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Transcription factor-7-like-2 (TCF7L2), a vital member of the T-cell factor/lymphoid

enhancer factor (TCF/LEF) family, plays an important role in normal human physiological

and pathological processes. TCF7L2 exhibits multiple anti-atherosclerotic effects through

the activation of specific molecular mechanisms, including regulation of metabolic

homeostasis, macrophage polarization, and neointimal hyperplasia. A single-nucleotide

substitution of TCF7L2, rs7903146, is a genetic high-risk factor for type 2 diabetes

and indicates susceptibility to cardiovascular disease as a link between metabolic

disorders and atherosclerosis. In this review, we summarize the anti-atherosclerosis

effect and novel mechanisms underlying the function of TCF7L2 to elucidate its

potential as an anti-atherosclerosis biomarker and provide a novel therapeutic target for

cardiovascular diseases.
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INTRODUCTION

Atherosclerosis precedes and forecasts the pathological process of cardiovascular disease (CVD),
the leading cause of mortality worldwide (1, 2). Atherosclerosis is characterized by complex
pathological progression involving endothelial damage, local chronic inflammation, and metabolic
disorders (3). The onset of atherosclerosis in endothelium stimulates chemokine releases and
recruits circulating monocytes, which then differentiate into M1 macrophages in the local
inflammatory environment (4). Additionally, subendothelial M1 macrophages not only secrete
proinflammatory cytokines but also transform into foam cells through excessive lipid uptake.
However, foam cells are prone to apoptosis or necrosis owing to cytotoxicity, and the debris and
lipids from foam cells inflate the necrotic core of atherosclerotic plaques. Vascular smooth muscle
cell (VSMC) migration is another pathologic feature of atherogenesis, which thickens the vascular
walls and narrows the vascular lumen. Even worse, once these atherosclerotic plaques rupture
and the necrotic core breaks through into the vascular lumen, patients will suffer from acute
CVD events, such as stroke or myocardial infarction. In addition to the local microenvironment,
atherogenesis is affected by multiple systemic factors such as obesity, dyslipidemia, and insulin
resistance (IR). Recently, metabolic syndrome, the simultaneous presence of various risk factors
related to metabolism, has been identified as a prominent risk factor for atherosclerosis (5).
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TCF7L2 is well characterized as a member of the T-cell
factor/lymphoid enhancer factor (TCF/LEF) family, whose
remaining members are LEF1, TCF7, and TCF7L1 in humans.
It was also previously called T-cell factor 4 (TCF4), not to
be mistaken for transcription factor 4 (6). Korinek et al. (7)
discovered TCF7L2 via the hybridization screening of TCF7
cDNA for the first time and described TCF7L2 as an important
transcription factor of Wnt signaling. During embryogenesis,
TCF7L2 promotes embryonic organ development as a key
player in Wnt signaling (7, 8). In adults, TCF7L2 has attracted
widespread attention because of its significant genetic correlation
with the high risk of type 2 diabetes (T2D), which alters the
function and survival of pancreatic β cells (9–13). Currently,
TCF7L2 has drawn increasing academic attention because
it has been reported to be associated with inflammation,
metabolism, and atherosclerosis (14, 15). Studies have shown
that silencing TCF7L2 leads to insufficient insulin secretion,
impaired adipogenic differentiation, blood-vessel dysplasia, and
lipid accumulation (16–18). In contrast, overexpression of
TCF7L2 promotes macrophage polarization (M2) and inhibits
neointimal hyperplasia (19, 20). This evidence indicates the
anti-atherosclerotic effects of TCF7L2. With an in-depth study
of genomics, single-nucleotide polymorphisms (SNPs) have
been found to be related to the genetic susceptibility to
atherosclerosis and the distribution of high-risk populations;
of these, TC7FL2 rs7903146 is one of the most notable SNPs
(21–23). These findings indicate that TCF7L2 plays a vital role
in anti-atherosclerosis and can be considered as a potential
biomarker for the treatment of CVD. Therefore, in this review,
we summarize the structure, function, and anti-atherosclerosis
effects of TCF7L2 in order to provide insight for the development
of an alternative treatment strategy for CVD.

STRUCTURAL AND FUNCTIONAL
CHARACTERISTICS OF TCF7L2

In humans, TCF7L2 is located on chromosome 10q25.2-q25.3;
it spans over 217,432 bp of DNA and consists of 17 exons. The
full-length TCF7L2 protein contains 596 amino-acid residues
in a certain subsequence of the N terminal, β catenin-binding
domain, Groucho-binding sequence, HMG box-DNA-binding
domain (HGM-DBD), cysteine clamp (C clamp), and C terminal
(24, 25). With the help of HGM-DBD, TCF7L2 can recognize

specific DNA subsequences (5
′

-xCTTTGATx-3
′

) in the double-
helix dimple and trigger transcription factor activity (17, 26).
Until now, the C clamp has been considered to assist the
binding of HGM-DBD with certain DNA sequences, although

the C clamp contains an alternative DNA-binding domain (5
′

-

xTGCCGCx-3
′

) without transcription regulatory activity (27).
Remarkably, TCF7L2 exerts dual transcription regulatory effects
on target genes influenced by the transcriptional co-activator β-
catenin or transcriptional co-repressor transducin-like enhancer
of split (TLE)/Groucho (28–30). WithWnt signaling stimulation,
increased amounts of β-catenin are imported into the nucleus,
where they subsequently assemble into the β-catenin/TCF7L2
complex. In addition, β-catenin functions as a scaffold to assist

the binding of the β-catenin/TCF7L2 complex to the promoter of
target genes and thus enhance promoter activity. In the absence
of Wnt/β-catenin signaling, the co-repressor TLEs preferentially
occupy TCF7L2 by the glutamine-rich (Q) domain and recruit
histone methyltransferases or histone deacetylases to silence
downstream genes (31, 32). Taken together, TCF7L2 contains
two DNA-binding domains (HGM-DBD and C clamp), but only
HGM-DBD can activate transcription. Furthermore, TCF7L2 is
subject to dual regulation by the transcriptional co-activator
β-catenin or transcriptional co-repressor TLE/Groucho.

TCF7L2 AND WNT SIGNALING

Wnt signaling plays a protective role in the development
of atherosclerotic CVDs. Many studies have shown that
Wnt signaling prevents the development of atherosclerosis
via a series of processes, including glucolipid metabolism,
macrophage polarization, and neointimal hyperplasia (33–36).
Upon activation of canonical Wnt signaling, accumulated β-
catenin binds to TCF7L2 in the nucleus and regulates the
expression of downstream genes. This signaling pathway is
widely present in pancreatic islets and adipocytes, where it
balances glucose and lipid metabolism. TCF7L2 is the terminal
executor of the Wnt signaling pathway, which directly acts on
the promoters of downstream genes. Insulin and glucagon exert
opposite effects on blood glucose levels; glucagon-like peptide 1
(GLP-1) promotes insulin secretion, while inhibiting glucagon
secretion in a blood glucose concentration-dependentmanner. Yi
et al. (37) found that the promoters of both GLP-1 and glucagon
contain TCF7L2-binding sites. However, TCF7L2 upregulates
GLP-1 expression in gut endocrine cells but downregulates
glucagon expression in pancreatic α cells, exerting powerful
effects on insulin synthesis and balance of blood glucose levels
(37). Additionally, macrophages have been proven to be a source
and effector of Wnt signaling, and Wnt signaling greatly affects
macrophage phenotypes. Wnt signaling can induce myeloblasts
to differentiate into monocytes in the bone marrow (38) and
can promote macrophage polarization into M2 phenotypes in
the peripheral residences, with a pattern of decreasing expression
of TNF-α and IL-6 and increasing expression of the M2 marker
CD206 (39–41). Taken together, the Wnt signaling pathway
has been proven to balance blood glucose levels and alleviate
local inflammation, which is defined as an anti-atherosclerosis
action. Considering TCF7L2 to be a determinant element of
Wnt signaling, we will further explore the role of TCF7L2 in
metabolism, inflammation, and atherosclerosis.

TCF7L2 rs7903146 AS A RISK PREDICTOR
OF CVD

With the advances in genome sequencing, the identification
of gene polymorphisms in populations has been shown to be
important in disease risk prediction (42). SNPs comprise a
type of gene polymorphisms and specifically refer to single-
nucleotide substitutions of one base for another that have more
than 1% incidence in the general population (43). Many gene
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polymorphisms have been confirmed to be involved in the
development of atherosclerosis, such as rs7903146 in TCF7L2.

SNPs can be classified into two categories according to their
distribution on DNA: linked SNPs and causative SNPs (44, 45).
Linked SNPs do not reside within genes and do not affect protein
production or function. Causative SNPs are located within
the coding region and regulatory subsequence and can thus
influence gene transcription or translation. Among causative
SNPs, rs7903146, located in exon 4 of TCF7L2, is well known
for conferring a genetic predisposition to T2D (Figure 1) (9,
46). rs7903146 influences the activity of the TCF7L2 promoter
and alters the alternative splicing of exon 4 (47–50). The T-
allele genotype of TCF7L2 shows a higher degree of open
chromatin, and the promoter is accessible to transcription
factors. Additionally, rs7903146 is regarded as a cis-regulatory
variation wherein the T-allele genotype exhibits robust enhancer
activity to promote TCF7L2 transcription (49, 50). Conversely,
TCF7L2 protein levels are decreased in T-allele carriers, in
contrast to elevated TCF7L2 mRNA levels (11, 51). A possible
hypothesis for this inconsistency is that rs7903146 reduces exon
4 cutting from TCF7L2 transcripts (47, 48). Notably, this TCF7L2
transcript containing exon 4 exhibits high mRNA but gets rarely
encoded into mature protein, which caused the discrepancy in
transcription and translation. In addition, the expression of this
TCF7L2 splice variant increases endoplasmic reticulum stress,
triggers the ER-associated degradation pathway to degrade, and
ultimately induces irreversible apoptosis (48, 52, 53). Thus,
rs7903146 in TCF7L2 not only affects the expression of TCF7L2
but also causes cell dysfunction.

Atherosclerosis is well documented to be the primary
pathological basis of CVD and results from subendothelial lipid
accumulation and local chronic inflammation. rs7903146 induces
postprandial dyslipidemia, causing high triglyceride (TG),
high low-density lipoprotein (LDL)-C, and low high-density
lipoprotein (HDL)-C levels (54, 55). Some evidence implies
that Apo-B is overproduced, but ApoA-I is lacking in T-allele
carriers with a high-fat diet (54). ApoA-I is well documented
to be a beneficial apolipoprotein in the cardiovascular system
(56, 57); ApoA-I accepts intracellular cholesterol efflux from
the membrane transporter ABCA1, assembles it into HDL, and
transports the excess cholesterol to the liver for metabolism.
Deficiency of ApoA-I reduces the feedback regulation of the
cardiovascular system in response to dyslipidemia and increases
subendothelial lipid accumulation (21, 58). Additionally, TCF7L2
rs7903146 aggravates pancreatic β-cell dysfunction and IR and
thus presents as a metabolic correlation in CVD and T2D. Islet
morphology analysis showed a 20% decrease in β-cell mass and
a 30% increase in α-cell mass within islets from T/T genotype
carriers (59). As for islet function, T/T-allele homozygotes
exhibited 3.2 mg/dl higher baseline fasting glucose levels than
C/C allele homozygotes. In addition, TCF7L2 rs7903146 reduces
the efficiency of glipizide and metformin in pre-diabetic or
newly diagnosed T2D subjects (60, 61). As previously mentioned,
TCF7L2 can promote GLP-1 expression and sensitize pancreatic
β-cells to blood glucose, but TCF7L2 rs7903146 causes a decrease
in protein levels. These underlying mechanisms are consistent

with the function and pathological changes in the islets of T/T
allele homozygotes.

In summary, TCF7L2 rs7903146 has a great impact on
metabolic balance, linking dyslipidemia and hyperglycemia, and
results in greater risk of CVD in T-allele carriers, especially
in T2D patients (21). Decades ago, Bielinski et al. (62) found
that rs7903146 slightly increased the CVD risk in patients with
early-onset diabetes, and they attributed this risk to diabetes
without further research. However, this explanation was not
all-inclusive, because atherosclerosis was regarded as a multi-
cause disease. On the one hand, TCF7L2 rs7903146 induces the
development of T2D by damaging pancreatic β-cell function
and stimulating IR, which causes the vascular endothelium to
be more accessible to atherosclerosis (18, 63). On the other
hand, rs7903146 can lead to dyslipidemia and arterial intimal
hyperplasia, both of which causes irreversible damage to the
cardiovascular system (54, 64). Above all, TCF7L2 rs7903146
appears to have an intricate relationship with atherosclerosis.
Although T2D is an indispensable factor, dyslipidemia and other
factors are also involved in this relationship. Therefore, TCF7L2
rs7903146 can be regarded as a genetic risk factor for CVD, which
could be useful to guide clinical treatment.

ANTI-ATHEROSCLEROTIC ROLE OF
TCF7L2 IN METABOLIC BALANCE

As mentioned previously, TCF7L2 rs7903146 is a genetic
risk factor for CVD, which cause a reduction in TCF7L2
protein. However, TCF7L2 is a functional transcription factor
with pleiotropic anti-atherosclerotic effects on glucose and
lipid metabolism. Metabolic syndrome comprises a complex
group of pathological circumstances associated with metabolic
and proinflammatory states, which play an important role
in the atherosclerotic process by gathering atherogenic risk
factors (Figure 2) (65). It is noteworthy that TCF7L2 is widely
distributed in pancreatic islets, adipose tissue, and the liver and
regulates their function and metabolism.

TCF7L2 Improves Pancreatic β-Cell
Function and Insulin Sensitivity
A large sample investigation involving 584 participants revealed
that compared to non-T2D participants, T2D patients suffer
from more severe carotid atherosclerotic stenosis, appearing as
larger lipid necrosis cores with increasing calcification (66). T2D
patients are extremely susceptible to CVD, which has become
the most common cause of death in T2D (67). Similar to other
metabolic diseases, T2D shares several pathological factors with
atherosclerosis. Insulin insufficiency, the chief culprit in T2D,
also causes damage to vessel walls and increases inflammasome
activity (68–70). All these pathologies propel the progression
of atherosclerosis. TCF7L2 mutations or deficiency have been
shown to impair both pancreatic β-cell and insulin function in
in vivo and in vitro experiments (18, 71, 72).

As the exclusive source of insulin, β cells are vital
for maintaining metabolic balance and organ functions. On
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FIGURE 1 | Location of rs7903146 in human TCF7L2. Representative 17 exons and location of rs7903146 on human TCF7L2. Alternatively spliced exons are

colored, and the black arrow represents alternative transcription start sites. rs7903146 is located in exon 4 of TCF7L2. TCF7L2 comprises several domains, including

the β catenin-binding domain, Groucho-binding sequence, HMG box-DNA-binding domain (HGM-DBD), and cysteine clamp (C-clamp).

FIGURE 2 | Pathological mechanisms of atherosclerosis in metabolic syndrome. Metabolic syndrome comprises a complex group of metabolic disorders

characterized by hyperglycemia/insulin resistance, dyslipidemia, and obesity. It may accelerate atherogenic progression via increased adipocytes, proinflammatory

environment, prothrombotic state, excess concentration of free fatty acids, unfavorable lipidomics, and decreased insulin levels and insulin sensitivity.

the one hand, TCF7L2 is positively related to β-cell mass
(16, 59). As quiescent cells, β cells have a long-life span
with low proliferation ability, but their regeneration can be

affected by tissue damage and increasing demands (73–75). In
these situations, TCF7L2 is required for β-cell renewal and
regeneration through JAK2/STAT3/Ngn3 signaling. In addition,

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 September 2021 | Volume 8 | Article 701279

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Li et al. The Anti-atherosclerosis of TCF7L2

TCF7L2 directly reduces mitochondrial permeability and inhibits
β-cell apoptosis via the GSK-3β/p53-dependent pathway (76–
78). On the other hand, TCF7L2 affects the most important
β-cell function, insulin secretion, from two aspects: proinsulin
maturation and Ca2+ voltage-gated channel (CAV) activity. To
enhance insulin synthesis, TCF7L2 significantly promotes the
expression of the proinsulin genes Ins1 and Ins2. Subsequently,
TCF7L2 can upregulate PSCK1 and PSCK2 to cleave proinsulin
into mature insulin and the C peptide (79, 80). Insulin secretion
relies on islet β-cell exocytosis, which is controlled by the L-
type Ca2+ channel CAV1.2. Upon membrane depolarization,
Ca2+ influx through CAV1.2 triggers β-cell exocytosis (81–83).
Ye et al. (83) found that TCF7L2 silencing reduced the expression
of α2δ-1, an auxiliary subunit of CAV1.2, and alleviated
the Ca2+ current, causing a voltage-insensitive response to
high-glucose/depolarization-evoked stimulation, accompanied
by insufficient insulin secretion. In addition, TCF7L2 can
stimulate the PI3K/AKT pathway to promote insulin sensitivity
and secretion, because TCF7L2 can bind to conserved TCAAAG
motifs in the promoter of PIK3R1 to upregulate PI3K (84). Li
et al. found that TCF7L2 protein expression in the adipocytes,
liver, and skeletal muscle is positively correlated with changes in
homeostasis model assessment (HOMA)-IR (85), which indicates
that TCF7L2 deficiency may induce IR. A recent study found that
selective deletion of TCF7L2 in adipocytes leads to IR (63). In
conclusion, accumulating evidence confirms that TCF7L2 plays
a key role in metabolism and is responsible for maintaining β-
cell function and insulin sensitivity. Under TCF7L2 dysfunction,
T2D patients suffer more severe insulin deficiency and glucose
metabolism disorders with a high risk of CVD (21, 36, 86).

TCF7L2 Regulates Adipose Differentiation
and Blood Lipid Homeostasis
Adipose tissue is the most abundant fat storehouse and exerts a
chronic and profound influence on lipid metabolism and blood
lipids. Blood lipid homeostasis is jointly maintained by adipose
tissue and the cardiovascular system and is mutually beneficial
(87, 88). A heat map of gene expression and gene set enrichment
analysis showed alterations in several signaling pathways related
to adipogenesis and metabolism in TCF7L2−/− mice (63). Wnt
signaling is well-documented to inhibit adipogenesis, in which
the formation of the β-catenin/TCF7L2 complex is indispensable
(89, 90). Inducible deletion of TCF7L2 promotes adipose
differentiation and subcutaneous fat accumulation in TCF7L2F/F

mice (63).
Atherogenic dyslipidemia is characterized by high TG, high

fatty free acid (FFA), high LDL, and low HDL levels (91–94);
particularly, high serum TG levels are very dangerous signals for
myocardial infarction (95). TGs, which are small particles, can
easily enter the arterial intima and induce subendothelial lipid
accumulation and local inflammation (96). However, TCF7L2
expression can decrease serum TG levels with the help of
lipoprotein lipase (LPL) and triglyceride hydrolases (TGH), both
of which can hydrolyze TGs (22, 63). LPL is mainly anchored
in the vascular endothelium and is sensitive to serum TG. Our
previous study showed that TCF7L2 can bind to the promoter

of LPL and promote LPL expression to decrease serum TG levels
(97, 98). Another study showed using RNA seq analysis that the
expression of TGH was decreased in TCF7L2F/F mice, but the
underlying mechanism remains unknown. Additionally, FFAs
play a major role in inducing the endothelial prothrombotic
state (99). A recent study showed that serum FFA concentrations
increased dramatically after knocking out TCF7L2 in mice
(72). In conclusion, TCF7L2 is a crucial regulatory element
in metabolic balance. On the one hand, TCF7L2 regulates
adipose differentiation viaWnt/β-catenin signaling and prevents
adipocyte hypertrophy; on the other hand, TCF7L2 upregulates
serum TG and FFA levels (Figure 3).

POTENTIAL ANTI-ATHEROSCLEROTIC
MECHANISM OF TCF7L2

In addition to metabolic disorders, inflammatory infiltrates
and neointimal hyperplasia aggravate the progression of
atherosclerosis. Previously, we have illustrated TCF7L2 as a
regulatory element in metabolism, but recent research has
revealed other anti-atherosclerotic effects of TCF7L2, such
as those against inflammation and neointimal hyperplasia
(Figure 4).

TCF7L2 Promotes M2 Polarization
Macrophages are the major inflammatory effectors in
atherosclerotic lesions. After endothelial injury, monocytes are
recruited by chemokines and differentiate into macrophages in
the vascular wall. Macrophages are divided through the process
of macrophage polarization into two primary phenotypes
according to their roles in inflammation: pro-inflammatory M1
macrophages and anti-inflammatory M2 macrophages. Under
IFN-γ or TNF-α stimulation, macrophages polarize into the M1
phenotype and intensify local inflammation. M1 macrophages
secrete numerous pro-inflammatory factors, including ROS,
IL-1, and TNF-α, in the atherosclerotic microenvironment
where they can destroy the structure or function of blood
vessels (100). Additionally, M1 macrophages are more likely
to transform into foam cells because of excessive lipid intake.
In contrast, M2 macrophages can delay the development of
atherosclerosis by relieving local inflammation (101, 102).
TCF7L2 partially regulates macrophage polarization (19, 103).
In vitro, curcumin can upregulate TCF7L2 to suppress M1
macrophage-derived inflammation (103). Consistently, TCF7L2
can induce macrophage polarization toward the M2 phenotype
by downregulating the lncRNA XIST (19). These results
indicate that TCF7L2 may be an upstream factor that regulates
macrophage polarization and exerts anti-inflammatory effects
in the atherosclerotic microenvironment, but the underlying
molecular mechanism needs further exploration.

TCF7L2 Inhibits Neointimal Hyperplasia
During atherogenesis, VSMCs are characterized by two
phenotypes: a contractile phenotype and a synthetic phenotype.
VSMCs usually exhibit a contractile phenotype to maintain
vascular elasticity. However, VSMCs transform from this
contractile phenotype into a synthetic phenotype during
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FIGURE 3 | TCF7L2 rs7903146 is a link between metabolism disorders and atherosclerosis. TCF7L2 rs7903146 inhibits the expression of TCF7L2, thereby

influencing glucose and blood lipid homeostasis. On the one hand, TCF7L2 rs7903146 induces hyperglycemia and insulin resistance by decreasing β-cell mass,

proinsulin gene expression, Ca2+ voltage-gated channel activity, and insulin sensitivity of cells. On the other hand, TCF7L2 rs7903146 disrupts blood lipid

homeostasis by increasing white adipocyte tissue (WAT) mass and harmful lipid components and decreasing HDL levels.

atherogenesis and show strong proliferation and migration
activities (104, 105). TCF7L2 has been proved to be negatively
related to VSMC plasticity (20, 36). Mechanistically, TCF7L2
can directly bind to the promoter of GATA6 and upregulate
the expression of SM-MHC, a well-established marker of
the contractile VSMC phenotype. In addition, TCF7L2
can downregulate Sp1 expression to suppress the VSMC
phenotypic switch (36, 106). Notably, Wnt/TCF7L2 dysfunction
enhances Sp1/PDGF/JNK signaling and subsequently leads
to extensive VSMC proliferation (107, 108). Taken together,
TCF7L2 upregulates GATA6 expression while downregulating
Sp1 expression to inhibit VSMC plasticity and neointimal
hyperplasia. Understanding the mechanisms underlying the
recruitment of VSMCs by TCF7L2 may provide novel insights
into the pathogenesis of atherosclerosis.

Myofibroblasts play an active role in neointimal hyperplasia
and have been reported in all stages of atherosclerotic CVD from
plaque formation and rupture to restenosis after percutaneous
coronary intervention (109). Transformation of fibroblasts
into neointimal myofibroblasts causes collagen deposition
and neointimal expansion under TGF-β stimulation (110–
112). Meanwhile, myofibroblasts also secrete pro-inflammatory

cytokines to aggravate atherosclerosis (113, 114). Contreras et al.
found that TCF7L2 is highly expressed in fibroblasts, while it is
barely expressed inmyofibroblasts, and it behaves as a key control
switch in the differentiation of fibroblasts to myofibroblasts (115,
116). During this process, TGF-β accelerates the degradation of
TCF7L2 to induce myofibroblast formation via the ubiquitin-
protease system (115).

THERAPEUTIC STRATEGIES TO
PROMOTE TCF7L2 EXPRESSION

TCF7L2 exerts multiple anti-atherosclerotic effects, including
IR, lipid accumulation, and local inflammation. TCF7L2 is
expected to be an alternative therapeutic target for atherosclerotic
CVDs. Thus, the promotion of TCF7L2 expression is a
more intuitive therapeutic strategy. Numerous studies have
indicated that noncoding RNAs, including short noncoding
RNAs (miRNAs) and long noncoding RNAs (lncRNAs), are
master regulators of gene expression, and many are involved
in the development of atherosclerosis (117). Serum miR-217
levels have been reported to be significantly increased in
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FIGURE 4 | Molecular mechanisms underlying the action of TCF7L2 in anti-atherosclerosis. TCF7L2 exerts a protective role in atherosclerosis through multiple

molecular mechanisms, including the inhibition of inflammation, VSMC proliferation and migration, dyslipidemia, insulin resistance, and foam cell and myofibroblast

formation.

patients or mice with atherosclerosis (118). Mechanistically,
miR-217 aggravates the progression of atherosclerosis by
promoting endothelial dysfunction and inflammatory responses
(119, 120). Yu et al. (121) showed that TCF7L2 is a
downstream target of miR-217, as confirmed by dual luciferase
reporter assays. Thus, suppression of miR-214 expression
may be a possible treatment for atherosclerotic CVDs. Other
miRNAs, such as miR-26b-5p, miR-17-5p, and miR-181-5p,
show inhibitory effects on TCF7L2 expression similar to those
of miR-217 (122, 123). Moreover, miR-26b-5p and miR-17-
5p can promote adipogenic differentiation by downregulating
TCF7L2 expression (124). MiR-17-5p can specifically bind to

the 3
′

UTR of TCF7L2 mRNA and recruit the RNA-induced
silencing complex (RISC) to degrade TCF7L2 mRNA (125).
LncRNA also participates in the anti-atherosclerotic action of
TCF7L2, wherein TCF7L2 downregulates the lncRNA XIST
and promotes M2 polarization in THP-1 macrophages (19).
Interestingly, TCF7L2 also participates in the protective effects
of estradiol on the cardiovascular system (126). Tian et al.
(126) generated a dominant-negative TCF7L2 mouse model
via adenovirus transfection and found that overexpression of
dominant-negative TCF7L2 significantly increased serum TG
and hepatic lipid accumulation in male transgenic mice, but
not in females; this finding caused the researchers to be curious
about the relationship between TCF7L2 and estradiol. In the
subsequent estradiol treatment, male transgenic mice showed
an amelioration in serum TG and hepatic lipid accumulation,
perhaps owing to the increased expression of TCF7L2 and
the nuclear translocation of β-catenin. In general, TCF7L2
exerts a variety of anti-atherosclerotic effects by regulating

downstream genes and is itself regulated by multiple controllable
factors, making its use in clinical treatment applications
potentially advantageous.

CONCLUSIONS AND FURTHER
DIRECTIONS

TCF7L2, an important element in Wnt signaling, has attracted
extensive attention since its discovery in 1998 (7). There are
four functional structures in the TCF7L2 protein: the β catenin-
binding domain, Groucho-binding sequence, HGM-DBD, and
C-clamp (24, 25). HMG-DBD is responsible for identifying and
binding to specific nucleotide sequences on the promoters of
target genes to regulate their expression (17, 26). However,
the activity of TCF7L2 is controlled by two contradictory
regulatory elements: the co-activator β-catenin and co-repressor
TLE/Groucho (28–30). TCF7L2 is mainly distributed in the
nucleus and is usually occupied by TLE/Groucho, which
suppresses the regulatory activity of TCF7L2 on target genes.
However, activating the Wnt signaling pathway promotes the
nuclear import of β-catenin, which competitively binds with
TCF7L2 and exerts positive effects on TCF7L2. With the
assistance of β-catenin, TCF7L2 participates in insulin secretion,
adipogenesis, and maintenance of the blood lipid balance.
During insulin secretion, TCF7L2 can increase proinsulin and
PSCK1/PSCK2 to provide abundant insulin (79, 80). In addition,
TCF7L2 upregulates the L-type Ca2+ channel CAV1.2, which
promotes insulin efflux through exocytosis (81–83). TCF7L2-
binding sites are present on the promoters of LPL and TGH
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genes, both of which are related to TG hydrolysis and can reduce
serum TG levels (91–94).

In addition to metabolism, TCF7L2 can influence cell fate to
alleviate atherosclerosis in the vascular endothelium. It is well
established that local inflammation is an essential and forceful
factor in the development of atherosclerosis, and macrophages
are major participants in the inflammatory response (100–
102). With different stimulations, macrophages can polarize into
the pro-inflammatory M1 phenotype or anti-inflammatory M2
phenotype. TCF7L2 is involved in polarization of macrophages
into the M2 phenotype, alleviating the local inflammatory
response and atherogenesis (19, 103). Neointimal hyperplasia
mainly occurs in the middle or late stages of atherosclerosis,
especially after PCI (20, 36, 115, 116). During neointimal
hyperplasia, VSMCs or fibroblasts proliferate and migrate to the
vascular intima, where they transform into synthetic VSMCs or
myofibroblasts, respectively, which synthesize and secrete large
amounts of extracellular matrix. These changes eventually cause
a decline in blood-vessel elasticity and lumen area, causing CVD
patients to have more obvious clinical manifestations.

In terms of CVD prevention and treatment, we should pay
attention to TCF7L2 rs7903146, which has been proven to
be a causative SNP close to exon 4 (9, 46). Previous studies
have shown that rs7903146 is closely associated with genetic
susceptibility to T2D, and accumulating evidence indicates that
rs7903146 increases CVD risk in the population, especially in
subjects with diabetes (21, 127). Causally, rs7903146 alters the
sequence of TCF7L2mRNA, inserting an extra exon 4, and results
in the reduction of TCF7L2 protein (47, 48). Owing to insufficient
TCF7L2 protein, rs7903146 T-allele carriers are more likely to
suffer from islet atrophy, dyslipidemia, and atherosclerosis, as
shown in Figure 3. Thus, rs7903146 is a genetic biomarker to
identify a population with a high risk of CVDs. Furthermore,

TCF7L2 is a promising therapeutic target; we have provided a
detailed description of its role in atherosclerosis frommetabolism

and inflammation to neointimal hyperplasia, which makes it
suitable for clinical applications. However, a comprehensive
understanding of TCF7L2 remains necessary to ensure that any
future TCF7L2-based clinical treatment for CVD is safe and
effective. Therefore, the following issues are worthy of further
exploration: (i) the mechanism of TCF7L2 in independent Wnt
signaling; (ii) factors affecting the conversion of TCF7L2 between
co-repressors and co-activators; (iii) potential effects of TCF7L2
on FFA uptake in the intestine; (iv) mechanism underlying the
induction of M2 polarization by TCF7L2; (v) potential inhibition
of foam cells by TCF7L2; and (vi) potential regressive effect of
TCF7L2 on vascular intimal hyperplasia. A better understanding
of these issues will further reveal the molecular mechanism
underlying the action of TCF7L2 in atherosclerosis, which is
necessary for the development of new anti-atherosclerotic drugs
in the future.
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