
Commentary

Personalized signaling models for
personalized treatments

Julio Saez-Rodriguez1,2 & Nils Blüthgen3,4

Dynamic mechanistic models, that is,
those that can simulate behavior over
time courses, are a cornerstone of molecu-
lar systems biology. They are being used
to model molecular mechanisms with
varying degrees of granularity—from
elementary reactions to causal links—and
to describe these systems by various
dynamic mathematical frameworks, such
as Boolean networks or systems of dif-
ferential equations. The models can be
based exclusively on experimental data, or
on prior knowledge of the underlying
biological processes. The latter are typi-
cally generic, but can be adapted to a
certain context, such as a particular cell
type, after training with context-specific
data. Dynamic mechanistic models that
are based on biological knowledge have
great potential for modeling specific
systems, because they require less data
for training to provide biological insight in
particular into causal mechanisms, and to
extrapolate to scenarios that are outside
the conditions they have been trained on.

S uch models have been broadly applied

to study signal transduction in

mammalian cells and to analyze

signaling (dys-)regulation in disease, in

particular in cancer. By integrating the mode

of action of drugs with causal relationships

between molecular components inferred

from dynamical data, these models can be

particularly useful for understanding and

even predicting the effects of targeted thera-

pies. In addition, they can provide insights

into the adaptive behavior and rewiring of

signaling processes in response to drug

treatment. Importantly, mechanistic models

are also used to infer information about

cellular processes and molecules that cannot

be directly measured: so-called hidden (or

latent) variables. Additionally, mechanistic

models of signaling can be expanded to

model downstream processes and pheno-

typic responses, such as cell proliferation

and death, which are particularly relevant

for studying drug efficacy in the context of

cancer. However, it is often not well under-

stood how exactly these downstream

processes are connected to “upstream”

signaling events and which signaling

features cause cellular decisions. In such

cases, the models are semi-mechanistic or

based on statistical inference.

A key challenge to efficiently using

dynamic mechanistic models for personal-

ized treatments or stratifying patients is

making them patient-specific (Fig 1). Our

understanding of signaling is often based on

experiments performed in defined in vitro

contexts that do not necessarily reflect the

cellular context of interest, that is, of a

patient sample. The fact that the information

in databases is mainly agnostic to cell types

and contexts makes deriving cell-type-

specific and patient-specific models a

complex challenge.

One strategy for parameterizing models

for a specific cell type or patient is using

data obtained for the subject of interest.

Arguably, the most informative data source

for calibrating a model is perturbation

experiments, which measure the system’s

response to a stimulation or inhibition of

one or multiple nodes in the network.

Such data contain information about the

dynamics (by monitoring evolution over

time) and causality (by observing the effect

of defined alterations on other network

components). This type of data can be

obtained relatively easily if the material is

abundant, for instance when performing

in vitro experiments with specific cell lines.

Previous studies have shown that data

from cell lines from the same tumor type can

be used to build models that reflect the

heterogeneity of signaling network behavior

between different tumor subtypes. For exam-

ple, ordinary differential equation (ODE)

models parameterized with data from cell

lines have been used to understand cellular

responses to therapy and to optimize combi-

natorial therapies in melanoma cells (Korkut

et al, 2015). Qualitative networks, an exten-

sion of Boolean models (Silverbush et al,

2017) calibrated with genetic and perturba-

tion data on four leukemia cells, have

provided similar insights. Cell-line-specific

logic-ODE models trained on perturbation

data from a panel of 14 colorectal cancer cell

lines revealed parameters that correlate well

with drug sensitivity and that can be used to

choose combination therapies (Eduati et al,

2017). More coarse-grained models based on

modular response analysis that was trained

on perturbation data from a small panel of

colon cancer cell lines uncovered the ubiqui-

tous resistance mechanism of feedback

regulation in these cells which could be

overcome by combinatorial treatments; this

was validated in a xenograft model (Klinger

et al, 2013). These examples demonstrate

that models based on data from cultured

cells can be powerful tools to optimize

therapies for broader classes of tumors.
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Nevertheless, using data from cell lines

presents certain limitations, since cell lines

generally have altered signaling compared

with primary cells, and do not reflect a speci-

fic patient context. Even more important,

they do not reflect the intra-patient hetero-

geneity that results either from genetic or

from cellular heterogeneity owing to cell

hierarchies of differentiation within tissues.

In order to accurately reflect the patient-

specific context, we would ideally need to

generate (perturbation) data directly from

patient-derived material. However, this is

not possible for all tissues and disease

contexts. While blood can be obtained rela-

tively easily in sufficient amounts, material

from solid tissues is typically limited. If the

tumor is surgically removed as part of the

treatment, there is the possibility to obtain

some tumor material. In other pathologies,

either no material is removed, or only a

small amount is obtained as a biopsy for

diagnosis. Therefore, experimental technolo-

gies that perform perturbation screenings

with large throughput from small amounts

of material can be really helpful. Microflu-

idic platforms to analyze low amounts of

patient material are promising technologies

in this regard and have already been used to

generate data for patient-specific models

(Eduati et al, 2018). However, they also

have limitations, including the number of

available readouts and the fact that by

suspending the cells the tissue structure and

interactions are lost.

These ex vivo approaches are still in their

infancy, and as a result, such data are not

yet broadly available. While we expect them

to become increasingly popular, alternative

strategies that use more common and easier

to obtain data will be important, in particu-

lar in the short term. An alternative is using

basal data, e.g., quantitative or qualitative

data from a patient sample to contextualize

the model. This is fundamentally different

from model training with perturbation data.

Perturbation data are directly usable for

training, since the responses predicted by

the model after specific stimulations or inhi-

bitions can be compared to the perturbation

data. In contrast, basal data can only be used

to modify specific model parameters, such

as the concentration of molecular compo-

nents or changes in the model’s structure.

For instance, specific mutations in a patient

can render a protein dysfunctional, and this

information can be encoded in the model by

removing certain nodes (proteins) or edges

(interactions). Proteomic data, or transcrip-

tomic data as a proxy, can inform on protein

levels and can be used to reparametrize and

personalize cell-line-derived models (Fey

et al, 2015; Barrette et al, 2018).

However, while protein levels can serve

as an indication of protein activity and

consequently of signal transduction, addi-

tional processes, including post-translational

modifications (e.g., phosphorylation) or

subcellular localization, further control

protein activity. It is therefore not surprising

that when using basal data focused on

protein amounts, ODE-type (Fröhlich et al,

2018) or Boolean models (Béal et al, 2019)

show only modest performance in predicting

drug responses. Alternatively, pathway

signatures extracted from transcriptome data

might be a good proxy to assess pathway

activity, in particular using the changes in

expression induced by pathways, that is, its

“footprint” on gene expression. Such signa-

tures can be used to infer upstream-activated

pathways by means of reverse-causal

reasoning tools.

Overall, it is important to study the

process of interest using material that most

closely resembles the patient context. For

many tissues and tumor types, 3D culture

systems, also known as organoid cultures,

can be used to grow and expand tissue

samples directly from patient material.

These culture systems also allow generating

heterogeneous cell populations, which, in

several cases, resemble cell hierarchies in

the underlying tissue. The combination of

3D culture systems with single-cell analysis,

such as mass cytometry and scRNA-seq,

allows generating perturbation-response

data that capture the heterogeneous cellular

responses within a heterogeneous tissue

(Brandt et al, 2019). These systems can even

capture heterogeneity within one patient

and are a suitable experimental tool for

deriving data for patient-specific models.

Organoids have been extensively used for

intestinal tissues, but are rapidly becoming

available for other tissues and systems. By
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Figure 1. Schematic of the cycle to generate patient-specific dynamic models.

A generic model, not tailored to a patient or cell line, can be built from existing knowledge. This model can be
trained to data to build a patient-specific model (alternatively, the model can be purely generated from the
data). The model can then be used to generate predictions of therapies on the patient.
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way of example, they allow growing

complex structures such as neuronal tissues

from patient materials in conjunction with

induced pluripotent stem cells and advanced

differentiation protocols. Importantly,

genome editing methods can also be applied

to organoids, which create the possibility to

examine the effects of patient-specific muta-

tions on signaling within the context of

specific cell types and cell hierarchies for

establishing patient-specific models. To

make sure that the organoids truly represent

the tissue of the patient, it is crucial to

systematically compare their cell-type

composition and expression profiles within

cells between organoids and directly

sampled patient material. Such comparisons

can be performed with relatively good accu-

racy using single-cell transcriptomics.

We expect that technological develop-

ments including patient-derived organoids,

CRISPR genome editing, microfluidic plat-

forms, and single-cell technologies will soon

allow generating rich perturbation datasets.

These datasets can in turn be used to gener-

ate increasingly accurate patient-specific

mechanistic models. Additionally, organ-on-

chip technologies can be used to model

experimentally more complex interactions

between cell types and even organs, and will

also aid the generation of more complex

computational models. Such models will

likely provide insights into how drugs rewire

signaling and how drug resistance occurs.

Nevertheless, it remains open whether these

models, which incorporate our mechanistic

understanding derived from decades of

research on cellular signaling, are clinically

predictive or will be eventually outcompeted

by pure statistical machine-learning methods.

Clearly defined benchmarks such as the

DREAM challenges, where researchers can

test their methods and compare their perfor-

mance, will be essential to tackle this ques-

tion before conducting clinical studies that

use models for making decision on

therapies. Overall, the technologies and

approaches described above seem promising

for ultimately leading to the wider use of

mechanistic models for understanding the

mechanisms underlying disease and drug

responses and for developing truly personal-

ized therapies.
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