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SUMMARY
Pyruvate kinase deficiency (PKD) is a rare erythroid metabolic disease caused by mutations in the PKLR gene. Erythrocytes from PKD pa-

tients show an energetic imbalance causing chronic non-spherocytic hemolytic anemia, as pyruvate kinase defects impair ATP produc-

tion in erythrocytes. We generated PKD induced pluripotent stem cells (PKDiPSCs) from peripheral bloodmononuclear cells (PB-MNCs)

of PKD patients by non-integrative Sendai viral vectors. PKDiPSCs were gene edited to integrate a partial codon-optimized R-type pyru-

vate kinase cDNA in the second intron of the PKLR gene by TALEN-mediated homologous recombination (HR). Notably, we found allele

specificity of HR led by the presence of a single-nucleotide polymorphism. High numbers of erythroid cells derived from gene-edited

PKDiPSCs showed correction of the energetic imbalance, providing an approach to correct metabolic erythroid diseases and demon-

strating the practicality of this approach to generate the large cell numbers required for comprehensive biochemical and metabolic

erythroid analyses.
INTRODUCTION

Pyruvate kinase deficiency (PKD; OMIM: 266200) is a rare

metabolic erythroid disease caused by mutations in the

PKLR gene, which codes the R-type pyruvate kinase (RPK)

in erythrocytes and L-type pyruvate kinase (LPK) in hepato-

cytes. Pyruvate kinase (PK) catalyzes the last step of glycol-

ysis, the main source of ATP in mature erythrocytes

(Zanella et al., 2007). PKD is an autosomal-recessive disease

and the most common cause of chronic non-spherocytic

hemolytic anemia. The disease becomes clinically relevant

when RPK activity decreases below 25% of the normal

activity in erythrocytes. PKD treatment is based on sup-

portive measures, such as periodic blood transfusions and

splenectomy. The only definitive cure for PKD is allogeneic

bone marrow transplantation (Suvatte et al., 1998; Tan-

phaichitr et al., 2000). However, the low availability of

compatible donors and the risks associated with allogeneic
Stem Cell Rep
bone marrow transplantation limit its clinical application.

Transplantation of gene-corrected autologous hemato-

poietic progenitors might solve these problems. We have

developed different gamma-retroviral and lentiviral vectors

to correct amouse PKDmodel (Meza et al., 2009), and their

efficacy is currently being tested in hematopoietic progen-

itors from PKD patients (M. Garcia-Gomez et al., personal

communication). However, the main drawback of current

gene therapy approaches based on retro-/lentiviral vectors

is the random integration of transgenes, which can pro-

mote insertionalmutagenesis by disrupting tumor suppres-

sor genes or cis-activating proto-oncogenes (Cavazza et al.,

2013).

Over the last few years, gene editing by homologous

recombination (HR) has been widely used in human cells

to avoid undesirable transgene insertion. HR efficacy is

very limited in human cells, estimated at one HR event

per 106 cells; however, the potential application of HR in
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human cells has been enhanced considerably by sequence-

specific DNA nucleases (Carroll, 2011; Porteus and Carroll,

2005). Three different gene-editing strategies can be

applied: gene correction, where a mutation is exchanged

directly by thewild-type sequence; knockin, where a partial

cDNA is inserted in the target locus to express a chimeric

mRNA formed by endogenous first exons and partial

cDNA under the endogenous promoter control; and safe

harbor, in which the transgene is inserted by HR in a safe

place in the genome, such as AAVS1 or CCR5 loci (Garate

et al., 2013).

Concurrent with the application of gene editing in hu-

man cells, the generation of human induced pluripotent

stem cells (iPSCs) was described (Takahashi et al., 2007;

Yu et al., 2007). iPSCs possess properties of self-renewal

and pluripotency that are similar to those of embryonic

stem cells (ESCs), but potential alloreactivity and ethical is-

sues associated with human ESCs are avoided. The wide

reproducibility of the iPSC technology, independent of

cell type and reprogramming methods, has established

their great potential for future cell therapies. Additionally,

patient- or disease-specific iPSCs are becoming established

as in vitro systems to model diseases and to explore new

therapeutic approaches. Reprogramming of easily acces-

sible cell sources such as skin fibroblasts (Park et al.,

2008), keratinocytes (Aasen et al., 2008), or even peripheral

blood mononuclear cells (PB-MNCs) (Loh et al., 2009; Ye

et al., 2009) has been described, andmany efforts are being

made to improve the safety and efficacy of the reprogram-

ming method. Recently, iPSC generation by a Sendai viral

vector platform (SeV) (Fusaki et al., 2009; Nishimura

et al., 2011), even from blood cells (Nishishita et al.,

2011; Seki et al., 2010), has been described as a non-integra-

tive and highly efficient platform.

The correction of patient-specific iPSCs by homologous

recombination has been explored in different pathologies

(Garate et al., 2013; Karakikes et al., 2015; Rio et al., 2014;

Sebastiano et al., 2011; Song et al., 2015), demonstrating

its feasibility and setting up gene editing for other stem

cells. Herein, we have assessed the combination of cell re-

programming and gene editing for PKD correction as a first

example of the possible application of these advanced tech-

nologies to metabolic diseases affecting the erythroid line-

age. PKD patient-specific iPSCs were efficiently generated

from PB-MNCs by an SeV non-integrative system. The

PKLR gene was edited by PKLR transcription activator-like

effector nucleases (TALENs) to introduce a partial codon-

optimized cDNA in the second intron by HR. Surprisingly,

we found allelic specificity in the HR induced by the pres-

ence of a single nucleotide exchange (SNP), demonstrating

the potential to select the allele to be corrected. Signifi-

cantly, a high number of erythroid cells derived from

PKDiPSCs was generated and displayed the energetic
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imbalance characteristic of PKD patients, which was cor-

rected after gene editing.
RESULTS

Generation of Integration-free Specific iPSCs Derived

from the Peripheral Blood of PKD Patients

First, to evaluate the potential use of PB-MNCs as a cell

source to be reprogrammed to iPSCs by the non-integrative

SeV, we analyzed the susceptibility of these cells to SeV. PB-

MNCs were expanded in the presence of specific cytokines

(stem cell factor [SCF], thrombopoietin [TPO], FLT3L, gran-

ulocyte colony-stimulating factor [G-CSF], and IL-3) to pro-

mote the maintenance and proliferation of hematopoietic

progenitors and myeloid-committed cells for 4 days. Cells

were then infected with an SeV encoding for the Azami

green fluorescent marker. Five days later, the transduction

of hematopoietic progenitor (CD34+), myeloid (CD14+/

CD15+), and lymphoid T (CD3+) and B (CD19+) cells was

evaluated by flow cytometry. Although themajority of cells

in the culture expressed Tor B lymphoidmarkers, a reduced

proportion of them (10% of Tcells, 3% of B cells) expressed

Azami green. In contrast, 54% of themyeloid cells and 76%

of the hematopoietic progenitors present in the culture

were positive for the fluorescent marker (data not shown),

demonstrating that SeV preferentially transduces the less

abundant hematopoietic progenitors andmyeloid cells un-

der these culture conditions.

This transduction protocol was then used to reprogram

PB-MNCs from healthy donors and PKD patients by SeV

encoding the four ‘‘Yamanaka’’ reprograming factors

(OCT3/4, KLF4, SOX2, and c-MYC; Figure 1A). ESC-like col-

onies were obtained from one healthy donor (PB2) and

from samples from two PKD patients (PKD2 and PKD3)

PB-MNCs. Up to 20 ESC-like colonies derived from PB2,

100 from PKD2 and 50 from PKD3 were isolated and

expanded (Figure 1B). The complete reprogramming of

the different established lines toward embryonic stem

(ES)-like cells was evaluated (Figures S1A–S1C). RT-PCR

gene expression array verified a similar expression level of

the main genes involved in pluripotency and self-renewal

in our reprogramed cells and in the reference human ESC

line H9 (Figures S1A–S1C). The ES markers OCT3/4,

SSEA4, and Tra-1-60 were also corroborated by fluores-

cence-activated cell sorting (FACS) and immunofluores-

cence (Figures S1A–S1C). Unmethylated status of NANOG

and SOX2 promoters was confirmed by pyrosequencing.

NANOG promoter was strongly demethylated in lines

derived from PB2, PKD2, and PKD3. Surprisingly, the

SOX2 promoter was already unmethylated in PB-MNCs

(Figure S1D). Furthermore, the pluripotency of these lines

derived from PB-MNCs was affirmed by their ability to
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Figure 1. PB-MNC Reprogramming by SeV
PB-MNCs from healthy donors and PKD pa-
tients were reprogrammed by SeV expressing
OCT4, SOX2, KLF4, and cMYC mRNAs. Several
lines from a healthy donor (PB2iPSC), pa-
tient PKD2 (PKD2iPSC), and patient PKD3
(PKD3iPSC) were isolated, expanded, and
characterized.
(A) Diagram of the reprogramming protocol.
(B) Representative microphotographs of
different iPSC lines derived from PB2 MNC,
PKD2 MNC, or PKD3 MNC. Scale bars repre-
sent 200 mm.
(C) Sanger sequencing of each patient-spe-
cific mutation in the PKLR gene in PB2iPSC,
PKD2iPSC, and PKD3iPSC. *Mutations pre-
sent in patient PKD2. #Mutation present in
patient PKD3.
See also Figures S1 and S2.
generate teratomas into NOD.Cg-PrkdcscidIL2rgtm/Wjl/

SzJ (NSG) mice, where all the mice injected developed ter-

atomas showing tissues from the three different embryonic

layers (Figures S1A–S1C). These data confirmed the reprog-

rammed lines as bona fide iPSC lines denoted as PB2iPSC,

PKD2iPSC, and PKD3iPSC. Additionally, the presence of

the wild-type (WT) sequence or patient specific mutations

in the different human iPSC lines generated was confirmed

by Sanger sequencing of the corresponding genome loci

(Figure 1C). PKD2iPSC showed the twoheterozygousmuta-

tions in exon 3 (359C > T) and exon 8 (1168G > A), and

PKD3iPSC carried the homozygous mutation in the

splicing donor sequence of exon 9/intron 9 (IVS9(+1)G >

C) characterized in the patients. These mutations could

not be detected in PB2iPSC, which showed the expected

WT sequences (Figures 1C).

To confirm the absence of ectopic reprogramming gene

expression, we analyzed the disappearance of SeV vectors

in the generated iPSCs. The presence of the ectopic proteins
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could be tracked by the persistence of the fluorescent

marker, as the SeV expressing Azami green was co-trans-

duced together with the reprogramming vectors. Azami

green expression was only detected in non-reprogramed,

fibroblast-like cells in early passages. Green fluorescence

disappeared in all the iPSC colonies (Figure S1E). Impor-

tantly, SeV mRNA was not detected in iPSCs derived from

PB-MNCs in late passages (Figure S1E).

In addition, to check whether the established protocol

did allow preferential reprogramming in myeloid and/or

progenitor cells, Tcell receptor (TCR) and immunoglobulin

heavy-chain genome rearrangements were studied on the

iPSC generated (Figure S2). None of the analyzed iPSC

clones (PB2iPSC c33, PKD2iPSC c78, PKD3iPSC c14,

PKD3iPSC c10, and PKD3iPSC c35) had any T or B rear-

rangements, meaning that iPSC clones were generated

from neither T nor B lymphocytes. These results guarantee

the SeV-based reprograming system as the best option in re-

programming peripheral blood, as the reprograming
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Figure 2. Gene Editing in the PKLR Locus
(A) Diagram showing where therapeutic
matrix is introduced by HR in the PKLR lo-
cus. The strategy to identify the integrated
matrix by PCR (horizontal arrows) and
Southern blot (vertical arrows) indicating
the expected DNA fragment sizes is shown,
and the line over the PuroR/thymidine ki-
nase fusion cassette indicates probe loca-
tion. Small squares at the beginning and
end of the partial codon-optimized (cDNA)
RPK indicate splicing acceptor and FLAG tag
sequences present in the cassette, respec-
tively; light gray squares represent endog-
enous (mRNA)RPK exons; dark gray squares
represent the first LPK exon and 30 UTRs
at the beginning and at the end of the
PKLR gene, respectively; and black squares
represent homology arms.
(B) DNA electrophoresis of gDNA from
PuroR-PKD2iPSC clones, amplified by PCR to
identify specific matrix integration.
(C) Southern blot of gDNA from edited
PKD2iPSC clones, digested by ScaI or SpeI
to confirm the precise integration of the
matrix in the PKLR locus.
See also Figures S3 and S4 and Table S2.
vectors are cleared after iPSC generation, and the iPSC

are generated from non-lymphoid cells. To continue with

the following gene-editing steps clones from PB2, PKD2,

and PKD3, we randomly selected different PB-MNC iPSC

clones.

TALEN-Based Gene Editing in the PKLR Locus of

PKDiPSCs

To achieve correction of PKDiPSCs, we used a knockin

gene-editing strategy based on inserting a therapeutic ma-

trix containing a partial codon-optimized (cDNA)RPK

gene covering exons 3 to 11, fused to a FLAG tag and pre-

ceded by a splice acceptor signal. Additionally, a positive-

negative selection cassette containing a puromycin (Puro)

resistance/thymidine kinase (TK) fusion gene driven by

mouse phosphoglycerate kinase (mPGK) promoter was

included downstream of the partial (cDNA)RPK. These ele-

ments were flanked by two homology arms matching se-

quences in the second intron of the PKLR gene (Figure 2A).

In order to increase the efficiency of gene editing, we devel-

oped a PKLR-specific TALEN targeting a specific genomic

sequence in the second intron flanked by the homology
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arms. Nuclease activity of the PKLR TALEN in the target

sequence was verified by surveyor assay after nucleofecting

both subunits of the nuclease in PKD2iPSC and PKD3iPSC

(data not shown).

In two independent experiments, two iPSC lines from

two different PKD patients, PKD2iPSC c78 and PKD3iPSC

c54, were nucleofected with a control plasmid or with the

developed matrix (from now on called therapeutic matrix)

alone or together with two different doses of PKLR TALEN

(1.5 or 5 mg of each PKLR TALEN subunit). Two days later,

Puro was added to the media for 1 week. Puro-resistant

(PuroR) colonies, with a satisfactory morphology appeared

and were individually picked and subcloned. Most of the

PuroR colonies were identified from cells nucleofected

with both the matrix and the PKLR TALEN subunits,

although some colonies grew out after receiving only the

therapeutic matrix. There was no difference in the number

of PuroR colonies between PKDiPSC lines from the different

patients. To confirm target insertion of the therapeutic ma-

trix in the second intron of the PKLR gene, we performed

specific PCR analyses (Figures 2A and S3). The expected

PCR product was detected in 10 out of 14 PuroR clones
e Authors



Table 1. Efficacy of Homologous Recombination in PKD2iPSCs and PKD3iPSCs and Indels Analysis in the Untargeted Allele

PuroR Clones
Percentage of Gene-Edited
Clones

Percentage of Gene-Edited
Clones Targeted Biallelically

Percentage of Gene-Edited Clones with
Indels in the Untargeted Allele

PKD2iPSCs 13 77% 0% 40%

PKD3iPSCs 40 76% 11% 31%
from PKD2iPSC c78 and 31 out of 40 PuroR clones from

PKD3iPSC c54 (Figures 2B and S3). Taken together, we esti-

mated an HR frequency among the PuroR clones of above

75% for the two reprogramed patients (Table 1). In addi-

tion, two PuroR clones from PKD3iPSC c54 clone nucleo-

fected with the therapeutic matrix alone were positive for

knockin, estimating an efficiency of 0.6 edited per 1 3

105 nucleofected cells. Despite detectingHRwithout nucle-

ases, the HR frequency was boosted almost five times (2.85

edited PKD3iPSC per 1 3 105 nucleofected cells) when the

PKLR TALEN was added. Additionally, knockin insertion

of the therapeutic matrix was verified by Southern blot

(Figure 2C), confirming a single insertion in the desired

genomic locus.

Next, we tested whether the PKLR TALEN was also cut-

ting the untargeted allele. Up to 40% of PKD2 and 31%

of PKD3 edited clones carried insertions-deletions (indels)

in the untargeted allele of the PKLR TALEN target site

(Table 1; Figure S3C), demonstrating the high efficacy of

this PKLR TALEN. Moreover, 3 out of 40 edited clones

from PKD3iPSC were targeted biallelically as determined

when both the targeted allele and the untargeted were

analyzed in a single PCR (Figure S3D). In contrast, no edited

PKD2iPSC clones showed biallelic targeting.

In order to check the specificity of the PKLR TALEN, we

looked for potential off-target cutting sites in the different

edited PKDiPSC clones. By in silico studies, we found five

hypothetical off-target sites for this TALEN (Table S2).

These five off-targets can be recognized by the two subunits

matched as homodimers or heterodimer, where the left

subunit can join the right subunit or each subunit can

join a different spacer sequence and length (Table S2). All

the potential off-targets had at least five mismatched

bases, whichmakes the recognition by the TALEN unlikely.

To confirm the specificity of the TALEN, we amplified

genomic DNA from several edited PKD2iPSC and

PKD3iPSC clones and Sanger sequenced around four off-

targets (off-targets 1, 2, 4, and 5; data not shown). None

of the analyzed clones showed any indels in any of the

off-targets analyzed. Off-target 3 could not be amplified

by PCR. Nevertheless, as the first base in the 50 recognition
site of the off-target 3 was an A, the recognition of this off-

target by the PKLR TALEN is strongly reduced (Boch et al.,

2009). This high specificity together with the high efficacy

of PKLR TALEN confirms the feasibility of the developed
Stem Cell Rep
TALEN and therapeutic matrix to promote HR in the

PKLR locus.

Finally, we verified the pluripotency of the edited iPSCs

after gene editing by in vivo teratoma formation into

NSG mice (Figure S4). Edited clones were able to generate

teratomas with tissues from the three embryonic layers.

More importantly, human hematopoiesis, demonstrated

by the presence of cells expressing the human CD45 pan-

leukocytary marker (4.54% of the total teratoma forming

cells) and human progenitors (CD45+CD34+; 2.74% of

the total hCD45+ cells) derived from edited PKD3iPSC

e31 teratomas could also be detected in vivo (Figure S4B).

Altogether, the data confirm the use of PKLR TALEN to

edit the PKLR gene in PKDiPSCs without affecting their

pluripotent properties.

A Single-Nucleotide Polymorphism Leads to

Allele-Specific Targeting

While evaluating the presence of indels in the untargeted

allele by Sanger sequencing, we identified the existence

of a g.[2268A >G] SNP 43 bases apart from the PKLR TALEN

cutting site in PKD2iPSC (Figure 3A). Interestingly, the un-

targeted allele from all the edited PKD2iPSC clones (ten out

of ten) carried the previously mentioned SNP, suggesting

an impediment of the allele carrying the SNP variant to

carry out HR. Moreover, no biallelic targeting was detected

in any PKD2iPSC edited clone. On the contrary, 3 out of 31

edited PKD3iPSC clones without any SNP in the homology

genomic area were targeted in both alleles.

Genetic Stability of PKDiPSCs and Gene-Edited

PKDiPSCs

We wanted to study whether the whole process of reprog-

ramming plus gene editing was inducing genetic instability

in the resulting cells. As a first approach, we performed kar-

yotyping of the different iPSC lines and confirmed normal

karyotype in all cases (data not shown). However, to have

a clearer assessment, we monitored the genetic stability

throughout all the process, including iPSC generation

and gene-editing correction, by comparative genomic

hybridization (CGH) and exome sequencing. PB-MNCs

from a PKD2 patient, reprogrammed PKD2iPSC c58, and

edited PKD2iPSC e11 were selected as representatives of

each step. Copy-number variations (CNVs) were defined in

these samples after comparing with a reference genomic
orts j Vol. 5 j 1053–1066 j December 8, 2015 j ª2015 The Authors 1057



Figure 3. Allele-Specific Targeting on the PKLR Locus
(A) A single-nucleotide polymorphism (SNP) detected in the second intron of the PKLR gene in PKD2 patient cells, identified by Sanger
sequencing. Black arrow points to the polymorphism.
(B) Sequence of PKD2 SNP in the untargeted allele in all the edited PKD2iPSC clones. Letter in red indicates the SNP.
(C) Diagram indicating the position of the SNP with respect to the theoretical cutting site of the PKLR TALEN and the matrix integration in
the targeted allele.
DNA. Among the total CNVs identified, 31 were present in

the original PB-MNC from PKD2, 34 CNVs were detected

in PKD2iPSC c78, and 32 in PKD2iPSC e11 (Table 2; Table

S3). Twenty-three CNVs detected in PKD2iPSC c78 were

already present in PKD2 PB-MNCs, indicating the mosai-

cism of the original patient sample. On the other hand,

only four CNVs present in PKD2iPSC c78 and PKD2iPSC

e11were not detected in the primary sample. Of note, these

four CNV were at chromosomes 1q44, 2p21, 3p12.3-p12.1,

and Xp11.22, involving genes such as ROBO1, GBE1,

TCEA1, LYPLA1, DLG2, PLEKHA5, and AEBP2 (Table 2).

More importantly, only two CNVs appeared after gene edit-

ing thatwerenot present in the original iPSC clone. Thefirst

onewas a deletion of 6.6 kb that include several olfactory re-

ceptor genes (such asOR2T11,OR2T35, orOR2T27), and the

secondCNVwas an amplificationof 0.6 kb that includes the

FGD1 gene. Additionally, sequences surrounding these two

CNVs in PKD2iPSC e11 have more than eight mismatches

with the PKLRTALEN recognition site, suggesting that these
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genomic alterations were not produced by gene editing.

Moreover, we analyzed the presence of CNVs in PKD3iPSC

before and after gene editing to confirm the potential harm-

less effect in the genomic stability of PKLR TALEN activity

(Table S4). Edited clonePKD3iPSCe31 (biallelically targeted)

showed 10 out 11 CNVs of the parental PKD3iPSC c54, and

PKD3iPSC e88 (monoallelically targeted) showed two new

CNVs. Furthermore, none of the CNVs present in the edited

PKD2iPSC e11 were present in any of these two PKD3iPSC

edited clones, which suggests that PKLR TALEN does not

induce any specific CNVs in PKDiPSC clones.

Simultaneously, the three PKD2 samples were assayed us-

ing the Illumina HiSeq 2000 system for exome sequencing.

After bioinformatics analysis by comparing the sequencing

data with a human genome reference, PKD2 PB-MNCs

showed 68,260 changes in their sequences, PKD2iPSC

c78 68,542, and PKD2iPSC e11 67,728 (Table S5). Only

ten of all variants detected in PKD2iPSC e11 were in exonic

regions, included in the SNP database, and not identified in
e Authors



Table 2. Copy-Number Variations and Exome Variants Detected by CGH and Exome Sequencing in Edited PKD2iPSCs

CGH Analysis

Number Chromosome Cytoband Size (bp) Type Present in PKD2iPSC c78 Present in PKD2 PB-MNCs

1 1 q44 60,641 DEL no no

2 3 p12.2-p12.1 3,931,633 LOH yes no

3 8 q11.23 169,460 AMP yes no

4 11 q14.1 113,264 DEL yes no

5 12 p12.3 1,182,747 AMP yes no

6 17 q21.31 199,747 AMP yes no

7 X p11.22 6,030 AMP no no

Exome Sequencing

Number Chromosome Reference Base Altered Base Gene Type Present in PKD2iPSC c78

1 9 � TGCCTCCACCACACC PHF2 nonframeshift insertion no

2 16 G T ZNF747 nonsynonymous SNV no

3 6 G C SNX3 nonsynonymous SNV no

4 22 A T TUBGCP6 nonsynonymous SNV no

5 10 A G TARC2 nonsynonymous SNV no

6 7 C A TNRC18 stop-gain SNV no

7 18 C A MBD2 nonsynonymous SNV yes

8 18 C A MBD2 nonsynonymous SNV yes

9 9 G T RUSC2 nonsynonymous SNV yes

10 11 G A APOA5 nonsynonymous SNV yes

SNV, single-nucleotide variation. See also Tables S4 and S5.
PKD2 PB-MNCs (Table 2). Additionally, four of them were

also detected in PKD2iPSC c78. In order to verify the pres-

ence of these mutations by Sanger sequencing, we PCR

amplified and sequenced these regions. Only the muta-

tions in the RUSC2, TACR2, and in APOA5 genes could

be confirmed by sequencing (data not shown). None of

the ten variants were included in the COSMIC database

(Wellcome Trust Sanger Institute, 2014), which includes

all the known somatic mutations involved in cancer.

Overall, genetic stability analysis confirmed the safety of

our gene editing approach. All the genetic alterations iden-

tified were present in the PB-MNCs or generated during

their reprogramming or iPSC expansion. Moreover, none

of the confirmed alterations could be associated with

potentially dangerous mutations.

Gene-Edited PKDiPSCs Recover RPK Functionality

Once the knockin integration was confirmed, we assessed

the PK phenotypic correction of the gene-edited iPSCs.
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We induced the erythroid differentiation of different iPSC

lines fromahealthy donor iPSC line (PB2iPSC c33), PK-defi-

cient iPSC lines derived from both patients (PKD2iPSC c78

and PKD3iPSC c54), and the corresponding edited clones

(monoallelically edited PKD2iPSC e11 and PKD3iPSC e88

and a biallelically targeted PKD3iPSC e31). Characteristic

hematopoietic progenitor markers, such as CD43, CD34,

and CD45, started to appear over time (data not shown)

and were expressed in a similar proportion of cells derived

from all of the iPSC lines. Erythroid cells were clearly

observed in the cultures (Figure S5A), and the specific

erythroid combination of CD71 and CD235a antigens

was expressed on themajority of cells after 21 days of differ-

entiation (Figures 4A and S5B).Moreover, cells derived from

all iPSC lines analyzed at day 31of differentiation, showed a

similar globin pattern, in which a- and g-globins were pre-

dominant with a small amount of b-globin, and residual

embryonic ε- and z-globins detected, confirming the

erythroid differentiation of these pluripotent lines
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Figure 4. Erythroid Differentiation of
PKD2iPSCs
PB2iPSCs, PKD2iPSCs, and edited PKD2iPSCs
were differentiated to erythroid cells under
specific conditions and analyzed after
31 days in in vitro proliferation and differ-
entiation conditions.
(A) Erythroid differentiation was confirmed
by flow cytometry analysis. Cord blood
MNCs, PB2iPSC clone c33, PKD2iPC clone
c78, and edited PKD2iPSC clone e11 repre-
sentative analyses are shown.
(B) RPK expression in erythroid cells derived
from the different iPSCs was evaluated by
qRT-PCR (n = 6).
(C) Specific RT-PCR to amplify the chimeric
(mRNA)RPK in edited PKD2iPSC. The primers
amplified the region around the link be-
tween endogenous (mRNA)RPK and the
introduced codon-optimized (cDNA)RPK
sequence. Arrow indicates the expected
band and the corresponding size only preset
in the RNA from edited cells (PKD2iPSC e11).
(D) The sequence of the chimeric transcript
was aligned with the theoretical expected
sequence after the correct splicing between
the endogenous exon 2 (blue square) and
the exogenous exon 3 (red square).
(E) The presences of RPK protein in
erythroid cells derived from PB2iPSCs,

PKD2iPSCs, and edited PKD2iPSCs assessed by western blot (upper line); mobility change in PKD2iPSC e11 is due to the FLAG tag added to
the chimeric protein. Expression of chimeric protein was detected by anti-FLAG antibody only in erythroid cells derived from edited
PKD2iPSCs (bottom line).
See also Figures S5 and S6.
(Figure S6A). More importantly, the erythroid cells derived

from the three iPSC lines were able to express RPK (Figures

4B, 4E, S5C, and S5F). It is noteworthy that no alteration

in the expression of proximal genes in the edited erythroid

cells was confirmed by qRT-PCR (Figure S6B).

The presence of chimeric transcripts in all of the edited

PKDiPSC lines was confirmed by RT-PCR. Primers recog-

nizing a sequence in the second endogenous exon of the

PKLR gene and in the partial codon-optimized (cDNA)RPK

were able to produce an amplicon with the correct size,

specifically in erythroid cells derived from gene-edited

PKDiPSCs (Figures 4C and S5E). This amplicon was

sequenced and the joint between both parts of the mRNA,

coming from the transcription of the endogenous and the

exogenous sequences, was detected (Figure 4D). Addition-

ally, the presence of RPK was demonstrated by western

blot in the erythroid cells derived from all of the edited

iPSC lines derived from PKD2iPSC c78 (PKD2iPSC e11;

Figure 4E) and from PKD3iPSC c54 (PKD3iPSC e88 and

PKD3iPSC e31; Figure S5E). Interestingly, although
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(mRNA)RPK could be detected in erythroid cells derived

from all the iPSC lines derived from PKD3 (Figure S5C),

RPK proteinwas not detected in PKD3iPSC c54 (Figure S6F),

probablydue to the severity of themutation in termsofRNA

translation.However, thegeneeditionofPKD3iPSCrestored

RPK protein expression either in the bialellic (PKD3iPSC

e31) and monoallelic (PKD3iPSC e88) edited lines (Fig-

ure S5F). Moreover, both the level of the chimeric transcript

and the RPK protein were higher in the biallelically targeted

clone PKD3iPSC e31 than in themonoallelic PKD3iPSC e88

(Figures S5D and S5F). It is worth it mentioning that flagged

RPK was detected in erythroid cells generated after gene

editing of PKDiPSCs (Figure 4E), confirming the origin of

the RPK protein from the edited genome.

Finally, the recovery in metabolic function of the cor-

rected cells was assessed in the differentiated cells by con-

ventional biochemical analysis as well as by liquid chroma-

tography mass spectrometry (LC-MS) (Figures 5 and S7).

The ATP level in erythroid cells derived from the monoal-

lelically edited PKDiPSCs (PKD2iPSC e11 and PKD3iPSC
e Authors



Figure 5. Phenotypic Correction in Edited
PKD2iPSCs
(A) ATP levels in erythroid cells derived from
healthy iPSCs (PB2iPSCs), PKDiPSCs (pa-
tients PKD2 and PKD3), and edited PKDiPSCs
(PKD2iPSC e11, PKD3iPSC e88, and
PKD3iPSC e31 clones). Data were obtained
from three independent experiments from
six different iPSC lines derived from two
different patients.
(B) In vitro proliferation and differentiation
of PB2iPSC clone c33 (-), PKD2iPC clone
c78 (:), and edited PKD2iPSC clone e11
(C). ns, statistically not significant.
See also Figure S7.
e88) was augmented after gene editing (Figure 5A), reach-

ing an intermediate level between that observed in

erythroid cells from WT iPSCs and their respective pa-

tient-specific iPSC lines. Additionally, erythroid cells

derived from the biallelically targeted PKD3iPSC e31

restored the ATP level completely up to healthy values (Fig-

ure 5A). In edited erythroid cells, other glycolytic metabo-

lites, such as 2,3-diphosphoglyceric acid, 2-phosphoglyce-

ric acid, pyruvic acid, and L-lactic acid, reached levels

between those of control and deficient erythroid cells

derived from PB2iPSCs and PKDiPSCs (Figure S7). In addi-

tion, we obtained up to 2 3 104-fold expansion of cells in

1 month, meaning that up to 20,000 erythroid cells could

be generated from a single iPSC (Figure 5B). As expected,

no statistical differences were observed between the

different iPSCs, indicating that RPK deficiency only affects

the last steps of the erythroid differentiation, where no

proliferation is taking place. Altogether, our data validate

the effectiveness of this knockin approach to express

a corrected RPK protein and demonstrate its potential

to therapeutically correct the PKD phenotype and
Stem Cell Rep
generate large numbers (109–1010) of differentiating cells

required for comprehensive biochemical and metabolic

analyses during their maturation, or even for a potential

therapeutic use.
DISCUSSION

In this work, we have shown the potential to combine cell

reprograming and gene editing as a therapeutic approach

for PKD patients. We generated iPSCs from PB-MNCs taken

from PKD patients using a non-integrating viral system.

These PKDiPSC lines were effectively gene edited via a

knockin strategy at the PKLR locus, facilitated by specific

PKLR TALENs. More importantly, we have demonstrated

the rescue of the disease phenotype in erythroid cells

derived from edited PKDiPSCs by the partial restoration

of the step of the glycolysis affected in PKD and the

improvement of the total ATP level in the erythroid cells

derived from PKDiPSCs. The restoration of the energetic

balance in erythroid cells derived from PKD patients opens
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up the possibility of using gene editing to treat PKD

patients.

To reprogram patient cells, we adopted the most feasible

and safest protocol using a patient cell source that is easy to

obtain, PB-MNCs, and an integration-free reprogramming

strategy based on SeV vectors. PB-MNCs were chosen, as

blood collection is common in patient follow-up and is

minimally invasive. Additionally, it is possible to recover

enough PB-MNCs from a routine blood collection to

perform several reprogramming experiments. Finally,

previous works showed that PB-MNCs could be reprog-

rammed, although at a very low efficiency (Staerk et al.,

2010). On the other hand, the SeV reprogramming plat-

form has been described as a very effective, non-integrative

system for iPSC reprogrammingwith awide tropism for the

target cells (Ban et al., 2011; Fusaki et al., 2009). Reprog-

rammed SeVs are cleared after cell reprogramming due to

the difference of replication between newly generated

iPSCs and viral mRNA (Ban et al., 2011; Fusaki et al.,

2009). However, reprogrammed T or B cells might be

favored when whole PB-MNCs are chosen, as these are

the most abundant nucleated cell type in these samples.

Reprogramming Tor B cells has the risk of generating iPSCs

with either TCR or immunoglobulin rearrangements,

decreasing the immunological repertoire of the hematopoi-

etic cells derived from these rearranged iPSCs. In order to

avoid this possibility, we have biased the protocol against

reprogramming of either T or B lymphocytes by culturing

PB-MNCs with essential cytokines to favor the mainte-

nance and proliferation of hematopoietic progenitors and

myeloid cells, as previously shown for retroviral reprogram-

ming vectors (Staerk et al., 2010). This approach was

supported here by the demonstration that SeV vectors

preferentially transduced hematopoietic progenitors and

myeloid cells under these specific conditions and conse-

quently none of the iPSC lines analyzed had immunoglob-

ulin or TCR rearrangements. We further demonstrated that

the generation of iPSCs from PB-MNCs using SeV is feasible

and simple and generates integration-free iPSC lines with

all the characteristic features of true iPSCs that could be

further used for research or clinical purposes.

The next goal for gene therapy is the directed insertion of

the therapeutic sequences in the cell genome (Garate et al.,

2013; Genovese et al., 2014; Karakikes et al., 2015; Song

et al., 2015). A number of different gene-editing strategies

have been described, including gene modification of the

specific mutation, integration of the therapeutic sequences

in a safe harbor site, or knockin into the same gene locus.

We directed a knockin strategy to insert the partial cDNA

of a codon-optimized version of RPK in the second intron

of the PKLR gene. If used clinically, this strategy would

allow the treatment of up to 95% of the patients, those

with mutations from the third exon to the end of the
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(cDNA)RPK (Beutler and Gelbart, 2000; Fermo et al.,

2005; Zanella et al., 2005). Additionally, this approach

retained the endogenous regulation of RPK after gene

editing, a necessary factor as RPK is tightly regulated

throughout the erythroid differentiation. This fine control

would be lost if a safe-harbor strategy was chosen.

The PKLR TALEN generated was very specific and very

efficient. We did not find any mutation in any of the theo-

retical off-target sites defined by the off-site search algo-

rithm and analyzed by PCR and gene sequenced.Moreover,

we determined that 2.85 out to 100,000 electroporated

PKDiPSCs, without considering the toxicity associated to

nucleofection, were gene edited when the PKLR TALEN

was used, reaching values similar to those previously pub-

lished by others (Porteus and Carroll, 2005). Interestingly,

40% of the edited PKDiPSC clones presented indels in the

untargeted allele or were biallelically targeted, which indi-

cated that the developed TALEN are very efficient, cutting

on the on-target sequence with a high frequency.

Surprisingly, we found that the presence of a single SNP

43 bp away from the PKLR TALEN cutting site was an

impediment to HR. The presence of an SNP, which disrupts

the complete matching between the genome sequence and

homology arm, has already been reported to reduce the fre-

quency of HR (Deyle et al., 2014). Taking into account that

the TALEN cut has occurred, as we can detect indels in the

non-targeted allele, the absence of matrix insertion seems

to be directly related to problems related with the perfect

annealing of the matrix with the genome sequences. We

have to point out that this SNP is located in a very repetitive

region, which might form a structural configuration that

increases the HR specificity between this region and its ho-

mology arm, as has already been mentioned (Renkawitz

et al., 2014). Thus, the genome context where the HR has

to take place plays an important role and can facilitate or

impair HR. In any case, these data demonstrate the impor-

tant need for gene-editing strategies to generate the homol-

ogy arms of an HR matrix from the individual DNA that

will be edited. This would restrict HR matrices to patients

with similar SNPs in the genomic region to be edited.

Therefore, any gene-editing therapy using a knockin or

safe-harbor strategy should first screen each patient for

the presence of an SNP in the homology arms selected.

On the other hand, the presence of a specific SNP could

also help to perform allele-specific gene targeting in the

cases where the presence of a dominant allele is pathogenic

as, for example, in a-thalassemia (De Gobbi et al., 2006).

The gene-editing strategy utilized here to correct PKD

was safe, since neither the introduction of genomic alter-

ations nor alteration of the expression of neighboring

genes by the insertion and expression of the exogenous

sequences occurred. This demonstrates the safety of this

knockin gene-editing strategy without cis activation of
e Authors



any gene, in comparison to previous results where the

selection cassette deregulated nearby genes (Zou et al.,

2011). Furthermore, we did not observe any off-target ef-

fects induced by PKLR TALEN gene editing.

We found several genomic alterations by CGH and

exome sequencing analysis. However, the majority of

themwere already present in PKD PB-MNCs before their re-

programming, especially in the case of the biallelic targeted

PKD3iPSC c31 (Table S4), where all of the CNVs were

already present in PKD3iPSC c54, confirming previous

data associating these DNA variations in iPSC clones with

a cellular mosaicism in the original samples (Abyzov

et al., 2012). However, there were some mutations present

in the iPSC that we were unable to detect in the original

sample, which might be due to technical limitations or to

the inherent genetic instability associated with the reprog-

ramming process and iPSC culture (Gore et al., 2011; Hus-

sein et al., 2011). Supporting this last possibility, we found

CNVs present in PKD2iPSC c78 and not in PKD2iPSC e11

(Table 2; Table S3). Because PKD2iPSC c78 was maintained

in vitro for several more passages, after HR and before CGH

analysis, some new changes could have occurred that were

not present in the gene-edited-derived clones. Although

one CNV involved the TCEA1 gene, indirectly involved

in salivary adenoma as a translocation partner of PLAG1

(Asp et al., 2006), none of these genomic alterations identi-

fied were implicated in hematopoietic malignancies, cell

proliferation, or apoptosis regulation, suggesting their

neutrality in the PKD therapy by gene editing.

Constitutive expression of Puro/TK from the ubiqui-

tously active mPGK promoter might hinder therapeutic

applications of this approach. Indeed, these highly immu-

nogenic prokaryotic/viral proteins can be presented on the

cell surface of the gene-corrected cells by the major histo-

compatibility complex class I molecules, thus stimulating

an immune response against the cells once transplanted

into the patients. Here, although the Puro/TK cassette has

been maintained in the edited PKDiPSC lines, the cassette

is inserted between two loxP sites, which would allow us

to excise it before their clinical application. Moreover, for

the potential clinical use of our approach, other selection

systems could be used, such as a truncated version of the

nerve growth factor receptor combined with enrichment

bymagnetic sorting, or the use of an inducible or an embry-

onic-specific promoter instead of the PGK constitutive pro-

moter to limit the Puro/TK expression.

Finally, we have clearly demonstrated the effectiveness of

editing the PKLR gene in PKDiPSCs to recover the energetic

balance in erythroid cells derived from edited PKDiPSCs.

ATP and other metabolites involved in glycolysis were

restored by expressing a chimeric RPK in a physiological

manner. As expected erythroid cells derived from monoal-

lelic corrected PKDiPSCs produce partial restoration of ATP
Stem Cell Rep
levels, and erythroid cells derived from biallelic corrected

PKD3iPSC e31 fully recovered ATP level (Figure 5A). Addi-

tionally, we could not observe any difference in the

erythroid populations obtained in vitro from uncorrected

and corrected PKDiPSCs, probably due to the lack of termi-

nal differentiation/enucleation of the protocol used to

generate mature enucleated erythrocytes. Furthermore,

we were able to generate 20,000 erythroid cells per starting

iPSC, providing abundantmaterial for our assays and offer-

ing the potential to undertake more comprehensive ana-

lyses, including metabolic and biochemical profiling, to

further elucidate the effects of PKD on erythroid cells, or

even for therapeutic usage.

Many groups are working to generate long-term reconsti-

tuting HSCs from iPSCs, and a major development was re-

ported by Amabile et al. (2013), who showed that in vivo

differentiation of human iPSCs in NSG mice reveals their

intrinsic potential to fully reconstitute the hematopoietic

system. We confirmed the in vivo hematopoietic potential

of gene-edited PKDiPSCs (even hematopoietic progenitors

could be detected), butwe failed to generate in vivo engraft-

able hematopoietic progenitors (data no shown), possibly

because of the low efficacy of our in vivo hematopoietic dif-

ferentiation approach, which we are working to improve.

In summary, we combined gene editing and patient-spe-

cific iPSCs to correct PKD. Our gene-editing strategy was

based on inserting a partial codon-optimized (cDNA)RPK

in the PKLR locus mediated by PKLR TALEN without

altering the cellular genome or neighbor gene expression.

Additionally, we found a highly homologous sequence

specificity, since a single SNP could avoid HR. The resultant

edited PKDiPSC lines could be differentiated to large num-

ber of erythroid cells, where the energetic defect of PKD

erythrocytes was effectively corrected. This validates the

use of iPSCs for disease modeling and demonstrates the po-

tential future use of gene editing to correct PKD and also

other metabolic red blood cell diseases in which a contin-

uous source of fully functional erythrocytes is required.
EXPERIMENTAL PROCEDURES

Peripheral Blood Samples and Reprogramming
Peripheral blood from PKD patients and healthy donors was

collected in routine blood sampling fromHospital Clı́nico Infantil

Universitario Niño Jesús (Madrid, Spain), Centro Hospitalario de

Coimbra (Coimbra, Portugal), and the Medical Care Service of

CIEMAT (Madrid, Spain). All samples were collected under written

consent and institutional review board agreement. PB-MNCs were

isolated by density gradient using Ficoll-Paque (GE Healthcare).

PB-MNCs were pre-stimulated for 4 days in StemSpan (STEMCELL

Technologies) plus 100 ng/ml human stem cell factor (SCF),

100 ng/ml hFLT3L, 20 ng/ml hTPO, 10 ng/ml G-CSF, and

2 ng/ml human IL-3 (Peprotech) (Figure 1A). Cells were then
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transduced with a mix of SeV, kindly provided by DNAvec (Japan),

expressingOCT3/4, KLF4, SOX2, c-MYC, andAzamiGreen, each at

aMOI of 3. Transduced cells weremaintained for fourmore days in

the same culture medium and then supplemented with 10 ng/ml

basic fibroblast growth factor (FGF). Five days after transduction,

cells were collected and seeded on irradiated human foreskin fibro-

blast (HFF-1)-coated (ATCC) culture plates with human ES media

(knockout DMEM, 20% knockout serum replacement, 1 mM

L-glutamine, and 1% nonessential amino acids [all from Life

Technologies]), 0.1 mM b-mercaptoethanol (Sigma-Aldrich), and

10 ng/ml basic human FGF (Peprotech). Human ES media was

changed every other day. When human ES-like colonies appeared,

they were selected under the stereoscope (Olympus) and a clonal

culture from each colony was established.
Gene Editing in iPSCs
iPSCs were treated with Rock inhibitor Y-27632 (Sigma) before a

single-cell suspension of iPSCs was generated by StemPro Accutase

(Life Technologies) treatment and then nucleofectedwith 1.5 mg or

5 mg of each PKLR TALEN subunit with or without 4 mg HR matrix

by Amaxa Nucleofector (Lonza) using the A23 program. After nu-

cleofection, cells were seeded into a feeder of irradiated PuroR

mouse embryonic fibroblasts in the presence of Y-27632, and

48 hr after transfection, puromycin (0.5 mg/ml) was added to hu-

man ESmedia. Newly formed PuroR-PKDiPSC colonieswere picked

individually during a puromycin selection period of 6–10 days.

PuroR-PKDiPSC colonies were expanded and analyzed by PCR

and Southern blot to detect HR (Figures 2B, 2C, S3B, and S3D).
Erythroid Differentiation
Erythroid differentiation from iPSC lines was performed using a

patented method (WO/2014/013255). In brief, we used a multi-

step, feeder-free protocol developed by E.O. (unpublished data).

Before differentiation, normal, diseased, and corrected iPSCs

were maintained in StemPro medium (Life Technologies) with

the addition of 20 ng/ml basic FGF on a matrix of recombinant vi-

tronectin fragments (Life Technologies) using manual passage. For

initiation of differentiation, embryoid bodies (EBs) were formed in

Stemline II medium (Sigma Aldrich) with BMP4, vascular endothe-

lial growth factor (VEGF), Wnt3a, and activin A. In a second step,

hematopoietic differentiation was induced by adding FGFa, SCF,

IGF2, TPO, and heparin to the EB factors. After 10 days, hemato-

poietic progenitors were harvested and replated into fresh Stem-

line II medium supplemented with BMP4, SCF, Flt3 ligand, IL-3,

IL-11, and erythropoietin (EPO) to direct differentiation along

the erythroid lineage and to support extensive proliferation. After

17 days, cells were transferred into Stemline II medium containing

a more specific erythroid cocktail that included insulin, trans-

ferrin, SCF, IGF1, IL-3, IL-11, and EPO for 7 days. In a final matura-

tion step of 7 days (days 24–31), cells were transferred into IMDM

with insulin, transferrin, and BSA and supplemented with EPO.

Cells were harvested for analysis on days 10, 17, 24, and 31.
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