
Human visual cortical gamma reflects natural image structure

Nicolas M. Bruneta, Pascal Friesb,c,*

aMillsaps College, Department of Psychology and Neuroscience, 1701 North State Street, 
Jackson, MS, 39210, USA bErnst Strüngmann Institute (ESI) for Neuroscience in Cooperation 
with Max Planck Society, Deutschordenstraße 46, 60528, Frankfurt, Germany cDonders Institute 
for Brain, Cognition and Behaviour, Radboud University Nijmegen, Kapittelweg 29, 6525 EN, 
Nijmegen, Netherlands

Abstract

Many studies have reported visual cortical gamma-band activity related to stimulus processing and 

cognition. Most respective studies used artificial stimuli, and the few studies that used natural 

stimuli disagree. Electrocorticographic (ECoG) recordings from awake macaque areas V1 and V4 

found gamma to be abundant during free viewing of natural images. In contrast, a study using 

ECoG recordings from V1 of human patients reported that many natural images induce no gamma 

and concluded that it is not necessary for seeing. To reconcile these apparently disparate findings, 

we reanalyzed those same human ECoG data recorded during presentation of natural images. We 

find that the strength of gamma is positively correlated with different image-computable metrics of 

image structure. This holds independently of the precise metric used to quantify gamma. In fact, 

an average of previously used gamma metrics reflects image structure most robustly. Gamma was 

sufficiently diagnostic of image structure to differentiate between any possible pair of images with 

>70% accuracy. Thus, while gamma might be weak for some natural images, the graded strength 

of gamma reflects the graded degree of image structure, and thereby conveys functionally relevant 

stimulus properties.
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1. Introduction

When visual cortex is activated by the presentation of appropriate stimuli, it typically 

engages in gamma-band activity. This has originally been found in anesthetized cats 

stimulated by moving bars (Gray et al., 1989). It was later extended to awake non-human 
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primates (Brunet et al., 2014b; Friedman-Hill et al., 2000; Fries et al., 2001; Kreiter and 

Singer, 1992; Maldonado et al., 2000) and human subjects (Adjamian et al., 2004; 

Hoogenboom et al., 2006; Self et al., 2016). If gamma plays a role for natural vision, it 

needs to be present under natural conditions. In a previous study, Brunet et al. (2015) used 

electrocorticography (ECoG) to record local field potentials (LFPs) from awake macaque 

areas V1 and V4, while the animals freely viewed natural images. LFP power in V1 showed 

a clear spectral peak in the gamma band, and gamma-band power was significantly 

enhanced for each of 65 natural images tested. Across the ECoG grid, gamma-band activity 

during natural viewing was present over most of the recorded visual cortex and absent over 

most remaining cortex. The study therefore concluded that gamma-band activity is involved 

in natural viewing. This agrees with the results of another study, which recorded neuronal 

activity in macaque visual cortex with sharp microelectrodes and found strong gamma 

during free viewing of natural images (Gray and Goodell, 2011).

A later study by Hermes et al. (2015) investigated the same question in a human subject 

implanted with ECoG over early visual cortex. Human ECoG recordings from early visual 

cortex are a rare opportunity, because electrodes are placed according to clinical criteria, 

which mostly exclude early visual areas. Hermes et al. used a number of different visual 

stimuli, including gratings and plaids, different types of visual noise, noise-masked natural 

images and unmodified natural images. They report “that ECoG responses in human visual 

cortex (V1/V2/V3) can include robust narrowband gamma oscillations, and that these 

oscillations are reliably elicited by some spatial contrast patterns (luminance gratings) but 

not by others (noise patterns and many natural images).” They conclude that “gamma 

oscillations can be conspicuous and robust, but because they are absent for many stimuli, 

which observers can see and recognize, the oscillations are not necessary for seeing.”

Here, we reinvestigate this issue. Close inspection of the Hermes et al. study suggests that 

there is a relation between the strength of narrow-band gamma and the degree of structure in 

the employed natural images (Brunet et al., 2014a). To investigate this in detail, we 

quantified image structure by using the relative-degree-of-focus (RDF) metric, an image-

computable metric developed in machine vision (Pertuz et al., 2013). A high RDF value 

indicates that an image contains a high degree of structure. We find that the RDF determines 

the strength of the induced gamma-band activity in the data recorded with natural images 

that Hermes et al. had previously analyzed. This is independent of whether we quantify 

gamma-band activity as we did previously or as proposed by Hermes et al. In fact, an 

average of the two metrics shows the highest correlations with RDF. The relation between 

image structure and gamma is so reliable that the gamma power spectrum discriminates 

between any two of the employed natural images with up to 70% correct performance. The 

systematic dependence between natural image content and gamma strength suggests a 

functional role of gamma in vision. In fact, it is reminiscent of the systematic dependence 

between image contrast and neuronal firing rates, which are generally assumed to play a role 

in vision.
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2. Materials and methods

2.1. Subject and electrode placement

Neuronal data was collected from a 45-year-old male patient, who was implanted with 

intracranial ECoG electrodes (Fig. 1) to localize the source of medication-resistant seizures. 

The procedure was approved by the Stanford Institutional Review Board. The data was used 

for previous studies focusing on electrodes placed on the surface of the fusiform gyrus 

(Parvizi et al., 2012) or ventral temporal cortex (Jacques et al., 2016). In addition, the data 

from two electrodes placed above foveal V1 was used in the supplementary materials of a 

study on gamma oscillations in visual cortex (Hermes et al., 2015). For the current study, we 

analyzed the data recorded from the six electrodes highlighted in Fig. 1, which includes the 

data analyzed by Hermes et al. for their Fig. S3. The data and the code used to analyze the 

data will be made available upon request.

ECoG electrode positions on the brain (Fig. 1) were determined as described in (Parvizi et 

al., 2012). Imaging data were obtained using a GE 3-Tesla Signa scanner at Stanford 

University. A high-resolution anatomical volume of the whole brain was acquired with a 

head coil using a T1-weighted SPGR pulse sequence. Data were aligned to the AC-PC plane 

and resampled to 1 mm isotropic voxels. Both fMRI data and electrocorticography (ECoG) 

electrode locations were aligned to this brain volume. This volume was segmented to 

separate gray from white matter, which was used to reconstruct the subject’s cortical surface.

2.2. Stimuli and task

The subject was instructed to foveate a dot in the center of the screen. Eye position was not 

measured. Stimuli were displayed for 1 s with an inter-stimulus interval varying from 0.6 to 

1.4 s. We used the last 0.5 s of the inter-stimulus interval as pre-stimulus baseline epoch. 

The stimuli were 500 unique images, each subtending 10 10 degree of visual angle, centered 

on the fixation dot. The subject participated in 2 runs of a block-design experiment, during 

which images of faces, limbs, flowers, houses, cars, guitars, and scrambled objects were 

shown in 12 s blocks (Weiner and Grill-Spector, 2010). Each run consisted of 4 blocks of 

each condition and 6 blank blocks. The subject was requested to keep fixation on the central 

dot and to press a button, when two consecutive images were identical (one-back task). For 

the current study, only those images were used that were presented multiple times within the 

recording session. This applied to photos of faces, houses, cars and limbs and amounted to 

72 unique photos (Fig. 3). Each of those photos was presented 5 to 7 times, and all those 

presentations were used.

2.3. Data analysis

2.3.1. General data analysis, data preprocessing and spectral analysis—All 

analyses were performed in MATLAB (MathWorks) and used the FieldTrip toolbox (http://

www.fieldtriptoolbox.org/) (Oostenveld et al., 2011). Raw signals were low-pass filtered at 

250 Hz and downsampled from 3.05 kHz to 1 kHz. To remove the common recording 

reference, we subtracted signals from neighboring electrodes from each other, and refer to 

the resulting bipolar derivation as a (recording) site; This reduced the data from 6 electrodes 

to 5 sites. A 60 Hz notch filter was applied during recording (Fig. 2; gray shaded areas). No 
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further data selection or pre-treatment, like artifact rejection, was performed. For each of the 

432 trials, we extracted a baseline epoch from 0.5 to 0 s, and a stimulation epoch from 0.3 to 

0.8 s with respect to stimulus onset (red lines in Fig. 2B). The first 0.3 s after stimulus onset 

were discarded to minimize the influence of strong response onset transients and the 

corresponding non-stationarities in the signals. The data epochs were Hann tapered and 

Fourier transformed, covering a range from 4 to 200 Hz in steps of 2 Hz.

2.3.2. Specific analyses—For Fig. 2, we averaged spectral power over all baseline 

epochs and used this baseline power spectrum to calculate the percent change in power for 

each stimulus epoch. Fig. 2A shows the average (±1 SEM) of those power change spectra, 

separately for the different recording sites. Fig. 2B shows the time-resolved power change 

for site 3.

For Fig. 3 (leftmost number below each image) and Fig. 4A, we used the ranks published in 

Fig. S3 of Hermes et al. Those ranks are based on their estimate of narrowband gamma 

power increases. To capture broadband and narrowband gamma increases separately, they 

fitted the following function to the average log spectrum from 35 to 200 Hz (leaving out 60 

Hz line noise and harmonics) from each condition:

P x = βbroadband − nx + βnarrowbandG x μ, σ

In which,

x = log 10 frequency

G x μ, σ = e− x − μ 2/2σ2

with 10σ’ = 1.1 Hz and 35 Hz < 10μ < 80 Hz.

The slope of the log–log spectral power function (n) was fixed for each electrode by fitting it 

based on the average power spectrum of the baseline.

For Fig. 3 (rightmost number below each image) and Fig. 4B, we calculated the power 

change of recording site 3 in the gamma band (30–80 Hz) for the stimulation epoch, 

separately for each image, and averaged over all presentations of that image.

2.3.3. Relative Degree of Focus (RDF)—To quantify the degree of image structure, 

we employed a class of operators from computer vision, which are all intended to capture 

the Relative Degree of Focus (RDF) in an image. The RDF can be computed for any 

luminance image and therefore constitutes an image-computable metric (Schütt and 

Wichmann, 2017). The underlying assumption is that a focused image presents more sharp 

edges than an image that is out of focus. In order to quantify the RDF of a given image, a 

focus measure operator is used to calculate the focus level for every pixel of the image 

(Pertuz et al., 2013). Different approaches have been used to design focus measure 
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operators. While some emphasize sharp versus blurred edges, such as the gradient-based 

operators, others measure frequency and spatial content of the image, such as wavelet-based 

operators. To avoid edge effects, the operator output was used for the central 80% of the 

image in both vertical and horizontal dimensions, ignoring 10% of the images close to all 

their edges. The correlation between gamma-band activity of site 3 and the RDF is 

illustrated for one example operator, namely the DCT (Discrete Cosine Transform) Energy 

measure, in Fig. 4A and B. We list the correlation for various other RDF operators in Table 

1.

2.3.4. Classification—For the analysis shown in Fig. 7, we used a linear Support Vector 

Machine (SVM). Specifically, we used the Matlab functions “svmtrain” and “svmclassify” 

for training and classification, respectively. The SVM was repeatedly trained on the spectral 

power recorded during the multiple presentations of two different images, and then used to 

classify the power recorded during a retained presentation of one of the two images. In 

detail, the following procedure was applied: 1) For any given pair of images, the power 

spectra for each presentation of either one of the images were obtained; 2) The power 

spectrum for one selected presentation of one of the images was retained and later used for 

classification; 3) For the remaining power spectra, the number of spectra was matched 

between the two images by random subselection, and those spectra were used to train the 

SVM; 4) The trained SVM was applied to classify the retained power spectrum; 5) The 

classification was identified as either correct or incorrect. This procedure was applied 

separately for each recording site. For a given recording site, the procedure was applied 

sequentially for all possible image pairs. For each image pair, the procedure was applied 

sequentially, each time selecting one presentation of one of the images to be retained, until 

all presentations of both images had been selected. The colored lines in Fig. 7 report the 

classification performance averaged over all image pairs (N (72 × 71)/2 = 2556 pairs) and all 

individual presentations, separately for each recording site; the black line reports the 

classification performance, when power spectra from the three best-performing sites were 

concatenated. To investigate spectral specificity, the procedure was not applied to the full 

spectra, but separately to frequency ranges. Each frequency range was 20 Hz wide and 

contained 11 frequency bins in steps of 2 Hz. Fig. 7 reports the classification performance as 

function of the center frequency of each frequency range.

2.3.5. Statistical testing—For statistical testing, we used a non-parametric 

randomization approach that entails an elegant correction for multiple comparisons (Maris 

and Oostenveld, 2007; Nichols and Holmes, 2002). We explain the procedure in detail for 

the correlation between RDF and spectral power (Fig. 4D), and then describe the 

modifications taken for the other analyses. First, we calculated the correlation between RDF 

and spectral power, separately for each frequency and each recording site, giving the 

observed correlation spectra. Then, we performed 1000 randomizations. In each 

randomization, we performed the following steps: 1) We randomized the RDF ranks; 2) We 

recalculated RDF-power correlation spectra; 3) We determined the maximal correlation 

value across all those spectra, i.e. across all frequencies, and across all recording sites, and 

placed it into the randomization distribution of maxima; we also determined the minimal 

correlation value across all frequencies and sites, and placed it into the randomization 
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distribution of minima. After 1000 randomizations, we determined the 1st percentile of the 

randomization distribution of minima and the 99th percentile of the randomization 

distribution of maxima. Those values were used as significance thresholds. They correspond 

to a one-sided significance of p = 0.01 or a two-sided significance of p = 0.02. They include 

a correction for multiple comparisons across the frequencies and the sites, because after each 

randomization only the largest and the smallest correlation value across those dimensions 

was placed into the randomization distributions.

For the “RF”-maps (Fig. 5), the same general approach was used with the following 

adjustments: 1) RDF was not calculated as one value per image, but it was calculated 

separately for each of the 19 × 19 square patches into which each image was segmented; 2) 

Power was not analyzed separately for each frequency of the spectrum, but pooled over the 

gamma band (30–80 Hz). Correspondingly, after each randomization of RDF ranks, the 

maximal (minimal) correlation value was determined across all square patches and all 

recording sites, realizing a multiple comparison correction across patches and sites.

For the decoding spectra (Fig. 7), the same approach was used with the following 

adjustments: In each randomization, the trial labels, corresponding to the images actually 

shown in the respective trials, were randomized. Subsequently, the decoding analysis was 

performed as described above, and the maximal classification performance across all 

frequencies and sites was placed into the randomization distribution. Because this analysis 

was computationally intensive, only 100 randomizations were performed, and the largest 

value of the randomization distribution was used as significance threshold.

3. Results

3.1. Human visual cortex shows gamma-band activity in response to natural images

The subject foveated a dot in the center of the screen, while individual images were centrally 

displayed for 1 s each, separated by an inter-stimulus interval of 0.6–1.4 s. A total of 500 

unique images were presented. Seventy-two of the images were repeated 5–7 times, and the 

responses to those images are analyzed here. We first compared LFP power between visual 

stimulation and pre-stimulus baseline epochs. As visual stimulation epoch, we used 0.3–0.8 

s after stimulus onset, discarding the initial 0.3 s after stimulus onset to avoid onset-related 

response transients (Fig. 2B). As pre-stimulus baseline epoch, we used the last 0.5 s before 

stimulus onset. We analyzed LFPs recorded from the six ECoG electrodes highlighted in 

Fig. 1. LFP signals from immediately neighboring electrodes were subtracted from each 

other, to obtain five local bipolar derivations, referred to as (recording) sites. Power was 

averaged separately over all stimulation and baseline epochs, and the relative power change 

due to stimulation is shown in Fig. 2. Power around the line-noise frequency of 60 Hz was 

reduced by a notch filter during recording, as indicated by the gray bar. Power at all sites 

showed an enhancement in a broad band from 25 to 200 Hz (Fig. 2A). In addition, sites 1–3 

showed gamma-band peaks, with site 3 showing gamma power increases beyond 1000%. 

We will refer to the stimulus-related gamma-band (30–80 Hz) power increase as gamma-

band activity. Fig. 2B illustrates that gamma-band activity in site 3 was sustained during 

stimulus presentation.
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3.2. Visual cortical gamma-band activity is systematically related to image structure

We investigated whether gamma-band activity induced by a given natural image was 

systematically related to the stimulus’ structure. Image structure was quantified in one value 

per image using the relative-degree-of-focus (RDF) metric, an image-computable metric 

used to assess the quality of optical focusing e.g. in photography (Pertuz et al., 2013). Low 

and high RDF values correspond to low and high image structure. Fig. 3 shows the 72 

natural images used by Hermes et al., ranked by their RDF as quantified by the DCT Energy 

measure, with the rank given by the middle number below each image. The other two 

numbers give the rankings according to two different metrics of gamma-band activity. 

Gamma-band activity defined as visually induced power change in the 30–80 Hz band 

(similar to (Brunet et al., 2015)) is shown on the right, and gamma-band activity as 

quantified by Hermes et al. (see Methods and (Hermes et al., 2015)) is shown on the left.

Across the 72 images, the RDF (DCT Energy measure) significantly predicted the strength 

of gamma-band activity (Fig. 4). This held both, if gamma was quantified as in Hermes et al. 

(Fig. 4A; R = 0.63, P = 3.9e-09, Spearman rank correlation here and in the following tests) 

or as in Brunet et al. (Fig. 4B; R = 0.63, P= 3.0e-09). The direct correlation between the two 

previously employed gamma metrics showed that they are highly correlated (Fig. 4C; R = 

0.7, P = 10e-12). RDF was significantly predictive of gamma-band activity for each of the 

recording sites (Spearman rank correlations for site 1: R 0.28, P 0.02; site 2: R = 0.56, P = 

3.9e-07; site 3: R = 0.63, P = 3.0e-09; site 4: R = 0.39, P = 0.0006; site 5: R = 0.28, P = 

0.02; gamma quantified as in Brunet et al.).

Hermes et al. reported that broadband power was enhanced by all stimuli, which led them to 

conclude that asynchronous neural signals can generally support transmission of information 

for perception and recognition (Hermes et al., 2015). Therefore, we calculated the 

correlation between image structure as quantified by RDF (DCT Energy measure) and 

spectral power for all frequencies, including the broadband high-frequency part of the 

spectrum (Fig. 4D, green line for site 3). The correlation between stimulus-induced power 

and image structure showed clear peaks for gamma-band activity and vanished for 

broadband high-frequency power. Similar results were obtained for all five recording sites 

(Fig. 4D, separate line per site). Only site 1 did not reach significance in this analysis after 

multiple comparison correction, even though the correlation spectrum showed a gamma 

peak (Fig. 4D, dark blue line) and the average gamma power in the 30–80 Hz band was 

significantly correlated with RDF, as mentioned above. Interestingly, these correlation 

spectra showed clear and significant gamma peaks also for sites 4 and 5, which had lacked 

clear gamma peaks in the spectrum of overall stimulus-induced power changes shown in Fig. 

2A.

ECoG recording sites over early visual cortex might show some specificity for the retinal 

position of image structure (Bosman et al., 2012; Lewis et al., 2016), because this cortex is 

retinotopically organized (Benson et al., 2018). We explored this by repeating the above 

correlation analysis between RDF and gamma, but now separately for many subregions of 

the images. Each image (10 × 10 degree of visual angle) was subdivided into 19 × 19 square 

patches. Each patch subtended 0.1 × 0.1 of the image’s edge length. Patches scanned the 

image in steps of 0.05 of the image’s edge length in both the vertical and horizontal 
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direction. The RDF metric was calculated for each patch of each image, and the Spearman 

rank correlation between RDF (DCT Energy measure) and gamma-band activity was 

calculated across images, separately per patch (and recording site). The resulting correlation 

maps (Fig. 5) suggest that gamma-band activity of individual recording sites was induced by 

image structure in particular regions of the visual field, suggestive of receptive fields (RFs). 

The observed “RFs” are consistent with the recording site positions: Site 5 (bipolar 

derivation between electrodes 5 and 6, see Fig. 1) has a parafoveal “RF” and is located close 

to the occipital pole, which is known to represent the parafoveal region; the sites with 

successively lower numbers (site 4 is the bipolar derivation between electrodes 4 and 5, etc.) 

have “RFs” of increasing eccentricity in the hemifield contralateral to the recorded 

hemisphere and they are located at increasing distances from the pole, at positions known to 

represent increasing eccentricities (Benson et al., 2018). Note that these analyses are merely 

suggestive, and a firm conclusion would require the presentation of controlled stimuli (bars, 

dots, gratings) or a very large number of natural images.

RDF can be estimated with numerous, partly related operators (Pertuz et al., 2013). A list of 

some of those RDF operators is given in Table 1. Each of those operators provided a metric 

of image structure that was significantly predictive of gamma in site 3. The correlation 

values are listed separately for gamma quantified according to Hermes et al. and Brunet et 

al. in the respectively labeled columns of Table 1. Intriguingly, most correlation values were 

largest (shown in bold font), when the two metrics were averaged per image before 

calculating the cross-image correlation with RDF. This might indicate that the two metrics 

assess slightly different aspects of gamma strength, and their average is more robust and 

valid than either one alone.

Image structure as quantified by RDF could be considered a metric of contrast in natural 

images. Luminance contrast in grating stimuli has an influence not only on gamma strength 

but also on gamma frequency (Jia et al., 2013; Ray and Maunsell, 2010; Roberts et al., 

2013). Therefore, we tested whether RDF affected gamma frequency. We sorted images 

according to their average RDF (DCT Energy measure) and binned them into 8 bins. Per bin, 

we calculated the power-change spectrum averaged over the five recording sites. From this 

spectrum, we determined the gamma frequency (using the center-of-gravity, which is 

defined as sum(frequencies*powers)/sum(frequencies), for frequencies of 30–80 Hz), and 

for comparison also the strength of the gamma (30–80 Hz) response. Images with increasing 

RDF values induced gamma-band activity values that increased from 100 to 300% (R = 0.9, 

p = 0.002), and gamma frequencies that changed by only a few Hertz, with a just significant 

negative correlation (R = 0.71, P = 0.049) (Fig. 6). When gratings are used to induce 

gamma-band activity in macaque V1, increasing grating contrast results in increasing 

gamma strength (with a decrease for the highest contrasts in some animals), and increases in 

gamma frequency in the range of 10–20 Hz (Jia et al., 2013; Ray and Maunsell, 2010; 

Roberts et al., 2013).

3.3. Gamma power differentiates between images

The link between gamma and image structure might allow the decoding of image identity 

based on the induced power-spectral changes in the gamma band. We asked for each 
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possible pair of images, whether the induced power-spectral changes on a given trial of one 

of these images allowed to classify that trial as containing the truly presented or the other 

image (see Methods for details). Power changes allowed significant classification 

performance in four of the five individual recording sites, specifically in the gamma band 

(Fig. 7).

Gamma-band activities of the different sites could contain redundant or partly independent 

stimulus information. To investigate this, we concatenated power values of the three best 

performing sites and found stimulus classification to improve across the spectrum, reaching 

peak values beyond 70% in the gamma band. This indicates that gamma-band activities of 

those three sites contained at least partially independent stimulus information.

4. Discussion

In summary, we found that gamma-band activity induced by natural images in human visual 

cortex depends systematically on the degree of image structure, such that images could be 

differentiated based on the spectral power they induced in the gamma band. Our results 

suggest that the opposing conclusions of Brunet et al. (2015) and Hermes et al. (2015) are 

neither due to differences between the investigated species (macaques versus humans) nor to 

differences in the metric used to quantify narrowband gamma, but rather to other aspects 

discussed below.

One limitation of the present study is that it is based on data recorded from a single subject, 

and therefore the inference is limited to that subject. An inference on the population would 

ideally be obtained through a random-effects analysis across many subjects, which is hard to 

realize given the scarcity of electrode implantations on early visual cortex. Within the 

studied subject, our results were relatively robust across the five recording sites. Future 

studies will need to investigate whether our observations generalize across subjects.

One potential concern might be that higher degrees of image structure might induce higher 

spike rates, and the broad spectral footprint of spikes, which includes the gamma-band 

range, might explain our results. However, our results hold when we apply the metric 

introduced by Hermes et al. for separating narrowband gamma changes from broadband 

high-frequency power changes due to spikes and postsynaptic potentials. Furthermore, we 

perform our analyses as a function of frequency, and we find the correlation between RDF 

and power, and also the decoding capability, to peak in the gamma-frequency band. If these 

effects were generated by spectral leakage of spikes, one would expect them to be broadband 

or even increasing for higher frequencies. At the same time, we think that our results might 

well be partly explained by higher degrees of image structure driving stronger neuronal 

activation. Image structure as quantified by the RDF metric is clearly similar to stimulus 

contrast. Higher stimulus contrast induces higher firing rates, and for most contrast values 

also stronger gamma-band activity (Jia et al., 2013). This relationship is not due to spectral 

leakage of spikes, as can be demonstrated with stimulus manipulations that dissociate 

gamma-band activity from broadband high-frequency activity (Peter et al., 2019; Ray and 

Maunsell, 2011). Thus, the present results suggest that the previously described relation 

between gamma strength and the contrast of grating stimuli generalizes to a relation between 

Brunet and Fries Page 9

Neuroimage. Author manuscript; available in PMC 2020 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



gamma strength and the degree of image structure in natural stimuli. Importantly, this 

relation exists for the strength of spectrally specific gamma-band activity, rather than 

broadband power. The specificity in the frequency domain corresponds to predictability in 

the time domain: During genuine, rhythmic gamma-band activity, the timing of one neuronal 

excitability peak is partly predictive of the next one. This predictivity is central to the 

proposed role of gamma-band synchronization for communication, because it allows to time 

inputs to phases of maximal excitability (Fries, 2005, 2015).

It will be an interesting opportunity for future studies to investigate in detail which 

properties of the images are relevant for the induction of local gamma-band activity and 

longer-range gamma-band synchronization (Vinck and Bosman, 2016). This could proceed 

along at least two routes: 1) Natural images could be systematically manipulated to 

independently control different low-level aspects, and subsequently investigate their 

propensity to induce gamma-band activity or synchronization; 2) Gamma-band activity and 

synchronization in response to artificial stimuli could be fit with appropriate models, and 

resulting model predictions would subsequently be compared to gamma observed in 

response to natural images (Rust and Movshon, 2005).

The different conclusions of Brunet et al. and Hermes et al. could in principle be due to a 

number of differences between these studies. One difference was fixation control: The 

macaques recorded by Brunet et al. were freely viewing natural images, whereas the human 

subject recorded by Hermes et al. was fixating. Yet, fixation does not preclude gamma-band 

activity, as many reports of gamma in awake macaques include fixation control (Friedman-

Hill et al., 2000; Fries et al., 2001; Kreiter and Singer, 1992; Maldonado et al., 2000). 

Furthermore, Brunet et al. investigated the effect of saccades during free viewing on gamma, 

and found that saccades interrupt rather than induce gamma (their Fig. 6). Another 

difference was the investigated species, macaques versus a human subject. Yet, several 

previous studies found clear visually-induced gamma in human subjects (Adjamian et al., 

2004; Hoogenboom et al., 2006; Self et al., 2016). These studies in human subjects used 

controlled stimuli like gratings, rather than natural images, but the similarity of the observed 

visually-induced gamma-band activity across species strongly argues against a general 

species difference (Fries et al., 2008). Thus, neither differences in species nor fixation 

control can explain the discrepancy between Brunet et al. and Hermes et al. Rather, this 

discrepancy is likely due to the way in which Hermes et al. arrived at their conclusion, as 

discussed in the following.

As mentioned in the introduction, Hermes et al. analyzed the same dataset, yet arrived at the 

conclusion that gamma oscillations are “not necessary for seeing” (Hermes et al., 2015). 

They base their conclusion mainly on the finding that some stimuli that can be perceived do 

not lead to gamma reaching significance in their test. However, this argument would require 

that the subject actually saw the stimulus on each trial, i.e. that there was conscious 

perception on each trial, and it would require that gamma was actually detected if it was 

present, i.e. that there were no false negatives. The following two paragraphs discuss reasons 

for perceptual failures and for false negatives, respectively.

Brunet and Fries Page 10

Neuroimage. Author manuscript; available in PMC 2020 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



While the subject was presented on each trial with a visual stimulus, he might not have 

actually seen it, i.e. he might not have consciously perceived it. Hermes et al. did not assess 

stimulus perception on each trial. The subject was merely required to press a button when he 

noted that the same image had been presented on the previous trial. Therefore, it is 

conceivable that some of the image presentations were hardly perceived or not perceived at 

all, for example due to lapses in attention and/or overall arousal. Such lapses occur 

frequently in patients suffering from epilepsy and treated with antiepileptic medication. If 

perception was fully or partly absent, this likely reduced gamma-band activity. Previous 

studies have demonstrated that gamma-band activity depends on conscious stimulus 

perception. During binocular rivalry in cats, the perceptually selected stimulus induces 

enhanced gamma and the suppressed stimulus induces reduced gamma, while firing rates 

remain largely unaffected (Fries et al., 1997, 2002). In human subjects, consciously seen 

stimuli induce increased mid-frequency gamma-band activity over contralateral visual cortex 

(Wyart and Tallon-Baudry, 2008).

At the same time, the assessment of gamma-band activity likely suffered from false 

negatives, i.e. for some stimuli, gamma was likely present, but not detected. False negatives 

can be due to a number of reasons: 1.) Some stimuli might well have failed to stimulate the 

cortex underlying the electrodes. Early visual areas are retinotopically organized, and a 

given image might simply not contain sufficient structure within the receptive fields of the 

neurons underneath a given electrode. In fact, some of the images that do not induce 

significant gamma according to Hermes et al. show body parts that occupy only a fraction of 

the image. In our quantification of gamma, the seven images inducing the lowest amount of 

gamma were all images of body parts. 2.) A related concern is that the ECoG electrode 

might have assessed neuronal activity at a spatial scale that was suboptimal for the detection 

of gamma. Visual cortical gamma-band activity is highly localized (Bosman et al., 2012; 

Friedman-Hill et al., 2000; Lewis et al., 2016), with a frequency that depends on the 

corresponding part of the visual stimulus (Jia et al., 2013; Lowet et al., 2017; Ray and 

Maunsell, 2010; Roberts et al., 2013) and on attention (Bosman et al., 2012). A gamma-

synchronized neuronal ensemble would ideally be assessed at its specific spatial scale. A 

typical clinical ECoG electrode with a diameter of several millimeters is typically too large. 

This will mask signals from gamma-synchronized neurons with signals from non-

synchronized neurons. Also, it will pool neuronal ensembles oscillating at different gamma 

frequencies, dynamically cancelling each other. 3.) The recordings might have incurred 

noise that impeded the detection of gamma. Gamma is relatively high-frequency in the 

spectrum, where absolute power values are relatively low. At the same time, noise in the 

clinical recording setting is typically quite strong. 4.) There might have been insufficient 

data, because a given image was presented in merely 5–7 trials. With so few trials, standard 

metrics of neuronal activity, like e.g. the firing rate of an isolated single unit, would often 

fail to reach significance for many natural images. Taking all these factors together, there are 

good reasons to assume that gamma was often not detected, even though it was actually 

present.

The most parsimonious interpretation that can explain both the results of Hermes et al. and 

of our new analyses, is that for grayscale images, gamma systematically reflects the degree 

of image structure. If an image contains structure, this means that it deviates from 
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randomness, and this entails that adjacent parts of the image are at least partly predictive of 

each other. Mutually predictive image parts are perceptually bound, as they likely belong to 

one object. Both perceptual binding and predictability are reflected in neuronal gamma-band 

synchronization (Gray et al., 1989; Peter et al., 2019; Singer and Gray, 1995; Vinck and 

Bosman, 2016). Note that for colored surfaces, gamma merely requires predictability of 

color across space, as e.g. in a uniformly colored surface (Peter et al., 2019). For grayscale 

stimuli like typical gratings or the images used here, gamma requires predictability of 

luminance contrasts, i.e. image structure (Gieselmann and Thiele, 2008; Vinck and Bosman, 

2016). In the dataset analyzed here, images with weak structure (or weak structure inside the 

respective receptive field) most likely induced gamma below the detection threshold of 

Hermes et al., and this threshold might be quite high given the clinical setting and the few 

trials. Spontaneous fluctuations of attention and arousal further enhance variability of 

gamma, while their influence on perception was not quantified. Our current analysis 

revealed a systematic influence of image structure on gamma, which supports hypotheses 

that propose a role of gamma in image processing and potentially image perception (Fries, 

2015; Fries et al., 2007; Singer and Gray, 1995; Vinck and Bosman, 2016).
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Fig. 1. 
The positions of the ECoG electrodes on the brain. Each dot shows the location of the center 

of an electrode on the brain of the subject. The electrodes used in this study are shown as 

larger dots (actual electrode size was constant) and labeled 1 through 6. Additional 

electrodes were positioned on the lateral brain surface (Jacques et al., 2016; Parvizi et al., 

2012).
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Fig. 2. 
(A) Power spectra (% increase with regard to pre-stimulus baseline), averaged across all 

images and trials, separately for each of five recording sites over primary visual cortex. Error 

regions show T1 SEM around the mean. The gray-shaded region indicates the frequency 

range affected by the 60-Hz notch filter applied during recording. (B) Power change (% 

increase with regard to pre-stimulus baseline) of site 3, as a function of time after stimulus 

onset.

Brunet and Fries Page 17

Neuroimage. Author manuscript; available in PMC 2020 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
The 72 images of faces, houses, cars and body parts, and their ranking according to RDF and 

gamma metrics. Beneath each image, the middle number indicates the image rank according 

to the RDF metric (quantified with the DCT Energy measure operator), with the lowest rank 

given to the image with the least RDF. The number to the left indicates the image rank 

according to the narrowband gamma metric described by Hermes et al.. The number to the 

right indicates the image rank according to Brunet et al., i.e. the gamma-band (30–80 Hz) 

power change relative to baseline.
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Fig. 4. 
The correlation between RDF and gamma metrics across the 72 images, and its spectral 

specificity. (A) Each dot shows the image rank according to the gamma metric of Hermes et 

al. on the y-axis, as a function of the image rank according to the RDF on the x-axis. The R-

value and the corresponding P-value in the upper left corner report the result of a Spearman 

rank correlation test. (B) Same as (A), but using the gamma metric of Brunet et al. on the y-

axis, that is the percent change in gamma-band (30–80 Hz) power between stimulation and 

baseline. (C) The image rank according to the gamma metric of Brunet et al. on the y-axis, 

as a function of the image rank according to the gamma metric of Hermes et al. on the x-

axis. (D) Spearman rank correlation coefficients between the RDF-based image rank and the 

Brunet-gamma-metric-based image rank, determined separately per frequency and per 

recording site. The dashed line shows a significance threshold of p = 0.01, corrected for the 

multiple comparisons across frequencies and recording sites.
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Fig. 5. 
Maps of correlation between local RDF and gamma. Each panel shows, for the indicated 

site, a map of visual space covered by image presentations. Each image was subdivided into 

19 × 19 square patches. For each square patch, the map shows the correlation between the 

local RDF in that patch and the percent gamma increase over baseline, that is the gamma 

metric of Brunet et al.. Non-significant correlation values are gray-masked. Non-masked 

corrlations are significant at p < 0.01, corrected for the multiple comparisons across patches 

and recording sites.
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Fig. 6. 
Gamma power and gamma peak frequency as a function of image RDF. Images were sorted 

according to their RDF and binned into 8 bins (x-axis). Per bin, we calculated the gamma-

band (30–80 Hz) power change over baseline (shown as red line, y-axis on the right), and the 

gamma peak frequency (shown as blue line, y-axis on the left), after pooling over all 

recording sites. Images with increasing RDF values induced gamma-band activity values 

that increased from 100 to 300% (R = 0.9, p = 0.002), and gamma frequencies that changed 

by only a few Hertz, with a just significant negative correlation (R = —0.71, P = 0.049).
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Fig. 7. 
Classification performance as a function of frequency. The performance of the classification 

based on the power spectra is shown as a function of the center frequency of the spectral 

frequency ranges used as input to the classifier. Dashed lines show the chance level and the 

significance threshold (p = 0.01, corrected for the multiple comparisons across frequencies 

and recording sites). Four of the five investigated sites showed classification performance 

that reached significance for some frequency ranges, and for each of those, classification 

peaked in the gamma band. The black line shows classification performance after 

concatenating the three top-classifying recording sites. After concatenation, classification 

exceeded classification of any of the sites, suggesting that the sites contained at least 

partially independent information in their power spectra.
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