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Genistein is a soy derived isoflavone. It has wide variety of therapeutic effects against certain diseases including cancer. Although
toxic effects of genistein have been studied, its effect on the gene expression and the reason behind toxicity have not been identified
yet. In the present study, genistein was administered to age and body weight matched Swiss mice at the doses of 125, 250, 500 and
1000mg/kg. The biomarkers of hepatotoxicity in serum, liver histology, oxidative stress parameters in tissue homogenates, and
global gene expression were examined. Elevated alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline
phosphatase (ALP) levels and degenerated liver tissue were observed in 500, and 1000mg/kg genistein treated groups. Oxidative
stress was significant at these doses as considerable increase in lipid peroxidation (LPO) and decrease in total glutathione (GSH)
were observed. Gene expression analysis showed 40 differentially expressed genes at twofold change and 𝑃 < 0.05. Differentially
expressed genes were corresponding to different biologically relevant pathways including metabolic and oxidative stress pathways.
In 500mg/kg group, Cyp4a14, Sult1e1, Gadd45g, Cidec, Mycs, and so forth genes were upregulated.These results suggested that the
higher dose of genistein can produce several undesirable effects by affecting multiple cellular pathways.

1. Introduction

Genistein is a major soy isoflavone which occurs naturally in
diet. A wide variety of soy derived food products contain an
ample amount of genistein. Genistein has numerous benefi-
cial effects like bone health improvement [1], antilipogenic
[2], antitumor [3], antioxidant [4], anticarcinogenic [5], and
estrogenic [6]. Recent evidence suggested that genistein
is a potential candidate for cancer chemotherapy [7]. In
the USA, the average daily dietary intake of isoflavones is
1.1–1.3mg/day while it varies between 10 and 110mg/day
in China and Japan [8]. Due to high production of soy
based foodstuffs in Asia, Asian population is incessantly
exposed to isoflavones. Indeed, potential chemopreventive
effects amplified the soy consumption. Despite having useful
therapeutic properties, genistein is receiving attention as a
major environmental contaminant on the basis of increasing
conventional acute, subchronic, and chronic safety studies in
various animal models [9]. Genistein exerts adverse effects

on reproductive system of different rodent models [10] and
elevates the relative uterine weight and downregulates the
progesterone receptor in uterine epithelia [11]. Several in
vitro studies reported its clastogenic and mutagenic potential
[12–14]. Genistein induces chromosomal breakage [15] and
micronucleus [16] formation in different cell lines. It affects
cell growth and proliferation [17]. It induces apoptosis in
nerve cells at high doses through intracellular calcium ion
release and p42/44 mitogen-activated protein kinase [18].
Genistein is capable of transforming cells [19] which lead
to different kinds of cancer during developmental stage of
animals [20–22].

Although effects of genistein in different in vitro and in
vivomodels have been studied, early induced gene biomarker
and the reason behind the toxicity have not been identified
yet. In the present study, oligonucleotide microarray has
been employed for a better understanding of gene expression
signatures. In addition, effect of genistein on antioxidant
status of liver was assessed in dose-dependent manner. Acute
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doses of genistein (125, 250, 500, and 1000mg/kg) were
administered in Swiss albino mice through intraperitoneal
route. Doses and route of exposure of genistein were based
on the reported literature [7]. After considering the body
surface area index [23], doses were selected which were also
corresponding to the human exposure of isoflavonoids [8].

2. Materials and Methods

2.1. Animals and Drug Administration. 25–30 gm, 10–12-
week-old male Swiss albino mice (Mus musculus) were
obtained from Laboratory Animal Division, Central Drug
Research Institute, Lucknow. Animals were randomly allo-
cated to the following groups:

Group I: vehicle treated animals (control),
Group II: genistein 125mg/kg treated,
Group III: genistein 250mg/kg treated,
Group IV: genistein 500mg/kg treated,
Group V: genistein 1000mg/kg treated.

Each group contains six animals. All animal proce-
dures were performed in compliance with institutional ani-
mal ethics guidelines (113/09/Toxicol./IAEC dated 10.7.09).
Animals were acclimatized to optimal conditions of temper-
ature (25 ± 2∘C) and light/dark cycle (12 hr each) before
drug administration. Genistein was dissolved in DMSO and
intraperitoneally (IP) administered to Swiss albino mice.
DMSO treated animals were used as control. Food and water
were supplied ad libitum. Animals were sacrificed after 24 hr
of treatment.

2.2. Chemicals and Biochemicals. Genistein (5,7-dihydroxy-
3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one, CAS number
446-72-0), serum bovine albumin, HEPES, EDTA, EGTA,
DTT, PMSF, protease inhibitor cocktail, Ponceau S stain,
and Bradford reagent were procured from Sigma, St. Louis,
USA. DMSO, KCl, MgCl

2
, and H

2
O
2
were purchased from

Merck, India. ALT, AST, and ALP estimation kits were pur-
chased from Beckman Coulter, Ireland. TRIzol, First-Strand
Synthesis Supermix for qRT-PCR and SYBR GreenER qPCR
Supermix Universal kit were purchased from Invitrogen,
California,USA. Primary antibodies such as rabbit polyclonal
IgG SOD1, actin, and secondary antibody goat anti-rabbit
IgG-HRP were procured from Santa Cruz Biotechnology,
California. Purified mouse anti-Hsp70 antibody was pur-
chased fromBDBiosciences, USA. Enhanced chemilumines-
cent (ECL) kit was procured from GE Healthcare, UK.

2.3. Blood Collection and Serum Biochemistry. During
autopsy blood was withdrawn from each animal and allowed
to stand undisturbed for 30min. The serum was separated
and levels of ALT, AST, and ALP were estimated using
an automated biochemical analyzer (Beckman Coulter,
California, USA).

2.4. Liver Tissue Processing and Histology. A part of liver
tissue was snap-frozen in liquid N

2
within 2min of sacrifice

and subsequently stored at −80∘C for further use in RNA
and protein isolation and the second part was frozen for
different enzymatic assays. Another part of tissue was fixed in
10% formal saline for histological investigations. Fixed liver
tissues were washed overnight, dehydrated through graded
alcohols, and embedded in paraffin wax. Serial sections of
5 𝜇m thickness were stained with hematoxylin and eosin (H
and E) for histological examinations.

2.5. Liver Tissue Biochemistry. Liver tissue homogenates
were used for antioxidant enzymatic assays. Malondialde-
hyde (MDA) concentration (a measure of lipid peroxida-
tion, LPO), total glutathione content (GSH), and antiox-
idant enzymes activities (superoxide dismutase, catalase,
glutathione peroxidase, and glutathione reductase) were
estimated using standard tests [24–29]. Lowry method was
used to estimate the total protein content with serum bovine
albumin as a standard [30]. Readings of all assays were taken
in spectrophotometer (Powerwave XS, BIO-TEK, USA).

2.6. RNA Isolation, cDNALabeling, andHybridization. 50mg
frozen liver tissue was crushed in liquid N

2
and immediately

homogenized (Heidolph, Germany) in 1ml TRIzol to isolate
total RNA. After quantification from spectrophotometer
(Amersham Biosciences, UK) and running on formaldehyde
gel, RNA samples with approximately 2 : 1 ratio of 28S : 18S
rRNA and 260/280 values ≥ 1.8 were used for gene expression
analysis. Equal amounts of RNA from individuals of the same
group were pooled to eliminate interindividual variations.
RNA samples were labeled using the T7 promoter based-
linear amplification to generate labeled complementary RNA
(Agilent Quick-Amp Labeling Kit). Quality control (QC)
was performed using nanodrop and cRNA was purified
using Qiagen’s RNeasy minikit. The amplified and labeled
cRNA was hybridized to mouse 60K whole genome arrays
using Agilent’s In Situ Hybridization kit (Agilent microarray
services, Genotypic Technology, Bangalore, India).

2.7. Scanning and Microarray Data Analysis. The arrays
were washed with buffers and subsequently scanned with
confocal laser scanner to collect raw data. Intensity val-
ues were extracted and percentile shift normalization was
performed by using GeneSpring GX 11.0 software. It is
a global normalization, where the locations of all spot
intensities in an array are adjusted. This normalization
takes each column in an experiment independently and
computes the percentile of expression values for this array,
across all spots (where 𝑛 has a range from 0 to 100 and
𝑛 = 75 is the median). It subtracts this value from the
expression value of each entity. Analysis was done with
respect to control samples and statistically significant differ-
ence between control and genistein administered mice was
deduced with two sample t-tests and probes with 𝑃 < 0.05
and twofold differential expression at all doses were iden-
tified. Raw and log-transformed data have been submitted
toGene ExpressionOmnibus database (http://www.ncbi.nlm
.nih.gov/geo/query/acc.cgi?acc=GSE23523) and conform to
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MIAME guidelines developed by Microarray Gene Expres-
sion Data (MGED) Society.

2.8. Clustering Algorithm and Pathway Analysis. Clustering
algorithm was applied for the identification of patterns in
gene expression data. Hierarchical clustering was used to
join data in a single group having the most similar expres-
sion profiles. Average linkage method was used to measure
the pair-wise distance between entities in two clusters and
application of Pearson uncentered correlation measured the
similarity or difference between entities. Significant pathways
for the differentially regulated genes were obtained using
Biointerpreter (Genotypic Technology, Bangalore, India).
Pathways that show𝑃 < 0.05 for differentially regulated genes
were taken into consideration.

2.9. Quantitative Real Time PCR Analysis. Real time PCR
analysis was performed according to the supplier protocol
(Invitrogen, California, USA) using Superscript III First-
Strand Synthesis Supermix for qRT-PCR and SYBR GreenER
qPCRSupermixUniversal kit in 20𝜇L volumes perwell of 96-
well clear optical reaction plates.The components of reaction
were SYBR Green PCR Master Mix (Invitrogen, California,
USA), cDNA template, forward and reverse primers (Table 1),
and nuclease-free water (Sigma, USA). PCR reactions were
performed in Light Cycler 480 Real Time PCR instrument
and analyzed according to accompanying software instruc-
tions (Roche Diagnostics Ltd., Switzerland). Beta-actin was
used as an internal control and used to normalize ratios
between samples. For primer pair, melting curve analysis was
performed according to the instrument software instructions.
Program was an initial incubation of 50∘C for 2min hold
(UDG incubation) and 95∘C for 10min followed by 40 cycles
at 95∘C for 15 s, 60∘C for 60 s. Relative change in mRNA level
between control and treated groups were calculated by using
2
−ΔΔ𝐶T method.

2.10. Western Blot Analysis. Proteins were isolated from liver
tissue using modified protocol [31]. Tissues from control and
treatment groups were homogenized with 5–10 volumes of
lysis buffer (200mM HEPES, 10mM KCl, 1.5mM MgCl

2
,

1 mM EDTA, 1mM EGTA, 1mM DTT, 2mM PMSF, and 1X
protease inhibitor cocktail). Cellular debris was spun down
at 20,000 g for 30min at 4∘C and supernatants were used
as whole protein extract. Isolated proteins were quantified
using Bradford reagent. 50𝜇g protein from each sample was
separated on 15% SDS-PAGE and transferred on to a nitrocel-
lulose membrane using a semidry electroblotting apparatus
(GE Healthcare, UK). Transfer was examined by Ponceau S
stain and washed with triple distilled water until the stain
disappeared. Membrane was overnight blocked in 5% nonfat
dried milk at 4∘C. Blocking membrane was washed with 0.1%
PBST and probed with primary antibodies (actin, SOD1, and
Hsp70). After primary antibody incubation further washing
was done in 0.1% PBST. Membrane was incubated in HRP
conjugated secondary antibody and washed again. Enhanced
chemiluminescent detection system was used to develop the

blots. Blots were further used for densitometric analysis and
normalization.

2.11. Statistical Analysis. Data were expressed as mean ±
standard error ofmeans (SEM).Groupmeanswere compared
by one-way analysis of variance (ANOVA) followed by
Newman-Keuls multiple comparison test. The differences in
data obtained were considered statistically significant when
𝑃 < 0.05.

3. Results

3.1. Level of Serum Biomarkers. A significant increase in
serum ALT (𝑃 < 0.01), AST (𝑃 < 0.05), and ALP (𝑃 <
0.05) level was found in higher doses (Groups IV and V) of
genistein as compared to control (Group I). However, serum
ALT, AST, and ALP level did not change in Group II and III
animals as compared to control (Figures 1(a), 1(b), and 1(c)).

3.2. Histological Examination of Liver Tissue. Liver sections
of Group II and Group III animals showed well distributed
normal hepatocytes, central vein, bile duct, and hepatic
artery with no histological alterations as compared to control
(Group I). In the liver sections of Group IV and Group
V animals, hydropic changes were observed in hepatocytes
(Figures 2(a), 2(b), 2(c), 2(d), and 2(e)); these changes were
characterized by ballooning and degeneration.

3.3. Lipid Peroxidation Level. Malondialdehyde (MDA), a
secondary product of lipid peroxidation, was not altered in
Group II and III animals as compared to control (Group I).
However, a significant increase in MDA concentration was
observed in the liver of Group IV and V (𝑃 < 0.05) genistein
treated animals (Figure 3(a)) as compared to control.

3.4. Total Glutathione Estimation. Total glutathione content
in higher treatment groups (Group IV; 𝑃 < 0.05 and Group
V)was significantly decreased as compared to control (Group
I). In other dose groups (Groups II and III), glutathione
content did not change as compared to control (Figure 3(b)).

3.5. Activity, mRNA, and Protein Level of SOD. In Group IV
and V genistein treated animals, SOD activity (Figure 3(c);
𝑃 < 0.05) was decreased significantly; however, no significant
changes were observed in Group II and III genistein treated
animals as compared to control group. SOD1 protein level
(Figures 5(a) and 5(b)) was decreased in Group IV and
V animals as compared to control; however, no significant
change was observed in Group II and III animals. In
lower treatment groups (Groups II and III), SOD1 mRNA
(Figure 4(a)) level was increased; however, in the highest
treatment group (Group V) mRNA level was decreased. In
Group IV animals, SOD1 mRNA level did not change as
compared to control (Group I).

3.6. Activities and mRNA Level of CAT, GPX, and GR. In
higher dose groups of genistein (Groups IV and V), CAT
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Table 1: List of primers used in quantitative real time polymerase chain reaction.

Gene Forward primer (5-3) Reverse primer (5-3)
Actb GGCTGTATTCCCCTCCATCG CCAGTTGGTAACAATGCCATGT
Sod1 TTTTTGCGCGGTCCTTTCCTG GGTTCACCGCTTGCCTTCTGCT
Cat1 AGCGACCAGATGAAGCAGTG TCCGCTCTCTGTCAAAGTGTG
Gpx1 ATGTCGCGTCTCTCTGAGG CCGAACTGATTGCACGGGAA
Gr GGCAACAGGGTGATGATCTTC CTGGAAAGTTCGGTCACATCC
Sult3a1 AGATGTGGTAGGAAGCCTTTGG CTTGTCTCACAACAGCATCCA
Cyp4a14 GTCTCTCGGGGAGCAATATACG ACCAATCCAGGGAGCAAAGAA
H2-t24 TCGGCAATACTACAACAGCTCT ATCGTAGCCATACTGCCAATG
Adrbk2 AGGAGGGTTTGGGGAAGTTTA CATGATCCTCTCGTTCAAAGCC
Elovl3 TTCTCACGCGGGTTAAAAATGG GAGCAACAGATAGACGACCAC
Olfr1274 GTTCCTGCTTACGATGATGGC GCAAGGGAATGGACAAAACCT
Spn AACCATCAAATGTAGCCAGTGAC GGTCTCGTTAGAGCTTGTTGTC
Gemin6 GCCAACATTGTCCTCGTAAACT TGTGGTCCCCTTCACTTATGG
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Figure 1: Level of serum biomarkers of hepatotoxicity: bar diagrams are showing the levels of (a) alanine amino transferase (ALT), (b)
aspartate amino transferase (AST), and (c) alkaline phosphatase (ALP) following the administration of genistein at different doses (i.e., Group
I: vehicle treated control, Group II: 125mg/kg, Group III: 250mg/kg, Group IV: 500mg/kg, and Group V: 1000mg/kg).The asterisks indicate
the significance of differences ( ∗𝑃 < 0.05, ∗∗𝑃 < 0.01, and ∗∗∗𝑃 < 0.001) in comparison to control.
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Figure 2: Histological examination of liver sections: photomicrograph of transverse sections ofmice liver. (a) Group I: vehicle treated control,
(b)Group II: 125mg/kg, (c)Group III: 250mg/kg, (d)Group IV: 500mg/kg, and (e)GroupV: 1000mg/kg.Hydropic changes and degeneration
of cytoplasm within hepatocytes were observed in Group IV 500mg/kg and Group V 1000mg/kg genistein treated animals. Arrows indicate
the degenerated hepatocytes in 500 and 1000mg/kg genistein treated groups.

and GPX activities (Figures 3(d) and 3(e)) were significantly
decreased. CAT and GPX activities did not alter in lower
treatment groups (Groups I and II) of genistein as compared
to control. A decrease in GR activity (Figure 3(f)) was found
in Group IV and V animals. In lower treatment groups
(Groups I and II), GR activity did not change as compared
to control.

In Group IV and V animals, a significant decrease in
CAT1 and GR mRNA level was found; however, GPX1
mRNA did not change in these groups as compared to
control (Figures 4(b), 4(c), and 4(d)). CAT1 mRNA level was
significantly increased in lower treatment groups (Groups
II and III) (Figure 4(b)). GPX1 mRNA level was increased
in Group II animals; however, it did not change in Group
III animals as compared to control (Figure 4(c)). GR mRNA
level did not change in Group II animals; however, it was
increased in Group III animals (Figure 4(d)).

3.7. Protein Level of Hsp70. Protein level of Hsp70 was
decreased during the genistein treatment (Figure 5(a)). Den-
sitometry analysis and normalization with actin showed the
maximum decrease in Group IV and V (𝑃 < 0.05) genistein
treated groups as compared to control (Figure 5(c)).

3.8. Differential Gene Expression Analysis. Following genis-
tein exposure, mRNA expression in mice liver was assessed
with 60,000 unique probes. A statistical stringent criterion
(twofold change and 𝑃 < 0.05) identified 40 differen-
tially expressed probes consisting of 20 upregulated and 20
downregulated probes (Table 2). Few differentially expressed
probes have no sequence similarity with any known gene and
have not been assigned any biological function. Moreover,
real time PCR analysis of selected genes (Table 1) showed
similar trend of regulation as found in differential expression
to microarray results.

3.9. Affected Pathways and Cluster Analysis. Differentially
regulated genes were clustered using hierarchical clustering
to identify significant gene expression patterns. The most
similar expression profiles are joined together to form a
group. These were further joined in a tree structure, until
all data forms a single group. Genes were classified based
on functional category and pathways using Gene Spring
GX Software and Genotypic Biointerpreter-Biological Anal-
ysis Software. Major pathways were identified that showed
signs of genistein induced perturbations including oxidative
stress, metabolic, inflammatory, and MAPK kinase related
pathways (Figure 6; see Table S1 in Supplementary Material
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Figure 3: Level of oxidative stress parameters: bar diagrams are showing (a) lipid peroxidation level, (b) total glutathione content, (c)
superoxide dismutase (SOD) activity, (d) catalase (CAT) activity, (e) glutathione peroxidase (GPX) activity, and (f) glutathione reductase (GR)
activity in mice liver following the administration of genistein at different doses (i.e., Group I: vehicle treated control, Group II: 125mg/kg,
Group III: 250mg/kg, Group IV: 500mg/kg, and Group V: 1000mg/kg).
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Figure 4: Quantitative real time PCR analysis of stress regulated genes: (a) SOD1, (b) CAT1, (c) GPX1, and (d) GR genes in the mice liver
treated with different doses of genistein (control, 125, 250, 500, and 1000mg/kg). Bars: I: control, II: 125mg/kg, III: 250mg/kg, IV: 500mg/kg,
and V: 1000mg/kg.

available online at http://dx.doi.org/10.1155/2014/619617). We
further analyzed the differentially regulated genes of Group
IV (500mg/kg genistein) animals to detect the changes at
transcript level and found that a large number of genes
related to cancer pathways were upregulated; however, the
metabolic pathway related genesweremajorly downregulated
(Figure 7).

4. Discussion

In the present study, effects of genistein on the mice liver
were evaluated. Acute doses of genistein were intraperi-
toneally administered. We observed hepatotoxicity in 500
and 1000mg/kg genistein treated animals in terms of elevated
serumALT,AST, andALP level.These three parameters (ALT,

AST, and ALP) are established hepatotoxicity biomarkers
and utilized to monitor acute liver injury [32]. Few other
flavonoids have already been reported to induce significant
hepatic damage during intraperitoneal exposure. Galati et
al. found the 4-fold increased plasma ALT level after 24 hr
when tea polyphenols like EGCG (120mg/kg), propyl gal-
late (170mg/kg), gallic acid (500mg/kg), and tannic acid
(120mg/kg) were administered intraperitoneally in CD-1
mice [33]. In our previous study [34], acute doses of apigenin
(100 and 200mg/kg) elevated the serum biomarkers level
(ALT, AST, and ALP) in Swiss albino mice. In the present
study, we observed the histological alterations which were
characterized by ballooning and degeneration of hepatocytes
in higher doses (500 and 1000mg/kg) further confirm the
hepatotoxicity at these doses. Unaffected liver histoarchitec-
ture in 125 and 250mg/kg doses supported the serumfindings
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Figure 5:Western blot analysis of SOD1 andHsp70. (a)Western blots of SOD1, Hsp70, and actin proteins. (b, c) Bar diagrams are showing the
relative band intensity of (b) SOD1 and (c) Hsp70 after normalization with actin. Bars: I: vehicle treated control, II: 125mg/kg, III: 250mg/kg,
IV: 500mg/kg, and V: 1000mg/kg.

evocative of nontoxic effects of genistein at these doses. This
may be due to the acute treatment of genistein. Previous
investigators also accounted for negative correlation between
altered serum markers and histological changes [32].

By knowing the fact that the flavonoids may act as
prooxidant and may generate oxidative stress which might
be the reason for hepatotoxicity, we examined the activity
and expression of major antioxidant enzymes. One of the
consequences of oxidative stress is the elevation in LPO
level. In our study, a significant increase in LPO at higher
doses (500 and 1000mg/kg) rendered a clear indication of
ROS generation. Other flavonoids have also been reported
to increase LPO level during ROS generation [35]. In the
present study, decreased activity and expression of SOD,
CAT, GPX, and GR in higher treatment groups (500 and
1000mg/kg) might be the consequence of decreased de novo
synthesis of enzymes [36] or irreversible inactivation of

enzymes from increased free radical generation [37] through
genistein metabolism. Decrease in GR along with GSH
suggested the overall reduction in GSH/GSSG ratio which
may shift the biological system towards different biological
states like proliferation, differentiation, apoptosis, or necrosis
[38]. Furthermore, the dose-dependent reduction in Hsp70
expression by genistein indicated the apoptosis induction
[39]. It has been reported that the Hsp synthesis is blocked
by quercetin (a flavonoid) [40].

Microarray analysis was performed for 125, 250, and
500mg/kg genistein treated animals to find out the earlier
changes in gene biomarkers before the onset of the liver
injury. Genomicmarkers aremore reliable in short term acute
toxicity studies where the phenotypic signs and symptoms
may have not been fully developed [41]. In the present study,
40 differentially regulated genes were identified at twofold
change and 𝑃 < 0.05. To obtain the profoundness of
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Figure 6: Cluster analysis of differentially expressed genes: a portion of the k-means clusters of differentially regulated genes (oxidative
stress, glutathione metabolism, defense, MAPK, triglyceride, ETS, glycolysis, cholesterol, steroid, and fatty acid related genes) following the
administration of genistein at different doses 125mg/kg (Group II), 250mg/kg (Group III), and 500mg/kg (Group IV) involved in different
pathways as compared to vehicle treated control (Group I).

gene expression results, we grouped genes under selected
functional categories: (i) stress and glutathione metabolism
related genes, (ii) defense and MAPK pathway related genes,
(iii) ETS and glycolysis pathway related genes, and (iv) fatty
acid, cholesterol, steroid, and triglyceride metabolism related
genes.

(i) Stress andGlutathioneMetabolismRelatedGenes.Themost
striking finding of our study is the massive downregula-
tion of oxidative stress and glutathione metabolism related

genes. For example, Nuclear Factor (Erythroid-Derived 2)-
Like 2 (NRF2), Glutathione S-transferase pi 1 (GSTP1),
Microsomal glutathione S-transferase 1 (MGST1) were down
regulated. Expression of different isoforms of peroxiredox-
ins, for example, PRDX3, was also decreased. PRDX3 is
located in mitochondria and guards emergent tumor cells
against apoptosis [42]. It is reported that the absence or
low level of PRDX3 declines the ability of mitochondria to
neutralize ROS and potentiates early apoptosis in MCF7 cells
when exposed to PP2 (a derivative of pyrimidine) [43]. In
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Figure 7: Pathway analysis: pie chart is showing the significant pathways of (a) upregulated and (b) downregulated genes obtained after using
Biointerpreter software in 500mg/kg genistein (Group IV) treated animals. Pathways were identified after applying the criterion of 𝑃 < 0.05.
Number within the square bracket [] specifies the number of genes in the pathway in genome.

the present study, its downregulation indicated the induction
of apoptosis in mice liver cells. Moreover, we found the
decreased mRNA expression of Prnp, Stip1, Hsp70, and Sod
genes. Stip1 provides potential to germ cells to survive in

stress conditions [44] and exist in amacromolecular complex
with the proteins of Hsp70 and 90 families [45]. Prnp, a
cellular prion protein, cooperates with Stip1 and regulates
superoxide dismutase activity in neuronal cell lines [46].
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Coordinated downregulation of these genes suggested the
augmentation of stress within liver cells. Furthermore, down-
regulation of glutathione synthetase genewhich is involved in
GSH biosynthesis corroborated the finding of GSH depletion
in higher doses of genistein.

(ii) Defense and MAPK Pathway Related Genes. Genistein
modulated the expression of defense andMAPK related path-
way genes. Administration of 500mg/kg genistein induced
the transcriptional upregulation of certain immunomodula-
tory genes, for example, interferons (Ifna6), interleukins (Il6),
and chemokines receptor (Ccr5) genes. In previous reports,
IL-6was upregulated in intravesical bacillusCalmette-Guerin
(BCG) therapy of superficial bladder cancer [47] and IFN-
𝛼6 expression was increased with other subtypes of inter-
feron alpha (IFN-𝛼2, IFN-𝛼4, IFN-𝛼5, IFN-𝛼7, and IFN-
𝛼10) in HIV-1 patients at different stages [48]. Similarly,
CCR5 expression was increased in adult rats infected with
Borna disease virus (BDV) [49]. Chemokines and their
receptors participate in many pathophysiologic conditions,
such as inflammation and autoimmunity. In the present study,
upregulation of P2RX7 indicated the regulation of immune
function and neurotransmitter release by genistein. P2RX7
is a purinergic ATP-binding calcium channel expressed in
microglial cells and considered a candidate gene in type I
diabetes [50]. The upregulation of fibroblast growth factor
17 (FGF17) and epidermal growth factor receptor (EGFR)
by genistein clearly indicated the stimulation of different
signaling pathways which have been known to be involved
in cancer. FGF17 either enhances cellular proliferation or
inhibits apoptosis [51] and EGFR induces signaling pathway
in different kinds of cancer, namely, lung and anal cancer
[52]. We found the downregulation of apoptosis-inducing
factor (AIF) which pointed towards apoptosis induction.
AIF is a caspase-independent apoptosis effector and protects
neurons from oxidative stress-induced apoptosis in vivo
[53].

(iii) ETS and Glycolysis Pathway Related Genes. mRNA of
genes involved in ETS and glycolysis pathways were dif-
ferentially expressed by genistein treatment. Cyp4a14 was
induced more than 4.4-fold in 500mg/kg genistein treated
animals. Cyp4a14 is a member of cytochrome family CYP450
and plays a key role in metabolism of endogenic substances
and xenobiotics [54]. It is reported that these proteins may
interact with flavonoids by three ways: flavonoids can induce
biosynthesis of certain CYPs, flavonoids can modulate enzy-
matic activity of CYPs, and flavonoids can be metabolized
by several CYPs [54]. During metabolism, cytochrome P450
produces othermetabolites having biological activities unlike
from parent compound [55]. Thus, it can be speculated
that genistein metabolites rather than the parent compound
might have mediated the biological response. We found
that the succinate dehydrogenase complex, subunit A (SDH
A) was downregulated more than twofold in 500mg/kg
genistein dose group. SDHAaccepts electrons from succinate
during the conversion of succinate to fumarate in citric acid
cycle. Its downregulation clearly indicated the impairment in
metabolic regulation at a high dose of genistein. In the present

study, differential regulation of other genes like Ndufs7, Cyc1,
and Cyb5 of electron transport chain might have induced
the premature electron leakage which ensued in oxidative
stress.

(iv) Fatty Acid, Cholesterol, Steroid, and Triglyceride Me-
tabolism Related Genes. It is well recognized that CYP450
genes do not only participate in xenobiotic metabolism
but are also involved in fatty acid, cholesterol, steroid, and
triglyceride metabolism. In the present study, differential
expression of CYP450 family genes like Cyp4a29, Cyp7b1,
Cyp4a14, Cyp2d10, Cyp2d26, Cyp7b1, Cyp3a25, Cyp2d9, and
Cyp3a41b by different doses of genistein suggested the com-
parable regulation mechanism by CYP enzymes that might
be involved in oxidative stress relatedmetabolic pathways.We
found the differential expression in solute carrier family genes
(Slc27a5, Slc10a2, and Slc37a4) which have been reported
to be involved in vacuole formation in hepatocytes through
transport of fatty acids [56]. Lower doses of genisteinwere not
toxic; however, higher doses potentially induced the hepato-
cellular vacuolization. In the present study, upregulation of
Sult1e1, a phase 2metabolismgene, indicated the possibility of
sulfation of genistein. This might have contributed the resis-
tance against this compound and conferred the glutathione
depletion by enhancing the alternative route of genistein
detoxification. Moreover, genistein modulated the steroid,
fatty acid, and triglyceride metabolic pathways by regulating
the mRNA expression of different enzymes (Hsd3b1, Hsd3b7,
Hsd17b4, Hsd3b5, and Hsd17b11) and receptors (RXR-𝛼).

In conclusion, elevated level of traditional serum bio-
markers, degenerated hepatocytes, altered oxidative stress
parameters, and differentially regulated genes are appar-
ent indication of hepatotoxicity in genistein (500 and
1000mg/kg) treated animals. Upregulation of cancer related
pathways indicated the genistein induced perturbationwhich
may lead to the several deleterious effects. This evidence
suggested that there is a need to limit and regulate the dose of
genistein in dietary supplements and in cancer therapeutics.
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