymicrobial sepsis produced by cecal ligation
and puncture (CLP). This model has been widely used for four decades (1, 2) because it appears
to mimic events occurring in septic humans. In the early phases of polymicrobial sepsis (first
1–3 days), there is hyperactivation of the innate immune system, releasing a flood of cytokines,
chemokines, and extracellular histones, all of which cause injury to cells and organs (especially
lungs, liver, spleen, heart, kidneys, and the central nervous system) (3–5). It is also established that
aged septic mice (20–24 months of age) or septic humans (>60 years of age) have more severe
sepsis and much greater lethality when compared to younger mice or humans, respectively (6–
10). Reasons for these responses are not established, except, perhaps, for the fact that aged mice
or humans have progressive impairments of the innate immune system (7, 11, 12). Beginning
around 3 days after onset of sepsis, the innate immune system becomes progressively non-
responsive, and immunosuppression sets in (5, 13). If the septic mouse or human is able to contain
these responses, within about a week the innate immune system recovers, immunosuppression
subsides and organ dysfunction is reversed, with return to the pre-septic state (14). It has recently
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been shown that, after discharge of patients from the hospital,
there is evidence of residual medical problems in many
individuals, especially the elderly (15, 16). For instance, nearly
50% of these individuals have a shortened life span over a 2-year
period post-sepsis, resulting in a doubling of death rates when
compared to a non-septic cohort. Obviously, there is a great deal
to be learned about events in sepsis and how survival can be
improved. Septic mice with various genetic manipulations appear
to be critical resources for such studies. While the NIH/NIGMS
has discouraged the use of mice for sepsis studies and is no
longer engaged in supporting sepsis studies in humans, we have
been able to identify mechanisms in septic mice that can be
extrapolated to septic humans. Studies such as neutralization of
histones or C5a have been shown to greatly improve survival in
septic mice, employing interventions that could not be done in
septic humans.

POLYMICROBIAL SEPSIS MODEL AND
BLOCKADE STRATEGIES TARGETING
C5aRs OR EXTRACELLULAR HISTONES

Most of the septic studies in mice use the polymicrobial sepsis
model with CLP as the standard procedure (17, 18). The
polymicrobial experimental model mimics sepsis in humans
and is helpful for understanding the sepsis process in the
human body (19, 20). In human sepsis, there is excessive
C5a generation associated with inflammatory responses. In
2009, Xu et al. described the role of histones in mice with
polymicrobial sepsis, endotoxemia or infusion of TNF (21).
We have shown the harmful effects of C5a in septic mice,
resulting in cardiomyopathy and cardiac dysfunction (22, 23).
Blockade of C5a or its receptors (mainly C5aR1) significantly
preserved heart dysfunction in septic mice. The same result
developed in septic mice lacking C5a receptors (C5aR1 or
C5aR2) (23). In these studies, cardiovascular performance was
measured by ECHO/Doppler technology in mice before and 8 h
after induction of CLP. Echocardiograms were also obtained
before and after sepsis, according to the recommendations
of the American Society of Echocardiography (23). Cardiac
performance (especially isovolumic relaxation time) showed
preserved levels of this parameter in the septic mice which lacked
either C5a receptor (especially C5aR1) compared to the septic
wild type mice (23).

Another strategy for reducing the harmful effects of sepsis
was neutralization of extracellular histones (with clone BWA3
antibody targeting H2A/H4). Our functional studies showed
remarkably reduced cardiac dysfunction in septic mice. Septic
mice receiving this neutralizing antibody against histones showed
preserved cardiac function as measured by Echo/Doppler
studies (24).

PHASES OF POLYMICROBIAL SEPSIS

It is now well-established in polymicrobial sepsis in mice
that there is an early phase of robust activation of the
innate immune system (1–3 days after CLP) during which

time neutrophils (PMNs) and monocytes/macrophages release
powerful proinflammatory mediators (TNF, IL-6, IL-1β, IL-
17, etc.) in a “cytokine burst” that causes cell damage and
multiorgan dysfunction, especially affecting kidneys, heart, liver,
and other organs (13, 25, 26). As polymicrobial sepsis progresses,
many of the proinflammatory responses are attenuated as
immunosuppression develops at 3–7 days, resulting in reduced
innate immune cellular responses which may compromise the
natural protective responses that combat a variety of infectious
agents (bacterial, fungal, viral) (5, 27, 28). If the protective
immune responses are adequate, the inflammatory responses
subside and mice are returned to health within 7 days, including
recovery of organs from damage and reversion to the pre-sepsis
state (14, 29).

The early phases of sepsis are associated with strong activation
of the three complement pathways (classical, alternative, and
lectin), generating a variety of strong proinflammatory peptides,
especially anaphylatoxins C3a and C5a. C3a was originally
identified by its ability to react with its receptor (C3aR),
resulting in increased vascular permeability and smooth muscle
contraction in a variety of tissues (3, 30, 31). The other
anaphylatoxin, C5a, was recognized as a very powerful activator
of PMNs and macrophages. Following its rapid binding to
C5a receptors (C5aR1 and C5aR2), C5a·C5aR1 interaction
causes activation of both PMNs and macrophages, the result
being release of proinflammatory cytokines and chemokines,
chemotaxis, generation of powerful and harmful oxygen-
free radicals, and release of a variety of enzymes and lipid
mediators that positively and negatively modify inflammatory
responses (32–34).

Sepsis-Induced Release of Histones and
Mechanisms of Cell and Organ Damage
Related to Histones
It is commonly found that septic mice and septic humans
develop activation of all three complement pathways (classical,
alternative and lectin). As emphasized in Figure 1, early in sepsis
in both mice and humans (over the first 24 h), via C5a·C5aR1
interactions, there is extensive cell and organ damage related to
the surge in plasma of proinflammatory peptides. In addition,
there is also an early (1–3 days) appearance in plasma of IL-
1β associated with activation of the NLRP3 inflammasome in
PMNs and macrophages (35, 36). TNF, IL-6, and the IL-17
family of factors are early proinflammatory peptides appearing
in plasma (13, 37, 38). The role of complement and C5a
and its receptors in activation of the NLRP3 inflammasome
in septic mice has been described (39), as well as NLRP3-
induced activation of CD4+ T cells (40). As time progresses,
like the rest of the innate system, the NLRP3 inflammasome
becomes functionally defective, resulting in diminished release
of IL-1β. We have recently shown that the cardiac dysfunction
and proinflammatory cytokines (including IL-1β) levels are
significantly diminished in septic mice lacking NLRP3 (35).
We also have shown the levels of extracellular histones were
significantly lower in plasma from mice lacking NLRP3 or C5a
receptors (24). It has been demonstrated that sepsis causes in
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FIGURE 1 | Pathophysiological consequences of sepsis. This figure is a

composite of what is currently known about the pathophysiology of

polymicrobial sepsis in mice. Onset of sepsis is associated with activation of

the three pathways of complement activation, which results in appearance of

the anaphylatoxins, C3a and C5a. Both anaphylatoxins have strong

proinflammatory effects, and both interact with their receptors, C3aR and

C5aR1 and C5aR2, especially on PMNs and macrophages. The literature

indicates that the C5a axis of activation, involving C5aR1 and C5aR2, causes

proinflammatory responses that are harmful to cells and organs. In addition,

C5a interaction with C5aR1 activates PMNs and monocytes and

macrophages which form NETs and METs that are strongly proinflammatory

and prothrombotic. Similar events occur in septic humans.

PMNs the appearance of neutrophil extracellular traps (NETs)
and in macrophages the appearance of macrophage extracellular
traps (METs) (41–44). In both cases, these traps cause adherence
of bacteria to the traps resulting in bacterial killing. At the same
time, these traps contain a host of products from leukocyte
granules, such as proteases, proinflammatory peptides as well as
extracellular histones, which are strongly proinflammatory and
prothrombotic, the composite resulting in extensive injury to
cells and organs (41–43, 45).

Biological Roles of Extracellular Histones
in Sepsis
In the setting of sepsis, many of the proinflammatory and
thrombogenic events affecting cells and organs can be attributed
to extracellular histones which derive from activated PMNs
and macrophages (41–44). We have shown numerous biological
responses, including vascular leakage, buildup of PMNs and
macrophages in organs, cell swelling and cytotoxic outcomes,
LDH release, increased [Ca2+]i in cells, and release of cytokines

and chemokines (46). We have also shown the biological
activities related to purified individual histones (H1, H2A, H2B,
H3, H4) (46). We have not yet determined to what extent
various biochemical changes that develop in histone proteins
(acetylation, methylation and ubiquination) affect the biological
function of extracellular histones, but this likely happens in a
manner that amplifies or reduces biological responses, induced
by histones.

Role of Toll-Like Receptors (TLRs) in
Biological Responses in Sepsis
It has been known for some time that TLRs function as pattern
recognition receptors and are critical for numerous responses of
the innate immune system. TLRs are also involved in responses
to LPS, with most evidence suggesting that TLR4 is critical for
cell responses to LPS (47). We have recently shown that in septic
mice, as early as 8 h after onset of sepsis, cardiomyocytes develop
dysfunction and that such dysfunction can be linked to the
role of complement activation, C5a and its receptors, as well as
extracellular histones, causing cardiomyocyte dysfunction (24).
We have seen decreased levels of [Ca2+]i in the cardiomyocytes
from knockout (KO) of either TLR2 or TLR4 after infusion of the
histones, suggesting these receptors may be linked to interactions
with histones (24).

Regarding other TLRs, we have also shown that the full
development of cardiac dysfunction developing in septic mice
requires the presence of both TLR3 and TLR9 (48). Septic
mice with KO of either TLR3 or TLR9 have attenuated cardiac
dysfunction during sepsis, but the precise pathways responsible
for such changes are not currently known. However, in recent
studies, cardiomyocytes (from normal mice) exposed to the
histone mix showed release of LDH and the septic hearts showed
release of proinflammatory cytokines (TNF, IL-6, and IL-1β) that
are greatly diminished in hearts from TLR3 or TLR9 KO mice
(48). Obviously, much more data are needed in terms of roles of
TLRs in sepsis.

Protective Interventions in Septic Mice and
Septic Humans
Based on the information in Figure 1, there are numerous
interventions that protect mice from the damaging effects of
infectious sepsis.

Complement Blockade
This has been done in septic mice using a variety of strategies,
including KO of key components (49–51) for each of the
three pathways (classical, alternative, lectin) of complement
activation. The problem with such interventions is that there
are extensive interactions involving activation products from
each pathway reacting positively with all three pathways of
complement. Accordingly, specific and limited pathway blockade
of a single complement pathway does not often occur under such
circumstances. The exception may be the C1 esterase inhibitor
which blocks C1 of the classical pathway (52). This inhibitor has
been used in human septic patients (53, 54), but the results have
not been especially impressive. C1 esterase inhibitor is currently
not used to treat septic humans (55).
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Blockade Involving C5 or C5a Receptors
The absence (by KO) of C5 or its blockade with a mAb
blocks both C5a and C5b-9 generation as obvious targets (49–
51). Blockade of C5 with mAb has been shown to block
inflammatory responses in rheumatoid arthritis (56, 57). The
use of mAb to C5 has also been approved in patients with
paroxysmal nocturnal hemoglobinuria (58) as well as patients
with myasthenia gravis (59). Using KO mice, the absence of
C5aR1 has been shown to block many of the harmful outcomes
in septic mice (23, 51). KO of C5aR1 substantially reduces the
harmful effects of sepsis in mice, reducing multiorgan injury
and greatly improving survival after CLP (23, 51, 60). There
are several companies that have developed small molecular
weight inhibitors for C5aR1, but to date none have been
approved for use in septic humans. The second C5a receptor,
C5aR2 was originally described as a C5a “default receptor,”
functioning as a compound that binds C5a, resulting in the
absence of any signal-transduction response. There is conflicting
information in the literature about the biological role of C5aR2
(formerly known as C5L2) (61, 62). Until this conflict is
resolved, it seems unlikely that C5aR2 will be a target for
pharmaceutical companies.

Blockade of Proinflammatory Peptides or Their

Receptors in Sepsis
While blockade of TNF or its receptor, or mAb to
C5 has been effective in patients with paroxysmal
nocturnal hemoglobinuria or myasthenia gravis, similar
interventions have not been successful in the setting
of sepsis in mice or humans. This is probably due

to the presence of numerous other proinflammatory
peptides appearing in septic humans with similar
biological activities.

Blockade of Histones in the Setting of Sepsis
As indicated above, it is now clear that extracellular histones
derived from activated PMNs or macrophages in septic mice
(or septic humans) appear in the plasma of septic mice or
septic humans in the early phases of sepsis (1–3 days) in
substantial amounts (25µg/ml) as determined by immunological
assays or by mass spectrometry (24, 63, 64). In septic mice,
PMNs and macrophages appear to be the chief source of
the extracellular histones. As indicated above, these histones
are intensely proinflammatory and prothrombotic. Our studies
indicate that appearance of extracellular histones in sepsis is
complement and C5aR1-dependent. This suggests an alternative
strategy to block appearance of extracellular histones in the
setting of sepsis. However, much more information will be
needed before interventions of histones in septic humans can
be considered.
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