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Abstract: The primary variables influencing the adaptive response to a bout of endurance training
are exercise duration and exercise intensity. However, altering the availability of nutrients before and
during exercise can also impact the training response by modulating the exercise stimulus and/or the
physiological and molecular responses to the exercise-induced perturbations. The purpose of this
review is to highlight the current knowledge of the influence of pre-exercise nutrition ingestion on the
metabolic, physiological, and performance responses to endurance training and suggest directions
for future research. Acutely, carbohydrate ingestion reduces fat oxidation, but there is little evidence
showing enhanced fat burning capacity following long-term fasted-state training. Performance is
improved following pre-exercise carbohydrate ingestion for longer but not shorter duration exercise,
while training-induced performance improvements following nutrition strategies that modulate
carbohydrate availability vary based on the type of nutrition protocol used. Contrasting findings
related to the influence of acute carbohydrate ingestion on mitochondrial signaling may be related
to the amount of carbohydrate consumed and the intensity of exercise. This review can help to
guide athletes, coaches, and nutritionists in personalizing pre-exercise nutrition strategies, and for
designing research studies to further elucidate the role of nutrition in endurance training adaptations.
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1. Introduction

From Olympians to recreational exercisers, athletes of all levels face the same questions—what
should I eat before exercise, and how does it affect my training? Despite being relevant to anyone
performing exercise, many questions relating to the effects of nutritional intake on endurance training
responses and adaptations remain unanswered.

The duration and intensity of exercise are the most important factors influencing the adaptive
response to endurance training [1]. However, strategies altering nutrient availability before and during
exercise can also impact training adaptations by modulating the exercise stimulus and/or cellular
responses to the exercise-induced perturbations [2]. Specific strategies to alter nutrient availability can
include exercising in the overnight-fasted state, restricting carbohydrate (CHO) ingestion between
training sessions, and increasing CHO ingestion before or during exercise [3]. Although performance
may be improved following pre-exercise CHO ingestion [4,5], exercise undertaken with reduced
availability of CHO can increase the activation of key signaling proteins compared with exercise
performed with high CHO availability [6], potentially influencing longer-term training adaptations.

Among the intracellular signals comprising the endurance training response are mechanical
stretch, reactive oxygen and nitrogen species (RONS), calcium flux, AMP:ATP ratio, and the availability
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of endogenous CHO and free fatty acids (FFA) [7,8]. These signals are affected by both the duration
and intensity of an exercise session, and by the pre-exercise nutrition choices of an athlete (i.e., the size,
type, and timing of the pre-exercise meal(s), Figure 1). Although some lines of evidence suggest
ingesting CHO before exercise can negatively influence endurance training adaptations, contrasting
findings have been reported. For example, ingesting CHO has decreased [9], increased [10], or had no
effect [11] on the activity of the 5′ AMP-activated protein kinase (AMPK) following exercise. Similarly,
training-induced improvements in maximal oxygen consumption (VO2max) have been reported to
increase [12], decrease [13], or remain unchanged [14] following 4–6 weeks of CHO-fed compared
with fasted-state training. These contrasting findings can be a source of confusion and may explain
why the beliefs and practices relating to the role and influence of pre-exercise nutrition vary so
widely among coaches and athletes [15,16]. Accordingly, the purpose of this review is to highlight the
current knowledge of the influence of pre-exercise nutrition ingestion on the metabolic, physiological,
and performance responses to endurance training. We also highlight areas for practitioners where
evidence is lacking, particularly regarding trained athletes, and suggest directions for future research.
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Figure 1. Schematic of areas where pre-exercise nutrition has the potential to impact the adaptive
responses to endurance training. Green arrows suggest the potential to increase or augment specific
signaling, and red dashed arrows suggest the potential to decrease or impair specific signaling.
Abbreviations: AMPK, AMP-activated protein kinase; CaMK, calcium/calmodulin-stimulated protein
kinase; CHO, carbohydrate; FFA, free fatty acids; LCHF, low-CHO high-fat; MAPK, mitogen-activated
protein kinase; VO2max, maximal oxygen consumption.

2. Acute Responses to Pre-Exercise Nutrition Intake

The vast majority of pre-exercise nutrition interventions have been conducted in an acute context.
Although acute responses to training do not always correspond with long-term adaptations [17,18],
the accumulation over time of transient, exercise-induced changes in gene expression are thought to be
the driving factor behind many adaptations to training [19]. Therefore, it is relevant to consider the
acute effects of pre-exercise nutrition in addition to the longer-term adaptations.

2.1. Metabolism and Substrate Oxidation

The liver plays a key role in metabolic regulation during extended exercise [20]. Despite the
~40% reduction in liver glycogen following an overnight fast [21], blood glucose concentration can
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be maintained at normal levels during exercise due to increased gluconeogenesis and/or decreased
utilization of glucose in skeletal muscle [22,23]. However, fatigue during extended exercise is often
associated with reduced blood glucose concentrations [24], supporting a critical role for liver glycogen
in achieving optimal performance during extended exercise.

Exercising in the fasted-state generally allows higher levels of fat oxidation than exercise performed
in the CHO-fed state during low-to-moderate intensity exercise [25] and can increase the relative
intensity where maximal fat oxidation occurs [26]. Ingesting CHO before exercise increases plasma
glucose and insulin levels, leading to a reduction in hepatic glucose output and an increase in skeletal
muscle glucose uptake during exercise [27]. This can lower fat oxidation by decreasing plasma FFA
availability via insulin-mediated inhibition of lipolysis [28], and also by inhibiting fat oxidation within
the muscle due to an increased glycolytic flux [29]. Intramuscular triglycerides (IMTG) provide a key
substrate for fat oxidation, primarily during exercise in the fasted state [30,31], although their use
declines as the duration of exercise extends, while the oxidation of plasma FFA increases [32]. Up to
6 h may be required following a CHO-rich meal for substrate oxidation and glucose homeostasis to
return to levels observed during fasted-state exercise [33].

In contrast with exercise performed in the overnight-fasted state, which lowers hepatic but not
muscle glycogen [34], restricting CHO between training sessions allows exercise to be undertaken with
reduced muscle glycogen concentrations [35]. During exercise with low muscle glycogen there is an
increase in the oxidation of fat [36,37] and amino acids [38,39], and a reduction in muscle glycogen
breakdown [36,40,41]. During exercise undertaken with normal muscle glycogen levels, muscle
glycogen breakdown is similar between fed and fasted-state exercise [31,42–44] and may be reduced
when ingesting CHO during exercise [45].

The majority of research looking at fat oxidation has compared CHO to a placebo, but the use of
pre-exercise protein ingestion represents an interesting and under-researched area. Consumption of
protein before and during steady-state exercise did not affect FFA availability or whole body fat oxidation
compared with fasted-state exercise commenced with normal [46] or lowered [47] muscle glycogen
concentration, despite elevated insulin levels. This may be related to the increases in catecholamine
levels during exercise, which are an important determinant of the adipose tissue lipolytic rate and can
override the inhibition by insulin [48]. Although protein ingestion before exercising in a low-glycogen
state has no effect on rates of muscle protein synthesis, it is plausible that it could reduce muscle protein
breakdown during exercise [49]. It also appears possible that pre-exercise protein ingestion increases
amino acid oxidation during exercise [49], but further quantification of its influence is needed.

To compare the influence of pre-exercise CHO ingestion, muscle glycogen levels, and glycemic
index on substrate oxidation and AMPK activity, we pooled the results of 125 studies (available as
supplementary online files) that included the relevant intervention groups (Figures 2–7). Together, these
studies included 1245 subjects (12.8% female), with an average age, BMI, and VO2max of 25.4 ± 3.1 years,
23.2 ± 1.4 kg m2, and 56.7 ± 8.2 mL kg−1 min−1. Linear correlation analysis was used to calculate the
correlation coefficient between variables, according to Pearson’s product moment (r) using R statistical
software. Pooled data are reported as mean ± SD, with the level of statistical significance set at p < 0.05.

2.1.1. Effect of Exercise Duration

The respiratory exchange ratio (RER—a measure of substrate oxidation) decreases with exercise
duration, indicating an increasing reliance on fat oxidation as the duration of exercise extends [50].
Differences in RER between exercising in the fed vs. fasted state and following low vs. high glycemic
index CHO remain largely similar throughout exercise, while the differences in RER between high
and low starting muscle glycogen decrease as exercise duration extends (Figure 2). The latter could
presumably be related to the greater utilization of muscle glycogen during exercise undertaken with
higher levels of glycogen, leading to more similar levels during the later stages of exercise. This idea
is supported by the pooled data, which show a strong correlation (r = 0.89, p < 0.001) between the
differences in pre-exercise glycogen levels and differences in RER during exercise (Figure 3).
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Figure 2. Substrate oxidation in relation to exercise duration for studies reporting respiratory exchange
ratio (RER) at multiple time points comparing overnight-fasted and/or CHO-fed exercise with normal
muscle glycogen levels (A), exercise undertaken with high (471 ± 208 mmol kg−1 dry mass) and low
(232 ± 112 mmol kg−1 dry mass) muscle glycogen levels (B), and following high (82 ± 10) and low
(36 ± 9) glycemic index meals (C). Shaded areas represent 95% confidence intervals. Data were obtained
by pooling results from 60 studies (see supplementary files for references).

Nutrients 2020, 12, x FOR PEER REVIEW 4 of 24 

 

 

Figure 2. Substrate oxidation in relation to exercise duration for studies reporting respiratory 
exchange ratio (RER) at multiple time points comparing overnight-fasted and/or CHO-fed exercise 
with normal muscle glycogen levels (A), exercise undertaken with high (471 ± 208 mmol.kg−1 dry 
mass) and low (232 ± 112 mmol.kg−1 dry mass) muscle glycogen levels (B), and following high (82 ± 
10) and low (36 ± 9) glycemic index meals (C). Shaded areas represent 95% confidence intervals. Data 
were obtained by pooling results from 60 studies (see supplementary files for references). 

 
Figure 3. Correlation between differences in respiratory exchange ratio (RER) during exercise and 
differences in pre-exercise glycogen levels. Shaded area represents 95% confidence intervals. Data 
were obtained by pooling results from 13 studies that manipulated glycogen levels and reported RER 
for high- and low-glycogen trials (see supplementary files for references). DM = dry mass. 

Figure 3. Correlation between differences in respiratory exchange ratio (RER) during exercise and
differences in pre-exercise glycogen levels. Shaded area represents 95% confidence intervals. Data were
obtained by pooling results from 13 studies that manipulated glycogen levels and reported RER for
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2.1.2. Effect of Exercise Intensity

Exercise intensity is well-established to influence substrate oxidation during exercise, with RER
increasing with intensity [51]. Differences in RER between fed and fasted-state exercise are larger at
lower intensities and decrease as intensity increases (Figure 4A,B). In contrast, exercise undertaken
with low muscle glycogen maintains lower RER values compared with normal glycogen, despite
increasing exercise intensity (Figure 4C,D). The glycemic index of the pre-exercise meal appears to
have minimal effects on the relationship between intensity and substrate oxidation (Figure 4E,F).

2.1.3. Effect of Carbohydrate Amount

Several studies have directly compared varying amounts of CHO ingested before exercise, either
showing no differences in substrate oxidation with varying amounts of pre-exercise CHO [5,52–54],
or differences throughout all [55] or portions [56,57] of the exercise bout. When pooling a number
of studies together, there is a weak positive relationship between the amount of CHO ingested and
RER during subsequent exercise, while differences in RER between CHO-fed and fasted-state exercise
increase as the amount of CHO ingested is increased (Figure 5).
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Figure 4. Substrate oxidation in relation to exercise intensity for studies comparing overnight-fasted
and CHO-fed exercise with normal muscle glycogen levels (A,B), exercise undertaken with high
(471 ± 208 mmol kg−1 dry mass) and low (232 ± 112 mmol kg−1 dry mass) muscle glycogen levels
(C,D), and following high (82 ± 10) and low (36 ± 9) glycemic index meals (E,F). Shaded areas represent
95% confidence intervals. Data were obtained by pooling results from 103 studies (see supplementary
files for references).
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76 studies (see supplementary files for references).
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Figure 7. Relationship between AMPKα2 activity during exercise (measured as fold-change from
pre-exercise resting levels to immediately post-exercise) and carbohydrate (CHO) intake before exercise
including (A) and excluding (B) studies that tested in the overnight-fasted state. HIIT: high-intensity
interval training. Shaded areas represent 95% confidence intervals. Data were obtained by pooling
results from 22 studies (see supplementary files for references), which included 265 participants
(6.0% female), 25.1 ± 2.8 years, VO2max 52.9 ± 11.0 mL kg−1 min−1.

2.1.4. Effect of Pre-Exercise Meal Timing

The amount of time before exercise food is consumed is another factor that can influence
metabolism and substrate oxidation, and studies have undertaken exercise in the fed state between
5 [58] and 240 min [59,60] post-prandial. Although direct comparisons of the influence of meal-timing
are limited, no differences in substrate oxidation were found when the same meals were ingested
15, 45, or 75 min [61] and 30, 60, or 90 min [62] before exercise. When consumed within 4 h of
exercise, the amount of time prior to exercise does not have a meaningful impact on substrate oxidation
(Figure 6).

2.1.5. Summary and Future Directions

During submaximal steady-state exercise, fat oxidation is generally higher in the overnight-fasted
compared with CHO-fed state. Although fat oxidation increases with exercise duration, fasted-state
exercise increases fat burning throughout the duration of exercise compared with consuming CHO
before exercise. However, as exercise intensity increases the difference in fat oxidation between CHO-fed
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and fasted-state exercise diminishes. Fat oxidation is also higher when undertaking exercise with low,
compared with normal muscle glycogen levels, with the differences maintained across varying exercise
intensities but diminishing as the duration of exercise extends. While the amount of time before exercise
food is consumed does not meaningfully influence substrate oxidation, greater amounts of CHO in
the pre-exercise meal leads to greater differences in substrate oxidation between fed and fasted-state
exercise. These findings are most applicable to moderately-trained males, who made up ~87% of
study participants. Substrate metabolism may differ between males and females [63], with differences
further affected by the female menstrual cycle [64] and the use of oral contraceptives [65]. Additionally,
sedentary populations typically show no differences in post-exercise glucose, insulin, or FFAs between
fasted and fed conditions [66], which is in contrast with trained athletes [67–69] who also show a
greater capacity for fat oxidation compared with untrained or recreationally active populations [70].

Despite fasted-state training being performed by a large number of endurance athletes [15],
there are potential negative implications from its use. Particularly for athletes doing a high volume of
training, exercising in the overnight-fasted state could more likely lead to a negative energy balance,
which can be associated with hormonal and immune dysfunction [71]. As a method of providing
energy intake while still allowing higher levels of fat oxidation, future studies should examine the
effects of a protein-rich breakfast on fat oxidation during exercise, in direct comparison with exercise
following a CHO-rich breakfast and in the overnight-fasted state. As this approach is currently utilized
by few endurance athletes [16], it could be a useful tool for those who want to increase fat burning
without incurring a large caloric deficit. The influence of various pre-exercise meals on gut comfort
should also be investigated, as a large number of athletes perform fasted-state training to avoid gut
discomfort [15]. Exercise-induced gastrointestinal distress is beyond the scope of this review but has
been reviewed elsewhere [72,73].

2.2. Cell Signaling

Among the key intracellular signals influencing skeletal muscle adaptations to endurance training
are changes in the AMP:ATP ratio, contraction-induced changes in mechanical strain, increased calcium
flux, an increase in RONS, and the availability of endogenous CHO and FFA [7,8,74]. Nutritional
intake has the potential to modify signaling across several of these pathways, primarily related to
energy sensing and nutrient availability.

2.2.1. Energy Sensing and the AMP-Activated Protein Kinase

The 5′ AMP-activated protein kinase (AMPK) is a cellular energy sensor that regulates cellular and
whole-body energy balance by inhibiting ATP-consuming pathways and activating ATP-producing
pathways [75]. Activation of AMPK can lead to a range of metabolic adaptations including increases in
glucose uptake, glycolytic flux, fat oxidation, and mitochondrial biogenesis [76]. The degree of AMPK
activation during exercise can be influenced by exercise intensity [77], training status [78], muscle
glycogen [79], and nutrient availability [80].

When starting exercise with normal muscle glycogen levels, studies that have shown a blunting
effect of CHO ingestion on AMPK-α2 activity [9,81] have been at lower intensities than those showing no
differences between CHO-fed and fasted-state exercise [11,82]. Conversely, exercise that is undertaken
with low, compared with normal muscle glycogen levels, has resulted in greater increases in the
activity of AMPK-α2 following 1 h of steady-state endurance exercise at 65–70% VO2max [83–85],
but similar increases in AMPK activity and/or phosphorylation were seen following both exhaustive and
non-exhaustive high-intensity exercise undertaken with high and low muscle glycogen levels [86–88].
Therefore, ingesting CHO before exercise may dampen AMPK activity during low but not high-intensity
exercise, and an intensity threshold may exist below which CHO ingestion could blunt AMPK signaling.

The CHO content of the pre-exercise meal size could also influence molecular signaling. Compared
with exercising in the fasted state, consumption of <70 g CHO prior to exercise had no effect [11,82]
or even increased [10] skeletal muscle AMPK signaling following exercise compared with exercise
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performed in the fasted state. In contrast, ingesting 130–160 g of CHO before exercise reduced
the exercise-induced increases in AMPKThr172 phosphorylation [89], with the phosphorylation of
acetyl-CoA carboxylase (ACC) decreased [36] or unaffected [89]. When pooling a number of studies
together, non-significant correlations can be observed between the exercise-induced increases in
AMPK-α2 activation and CHO intake before exercise (Figure 7). Future studies that are designed
to examine the relationships between meal size, exercise type and intensity, and AMPK activity
are warranted.

Interpretation of the research comparing pre-exercise nutrition choices on AMPK activity during
exercise is complicated by the small number of studies available, training status of participants,
and specific markers being reported. For example, AMPK-α2 activity during exercise is reduced by
short- and longer-term endurance training, making it difficult to compare between trained and untrained
subjects [78,90,91]. Additionally, some studies report the phosphorylation of AMPKThr172, which reflects
phosphorylation of both AMPK-α1 and -α2 subunits and may be less sensitive for detecting changes in
AMPK activity that are only occurring in the -α2 subunit that is more responsive to exercise [81,82,86].
Further complicating interpretation of the available literature, several studies have shown a blunting
effect of CHO ingestion on AMPK-α2 activity or AMPKThr172 phosphorylation, yet similar increases in
phosphorylation of ACC, a downstream substrate of AMPK [81,83,92]. Similar increases in PGC-1α
mRNA expression following HIIT performed with low or high CHO availability have also been reported,
despite phosphorylation of ACC being reduced by high CHO availability [36,93]. Furthermore, despite
an attenuation of exercise-induced AMPK activation when ingesting CHO during a single bout of
exercise [81], no differences in training adaptations were observed following 10 weeks of training
with or without CHO ingestion during exercise [94]. These apparent discrepancies could be due to
crosstalk between signaling pathways and/or the wide variability in exercise-induced changes in mRNA
expression [95] and highlight the importance of looking at longer-term changes in mitochondrial
content or function rather than acute changes in specific proteins.

2.2.2. Contraction-Induced Signaling

Another key intramuscular signal comes from increased calcium released during muscle
contraction. Calcium-dependent transcriptional pathways play important roles in regulating fat
oxidation, mitochondrial biogenesis, and muscle fiber-type changes via myocyte enhancer factor 2
(MEF2) and p38 mitogen-activated protein kinase (MAPK) [96–99]. Few studies have compared the
effects of nutrition interventions on calcium-dependent, contraction-induced signaling pathways.
There appear to be minimal effects of exercise performed in the fed vs. fasted-state or with varying
levels of muscle glycogen [36,87,89,100], but some evidence suggests p38 may be sensitive to nutrient
status [101,102]. Although more research is needed, the independence of these pathways from
nutritional influence could help to explain why similar longer-term changes could be observed when
training under differing nutritional conditions.

2.2.3. Substrate Signaling

Exercise performed in the overnight-fasted state generally results in higher levels of FFA
compared with CHO-fed exercise, and an inverse relationship is seen between FFA concentration
and CHO oxidation during exercise [33]. In addition to acting as substrate for β-oxidation in the
mitochondria, FFA also play a role in molecular signaling cascades that regulate fatty acid metabolism
and mitochondrial biogenesis, via activation of peroxisome proliferator-activated receptors (PPAR),
MAPKs, and sirtuin 1 [7,103–105]. Some studies have found differences in FFA between fed and fasted
state throughout an entire bout of exercise [50,106], while others have shown differences appearing
from 20 [59], 30 [107], 45 [4], or 60 min [108] into exercise. These differences do not appear to show any
pattern related to meal size, time of ingestion, or exercise intensity. Similar levels of FFA are found
during exercise in the fasted-state and following ingestion of a high-fat meal [60,109] or following
pre-exercise protein ingestion with normal [46] and low [47] muscle glycogen levels. Although a
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high-fat diet, in the absence of exercise, can increase rates of fat oxidation during exercise, a high-fat
intake by itself does not increase mitochondrial content or exercise performance without simultaneously
engaging in exercise training [105]. Future studies are needed to determine if differences in FFA during
CHO-fed vs. fasted-state can significantly alter training adaptations.

2.2.4. Reactive Oxygen and Nitrogen Species

Rather than simply being a byproduct of oxidative stress, RONS play a direct role in regulating
the response to both acute exercise (e.g., muscle contractile function, glucose uptake, blood flow,
and cell bioenergetics) and longer-term exercise training (e.g., mitochondrial biogenesis, muscle
hypertrophy, angiogenesis, and redox homeostasis) [110]. Very little research exists looking at the
influence of a pre-exercise meal on the oxidative stress response to a bout of exercise. At rest,
a high-CHO meal can evoke a greater postprandial oxidative stress response compared with a
high-fat meal [111], while the addition of olive oil to a meal reduced post-meal increases in oxidative
stress markers, such as NADPH oxidase and 8-isoprostane, both of which have been associated
with endurance training adaptations [112–114]. Acute and chronic fruit ingestion can dampen lipid
oxidation during exercise [115], and fruit-derived phenolic compounds may promote muscle fiber-type
transformation [116]. Whey protein can also impact the antioxidant defense system by enhancing
activity of the endogenous antioxidant enzymes [117]. It is currently unknown how various pre-exercise
meals affect oxidative stress in response to exercise and if there are any longer-term training implications.

2.2.5. Summary and Future Directions

Overall, it appears that ingesting small amounts of CHO (<75 g) does not meaningfully impair
mitochondrial signaling, but lower-intensity exercise may be more influenced by CHO ingestion than
high-intensity exercise. Beyond the differences in exercise intensity and duration, interpretation of the
existing literature is further challenged by several studies comparing the effects of fasted and CHO-fed
exercise that have provided CHO both before and during exercise [9,30,118,119]. This is relevant
because CHO ingestion during exercise can reduce muscle glycogen breakdown [45], which itself may
be a key signal for AMPK activity [79] and alter levels of TCA cycle intermediates [120].

Although crosstalk between signaling pathways exists, higher-volume endurance training is
more likely to influence training adaptations through the contraction-induced signaling pathways,
while higher-intensity training, which increases the AMP:ATP ratio, appears more likely to signal
for mitochondrial biogenesis through energy-sensing pathways [121]. It is possible that there may
be a threshold for the amount of CHO ingested before exercise (~75 g), above which may impair
intracellular (e.g., AMPK) signaling, independent of muscle glycogen levels. This is relevant as a
large number of endurance athletes report consuming a small amount of CHO-based foods before
training [15]. It is also possible that the influence of CHO ingestion on AMPK signaling may be
related to exercise intensity. Future research could seek to better understand the interplay between
exercise intensity and the amount of CHO ingested before and/or during exercise, bearing in mind
that interactions between CHO ingestion and exercise intensity may be different during continuous
and intermittent exercise [122]. Additionally, a better understanding of the influence of pre-exercise
nutrition on RONS signaling during exercise is needed.

2.3. Performance

Pre-exercise CHO ingestion has been found to generally enhance prolonged (>60 min), but not
shorter duration aerobic exercise performance [66]. However, ingesting CHO during exercise minimizes
the differences between consuming CHO or a placebo prior to exercise [123–126]. The vast majority of
studies comparing performance in the fed or fasted state have used steady-state endurance exercise [66],
but similar effects of exercise duration are found with HIIT, as performance was improved in the fed
state for 90 min of high-intensity intermittent running [68,127], but not short-duration HIIT [128–130].
However, one study showed a benefit of pre-exercise CHO ingestion on an exercise capacity test
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lasting ~8–10 min [67]. Several studies have compared high-fat and high-CHO pre-exercise meals with
minimal performance differences observed [57,60,125,131].

2.3.1. Amount, Type, and Timing of the Pre-Exercise Meal

The amount of CHO (25–312 g) consumed prior to exercise does not have a meaningful influence
on time trial performance [5,52,53,55], while the glycemic index appears to have only a small impact
that is more likely to be observed in time-to-exhaustion, but not time-trial performance tests [132].
No differences in performance have been observed following pre-exercise ingestion of solid vs. liquid
CHO [43], solid vs. gel-based CHO [133,134], or fast-food vs. sport supplements [135]. Timing of the
pre-exercise meal has minimal effects when consumed 15, 45, or 75 min [61], 15 or 60 min [129], or 5 or
35 min [58] before exercise, but CHO ingested 30 min before exercise resulted in better performance
than 120 min before exercise [67]. Taken together, performing fed vs. fasted exercise appears to have a
far larger effect on exercise performance than the amount or timing of the meals, unless the difference
in meal timing is at least 90 min. There is some fear of hypoglycemia from consuming CHO between
30–60 min prior to exercise; however, despite occurring in a small number of cases, there does not
appear to be any detrimental performance effects or any relationship between low blood glucose
concentrations and performance [136].

2.3.2. Athlete Perceptions and Behavior

The perception of breakfast is also a consideration when comparing the acute performance effects
of pre-exercise CHO intake and fasted exercise. Trained cyclists completed a ~20 min cycling time-trial
more quickly when they perceived that they had consumed breakfast (CHO or placebo) prior to the
start of the exercise, compared with a fasted exercise session [137], and there was a 4% improvement
in ~1 h time-trial performance when cyclists were told the placebo drink actually contained CHO
compared with a blinded trial [138]. However, when a time-trial was preceded by 2 h of steady-state
cycling, there were no placebo effects observed [139], suggesting placebo effects may be minimized
with longer exercise durations. When undertaking exercise with reduced muscle glycogen levels,
the perception of CHO availability augmented HIIT capacity, although performance was not restored
to that of CHO consumption [140]. In a survey of endurance athletes, 26% agreed and 51% disagreed
with the statement, “the quality of my workout is the same whether I eat or do not eat beforehand” [15],
making it likely that a large inter-individual variation exists with regard to the perception of breakfast
and its influence on performance.

2.3.3. Summary and Future Directions

Overall, the importance of consuming CHO before exercise increases as the exercise duration
increases and exercising in the fed vs. fasted state appears to have a far greater effect on performance
than the size or timing of the meals. To better understand the influence of pre-exercise energy
availability vs. CHO availability and its effects on HIIT, future studies should compare fed vs. fasted
exercise, along with pre-exercise protein ingestion, in the absence of CHO, prior to both HIIT and
steady-state performance tests.

3. Training Adaptations

The majority of research looking at pre-exercise nutrition interventions has been in relation to a
single exercise session, with far fewer studies looking at the impact on training adaptations. This is
relevant because acute responses to exercise do not always correspond with long-term adaptations.
For example, increased fat oxidation observed when training with low vs. high CHO availability
does not translate into longer-term increases in fat-burning capacity [141,142]. Likewise, blunting
key mitochondrial signaling proteins with CHO ingestion during acute exercise did not impair
training-induced improvements in performance or mitochondrial biogenesis [81,94]. Therefore, it is
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important to understand the changes that occur with chronic training rather than an acute bout of
exercise alone.

3.1. Skeletal Muscle Adaptation

Of the studies examining the effects of longer-term (>4 weeks) training in the fasted state
on endurance adaptations [12–14,143–145], only one [144] has used endurance-trained subjects.
Furthermore, almost all studies using moderate-intensity continuous endurance training in the fasted
state also provided the fed groups with CHO during exercise, which can independently influence
both acute [120] and chronic [93] responses to exercise. Other studies have examined pre-exercise
CHO supplementation, though not necessarily in the overnight-fasted state and using untrained
subjects [146,147]. Additionally, fasted state training has been used as part of studies comparing low
vs. high muscle glycogen [148] and once vs. twice daily training [149]. Therefore, making comparisons
across studies is challenged by the variety of methods that have been used to compare high vs. low
CHO availability around training sessions (Figure 8).Nutrients 2020, 12, x FOR PEER REVIEW 12 of 24 
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Figure 8. Comparison of the various methods of altering CHO availability used in training studies.
Protocols used to commence training with a reduced availability of endogenous carbohydrate include
overnight fasting, and training twice within a 24 h period consuming low-CHO nutrition between
sessions or remaining in the fasted state. Some studies have fed carbohydrate during exercise, while
others have not. Thickness of the line is related to the number of studies using a given approach.
Question marks represent areas yet to be studied. Created from [12–14,31,35,93,141–145,148–153],
which included 307 participants (10.7% female), 26.3 ± 4.2 years, VO2max 53.2 ± 11.0 mL kg−1 min−1.

3.1.1. Substrate Usage

One of the reasons athletes perform training sessions in the fasted state is a desire to increase fat
oxidation during exercise [15]. As discussed above (Section 2.1), fat oxidation is higher during an
acute bout of exercise performed in the overnight-fasted, compared with the CHO-fed state, and with
low compared with high muscle glycogen. Despite these differences, most studies have found no
differences in fat oxidation following 4–6 weeks of fed or fasted-state training when tested in the
fed [13,14,145] or fasted [31,146] state. Similar findings have been reported in the “sleep-low” context,
where fat oxidation is increased during fasted training sessions performed with low muscle glycogen
compared with exercising in the fed-state, but no differences in fat oxidation were observed following
one [148], three [142], or four [141] weeks of training when tested in the fed state. However, it is
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possible that longer time periods of fasted training may be needed before relevant differences in fat
oxidation would be observed, as proteins involved in fat oxidation have been increased following
fasted, but not fed-state training [12,14]. Studies that have reported improvements in fat oxidation
following training with low compared with normal muscle glycogen tested subjects in the fasted state
and trained twice-daily with only water ingested between the sessions [149,150]. Though speculative,
these differences could be related to FFA signaling, which are increased during exercise and increased
even further if no food is ingested in the hours following exercise [105]. Finally, IMTG usage during
exercise was increased after 6 weeks of fasted (but not fed) training when tested in the fasted state [145],
but there were no differences when tested in a fed state, while also providing additional CHO [14].
Taken together, it appears that increases in fat oxidation following fasted-state or low-glycogen training
may not be relevant during typical racing conditions when consuming CHO before and during exercise,
but more studies in endurance-trained athletes are needed to compare acute and chronic changes.

3.1.2. Mitochondrial Markers

A key feature of the adaptive response to endurance training are changes in the activity of
enzymes involved in the tricarboxylic acid (TCA) cycle and the β-oxidative pathway [154]. Activity of
citrate synthase (CS) is the most widely used biomarker of mitochondrial content in skeletal muscle
because of the strong correlation between resting CS activity and resting mitochondrial content when
measured using the “gold standard” transmission electron microscopy (TEM) [155]. Similar changes
in CS activity have been observed between fasted and fed-state training following 4–6 weeks of
moderate-intensity training [12,13] and HIIT [143,146]. A key enzyme of the β-oxidative pathway,
β-hydroxyacyl coenzyme A dehydrogenase (β-HAD), is also generally not impacted by pre-exercise
nutrition [12,13,143]. However, one study has shown an increase in both CS and β-HAD only with
fasted, but not CHO-fed training [145]. It is possible that this difference may be related to the very
large amount of CHO ingested in the fed-training group (~2 g kg−1 90 min prior and 1 g kg−1 h−1

during exercise), as other studies showing similar adaptations between fed and fasted training used
smaller (e.g., 1–1.5 g kg−1 CHO) pre-training meals [13,143]. Increases in succinate dehydrogenase
activity following twice-daily training were blunted when ingesting CHO before and during the
second workout, which was commenced with lowered muscle glycogen [93], suggesting a strong,
and potentially underappreciated influence of ingesting CHO during exercise that adds complexity
when interpreting the current literature.

Greater increases in CS have been reported in two studies that had subjects train twice-daily
every other day, inducing low muscle glycogen during the second bout of exercise, compared with
once-daily training with normal muscle glycogen [35,150]. In these studies, the two sessions were 1–2 h
apart and subjects received only water between sessions. In contrast, other studies using twice-daily
training but feeding low- or high-CHO meals between sessions found similar training-induced
increases in CS activity between groups [151,153]. When comparing two different “train-low” protocols
(2 h vs. 15 h between low-glycogen training sessions), greater elevations in acute signaling and
mitochondrial adaptations were observed when training with 2 h between sessions without ingesting
any food [152,156]. Thus, it appears that remaining in the fasted state following the first bout of exercise
may be an important factor in the augmented adaptations observed following twice-daily training.

Overall, the exercise training itself seems to be the primary driver of changes in mitochondrial
content, though very large pre-exercise meals (>1.5 g/kg CHO) and CHO ingestion during exercise
may have blunting effects on some signaling pathways, possibly related to the interactions between
AMPK and glycogen [79]. Future research should explore the effects of pre-exercise nutrition choices
on contraction-induced and RONS signaling pathways.

3.1.3. VO2max and Peak Aerobic Power

Studies comparing fasted and fed training have reported no differences in VO2max following
4 weeks of sprint interval training (SIT) [144], 6 weeks of aerobic training [14,145], and 3 weeks of mixed
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intensity training [157]. However, greater training-induced increases in VO2max have also been reported
following both fasted vs. fed-state training [13] and fed vs. fasted-state training [12]. Reasons for these
divergent findings are unclear, as both studies used untrained participants performing 4–6 weeks of
steady-state aerobic training. Similar improvements in VO2max and peak power were seen in untrained
men following 8 weeks of HIIT with or without prior CHO [146], and following exercise undertaken
with low or high muscle glycogen levels in trained and untrained athletes [35,93,153,158,159].

3.1.4. Summary and Future Directions

Pre-exercise nutrition intake would not be expected to have an effect on VO2max (which is largely
affected by central adaptations [160]), but may affect peripheral adaptations that are influenced by fuel
availability such as the substrate usage and mitochondrial size, particularly in untrained participants.
Although there is some potential for pre-exercise nutrition intake to influence adaptations to endurance
training, the lack of research in endurance-trained subjects, the very large amounts of CHO ingested
before exercise in some studies, and the provision of CHO both before and during exercise in other
studies makes extrapolating results to trained athletes challenging. Additionally, some of the strongest
evidence suggesting low-glycogen training can magnify signaling responses to exercise is based on
studies performing the experimental exercise session a few hours after a glycogen-lowering exercise
bout [149–151], and some of these effects might simply be attributable to performing two exercise
sessions in close proximity [156].

Future training studies should compare fasted-state training against low-CHO and moderate-CHO
pre-exercise meals, with both normal and low muscle glycogen, and in the context of both HIIT and
steady-state continuous endurance training to determine if there are differential effects on fat oxidation
and/or mitochondrial biogenesis. It would also be of interest to investigate if there is a threshold for
the amount of pre-exercise CHO ingested, independent of muscle glycogen levels [161], above which
adaptations may be negatively impacted but below which adaptations are not impaired. Additionally,
sex-based differences in the response to training programs should be investigated, as females accounted
for just ~10% of participants in the training studies discussed.

3.2. Performance Changes

Studies comparing fed vs. fasted training have reported similar improvements in
time-to-exhaustion during a maximal incremental test [145,162] and 1-h time-trial performance [145]
following 6 weeks of endurance training. In contrast, time-to-fatigue at 85% VO2max improved
more in trained cyclists performing SIT in the fasted state compared to those that consumed CHO
(>2.5 g kg−1 CHO prior and CHO drink during exercise), despite performing less work during training
sessions [144]. Trained endurance athletes had greater improvements in a 12 min running time-trial
following 3 weeks of aerobic training while consuming a low-GI compared with moderate GI diet [163].

Some studies comparing high vs. low glycogen training have reported similar performance
improvements between groups [93,141,149,150,153], however greater improvements were seen
following one and three weeks of sleep-low training [142,148], twice-daily training with low-CHO vs.
high-CHO consumption between sessions [151], and twice- vs. once-daily training [35]. Two studies
using a combination of tactics to vary CHO availability around training sessions (i.e., periodized-CHO)
found similar improvements between chronic high-CHO and periodized-CHO diets, both of which
resulted in greater improvements than a chronic low-CHO diet [158,159]. Future training studies
should compare pre-exercise protein ingestion against CHO-fed and fasted-state training in the context
of both HIIT and steady-state continuous endurance training. Additionally, it would be of interest to
study whether a delayed CHO ingestion strategy [164] in the context of low glycogen or fasted-state
training has any influence on the adaptive response and whether it is training specific (e.g., high- vs.
low-intensity training).
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4. Science to Practice

In an attempt to optimize both training adaptations and acute performance during key training
sessions, current sport nutrition guidelines suggest training be performed both with high CHO
availability, in order to enhance glycolytic and CHO oxidation pathways, and low CHO availability to
increase the activation of acute cell signaling pathways related to mitochondrial biogenesis and fat
oxidation [3]. Despite the rationale for a periodized approach to nutrition, whereby CHO availability
for each workout is varied according to the type of session and its goals within a periodized training
cycle [161], many athletes are not following these recommendations and/or are unclear on the current
best-practice guidelines. For example, only 17–27% of elite athletes report following a periodized-CHO
diet, and less than half of endurance athletes report varying their pre-exercise nutrition choices based
on exercise duration or intensity [16,165]. Although training in the overnight-fasted state is performed
by nearly two-thirds of endurance athletes (63%), many are doing it because they think it is beneficial,
while others avoid it because they think it is not beneficial [15]. Furthermore, nearly all beliefs and
practices relating to pre-exercise nutrition appear to vary based on sex, competitive level, and habitual
dietary pattern [15,16]. Taken together, this highlights the need for more research in trained athletes as
well as improved communication of the available research to athletes and coaches. From the standpoint
of practical application, the duration and intensity of the exercise session should be considered
when considering the best pre-exercise nutrition choices, along with the personal preferences of each
individual athlete, as described in Figure 9. While the principles behind these recommendations should
be applicable to a broad population, the relative influence of nutrition on training adaptations may
vary based on sex, BMI, and training status.
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Figure 9. Practical application of pre-exercise nutrition to optimize training adaptations. The duration
and intensity of the exercise session should be considered when considering the best pre-exercise
nutrition choices. Before shorter duration exercise sessions that focus on lower intensity steady-state
training, it may be beneficial to withhold CHO, while there is little evidence supporting CHO restriction
before high-intensity exercise. When consuming less than ~75 g CHO, food choices before HIIT can be
left to personal preference. For longer duration exercise (>90 min), there is little evidence to suggest
fasted-state training offers any additional benefit, although this is still practiced by approximately
one-third of endurance athletes [16]. Ingesting less than ~75 g CHO is unlikely to impair mitochondrial
signaling adaptations from longer-duration, low-intensity exercise, while consuming 75–150 g CHO
prior to extended high-intensity exercise is suggested to increase endogenous fuel storage.
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5. Conclusions and Practical Application

The availability of endogenous and exogenous CHO, fat, and protein before and during exercise
can influence the acute and longer-term responses to endurance exercise. Acutely, CHO ingestion
inhibits fat burning, however evidence showing enhanced fat burning capacity following long-term
training in the fasted state is lacking. Contrasting findings related to the influence of CHO ingestion
on mitochondrial signaling may be related to the amount of carbohydrate consumed and the intensity
of exercise. Consumption of >120 g CHO before submaximal, steady-state exercise has blunted
mitochondrial signaling, while <70 g CHO has not, yet CHO availability appears to have minimal
effects following HIIT exercise. Performance is improved following pre-exercise CHO ingestion for
longer but not shorter duration exercise, while training-induced performance changes following
various pre-exercise nutrition strategies vary based on the type of nutrition protocol used. Caution
should be used when generalizing these findings to wider populations, as the majority of research
participants have been trained males between 20–30 years of age. In addition to wider participant
demographics, more research is needed on the acute and longer-term effects of pre-exercise protein
ingestion, studies in endurance-trained subjects performing fasted-state training compared with
ingesting moderate and low-CHO meals before exercise, and fasted vs. fed-state training without
CHO ingestion during exercise.
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