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Università di Perugia, Via del Giochetto, 06126 Perugia, Italy

2 Laboratorio di Neurogenetica, CERC-IRCCS Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy
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MicroRNAs (miRNAs) have rapidly emerged as biologically important mediators of posttranscriptional and epigenetic regulation
in both plants and animals. miRNAs function through a variety of mechanisms including mRNA degradation and translational
repression; additionally, miRNAs may guide gene expression by serving as transcription factors. miRNAs are highly expressed
in human brain. Tissue and cell type-specific enrichments of certain miRNAs within the nervous system argue for a biological
significance during neurodevelopmental stages. On the other hand, a large number of studies have reported links between
alterations of miRNA homeostasis and pathologic conditions such as cancer, heart diseases, and neurodegeneration. Thus, profiles
of distinct or aberrant miRNA signatures have most recently surged as one of the most fascinating interests in current biology.
Here, the most recent insights into the involvement of miRNAs in the biology of the nervous system and the occurrence of
neuropathological disorders are reviewed and discussed.
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1. Introduction

microRNAs (miRNAs) are small, noncoding oligoribonu-
cleotides of ∼21-22 nt which regulate gene expression
through the assembly of an RNA-induced silencing complex
(RISC). In particular, the downstream effects of miRNAs
relate to the fate of target mRNA, which may be subjected to
endonucleolytic cleavage, enrolled into a faulty translational
process or, as surprisingly shown in most recent studies,
translationally enhanced [1–12]. Each of the hundreds of
miRNAs present in mammalian genomes can potentially
modulate an impressively large number of target genes,
thereby depicting a highly versatile network with the capacity
to effectively control and modify the biochemical wiring and,
in turn, the phenotypic outcome of a cell [1, 8].

It is now well established that miRNAs are involved
in disparate physiological functions, such as developmen-
tal transitions and neuronal patterning, apoptosis, fat

metabolism, and regulation of hematopoietic lineage dif-
ferentiation. For example, miRNAs are key regulators of
the nervous system in the worm and brain morphogenesis
in the fish and show distinct expression patterns during
mammalian brain development [13].

A clear understanding of the functional impact of
miRNAs on brain neurodegeneration is an intriguing, yet
rather elusive, matter of study. However, the current liter-
ature shows clear evidence that tightly controlled miRNA
expression is required for proper neurodevelopment and,
conversely, that specific miRNA dysregulation is likely linked
to the pathogenesis of neurodisorders.

2. miRNA Biogenesis

Biogenesis and silencing mechanisms of miRNAs were
recently revisited by Carthew and Sontheimer, who have
highlighted common themes and unique features of both
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Figure 1: The biogenesis of miRNAs. Shown are the key steps of miRNA biogenesis in mammalian cells (reviewed in [14, 15]).

miRNA- and siRNA-related pathways (see Figure 1 and
[14]). In either context, the molecular events that span from
miRNA transcription towards RNA degradation are complex
and imply an intricate interplay of molecular events to ensure
accurate and efficient regulation of gene expression [16].

In mammals, 80% of miRNA genes are located within
introns of longer primary transcripts that can be either
protein-coding or mRNA-like transcripts; the majority of
these are produced by RNA polymerase II [17–20], while
a minor group of genes, characterized by Alu sequences, is
instead transcribed by Pol III [21]. Thus, Pol II-associated
transcription factors may regulate the expression of the
majority of miRNA genes in a tissue- and/or cell-specific
fashion [22].

While transcription of intergenic miRNA genes implies
usage of own promoters, intronic miRNAs are transcribed
with their host genes and seem to be cotranscriptionally pro-
cessed prior to the removal of the host intron [18]. Typically,
primary miRNA transcripts or pri-miRNAs are composed
of a double-stranded stem of 33 base pairs, a terminal loop,
and two flanking, single-stranded segments which are subject
to cleavage, in the nucleus, by a protein complex called
Microprocessor. This is composed of a nuclear member
of the RNA III family (Drosha) associated with a cofactor
(DGCR8) for efficient and precise processing of pri-miRNAs

into 60–70 nt, hairpin-like precursor miRNAs (pre-miRNAs)
[23–27].

Interestingly, several pre-miRNAs, known as mirtrons,
originate directly from the splicing of pri-miRNAs and are
subsequently processed without a requirement for Micropro-
cessor activity. Evidence suggests that this alternative path-
way, although rather uncommon, has emerged throughout
metazoans prior to the advent of Drosha [28–30].

Through the exportin-5 pathway, pre-miRNAs are then
transferred to the cytoplasm where they are further pro-
cessed by Dicer, a second RNase III complexed with the
human immunodeficiency virus transactivating response
RNA-binding protein, TRBP [31, 32]. Dicer binds the 3′

overhang of the dsRNA and then excises the terminal loop
to produce a mature, single-stranded miRNA duplex of
approximately 22 bp. This duplex is ephemeral, in that it is
rapidly unwound as soon as it associates with an Argonaute
protein (Ago). Only one strand of the original dsRNA
molecules is incorporated into RISC while the ejected strand,
unlike during the siRNA unwinding mechanism, is not
degraded by the associated Ago [7, 14–32]. Finally, miRNAs
trigger gene silencing through partial base-pairing with
the 3′-UTRs of protein-coding mRNAs, thereby preventing
translation of targeted mRNAs and/or accelerating their
degradation [15, 33].
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Table 1: miRNAs involved in neurodevelopment.

miRNA Species Target Function Reference number

miR-iab-4-5p Drosophila UBX Regulation of Hox gene involved in the development of halters [34]

miR10a Human HOXA1 Downregulation of HOXA1 geneExpression [35]

lsy-6 C. elegans Cog-1 Required to specify ASEL sensory neuron identity [36, 37]

miR-273 C. elegans Die-1 Expressed in ASER; suppresses ASEL identity [36, 38]

miR-196 Rodents HOXB8 Downregulation of HOXC8, HOXD8 and HOXA7 [39]

miR-124 Rodents SCP1 Neural induction in the spinal cord of developing embryos [40]

miR-124 Rodents SOX9 Regulation of the neurogenesis in the SVZ stem cell niche and
neurite outgrowth in neuronal differentiation

[41]

miR-132 Rodents P250GAP Regulation of the neuronal morphogenesis and circadian clock [42, 43]

miR-219 Rodents SCOP Regulation of the circadian period length [36, 43]

miR-133b Rodents Pitx3 Regulation of the maturation of midbrain dopaminergic
neurons

[44]

miR-134 Rodents LimK1 Modulation of the size of dendritic spines [45]

The existence of stringent regulatory mechanisms affect-
ing the biogenesis of miRNAs suggests that this pathway plays
a crucial role in the control of gene expression and, further
downstream, the definition of biological outcomes. In this
regard, several examples of double-negative feedback loops
have been described, showing that the expression of miRNA
genes can be controlled by their own targets [14].

3. miRNAs Play Major Physiological
Roles in Neural Development

In Drosophila, multiple miRNAs interact with different 3′

UTR binding sites to play a cooperative role in the post-
transcriptional regulation of nerfin-1, a nuclear regulator of
axon guidance, within both the developing central nervous
system (CNS) and peripheral nervous system. In species of
this organism, the high degree of evolutionary conservation
of miRNA-binding sites provides evidence that regulation of
the onset and extinction dynamics of nerfin-1 expression is
common to all members of the Drosophila genus [46].

As shown in Table 1, the effects of miRNA-mediated
modulation of gene expression during multiple steps of
neuronal development, from early neurogenesis to synap-
togenesis, have been well documented across the animal
kingdom [34–45, 47–61].

Strong evidence for a biological role of miRNAs in neural
development emerged from their identification within the
HOX gene clusters [49]. When ectopically expressed, these
miRNAs induce a homeotic mutant phenotype, as shown
in Drosophila for miR-iab-4-5p, which reduces endogenous
Ubx protein levels, causing halteres to be transformed into
wings [34]. In addition, miR-10a targets HOXA1 [35] while
miR-196, encoded at three paralogous locations in the A,
B, and C mammalian HOX clusters, directs the cleavage
of HOXB8 mRNA and, apparently, downregulates HOXC8,
HOXD8, and HOXA7 [39].

The capacity of miRNAs to directly control cell fate
decisions and, in turn, specify neuron identity was also
shown in Caenorhabditis elegans [37, 38]. In developing

axons, miRNAs may regulate pathfinding, the process by
which the circuitry of the nervous system is built. In
zebrafish, normal brain morphogenesis is disrupted in the
absence of the miRNA-processing enzyme Dicer [50], while
the observation that functional RISC complexes can be
assembled in rat DRG axons and growth cones is indicative
of important roles played by miRNAs in the regulation of
axonal mRNA translation [51].

Indeed, the CNS displays a substantial enrichment of
miRNA species, of which a considerable number is expressed
in a temporally- and/or spatially-controlled fashion, thereby
suggesting biological implications for specific developmental
stages [52, 53]. Expression profiling revealed that several
species of miRNAs, such as miR-9, miR-124, miR-124a, miR-
125b, miR-127, miR-128, miR-132, miR-219, and members
of the let-7 family, are especially localized in the mouse
brain [40–45, 54–61], while the expression of 63 additional
miRNAs appears to be widely distributed, although dif-
ferentially, throughout the CNS [62]. Of these, some are
primarily present in the cerebellum (miR-195, miR-497, and
miR-30b), others in the medulla oblongata (miR-34a, miR-
451, miR-219, miR-338, miR-10a, and miR-10b), while a
third group (miR-7, miR-7b miR-218, miR-221, miR-222,
miR-26a, miR-128a/b, miR-138, and let-7c) appears to be
restricted to the hypothalamus [63–66]. In general, region-
specific enrichments reflect expression rates threefold higher
compared to average miRNA levels displayed throughout the
CNS [67–70].

Conceivably, miRNAs affect patterning mechanisms that
specify the fate of neural cells at specific times and within
proper locations. For example, an investigation of the expres-
sion of 104 miRNAs during murine brain development
showed that these were distributed according to specific
temporal expression patterns; in particular, the expression of
12 miRNAs was significantly upregulated during embryonic
stages while markedly decreased during brain development.
The involvement of modulated miRNAs was recapitulated by
computational screens aimed at target identification, which
revealed that 10 of 12 miRNAs are likely associated with
neurogenesis [70].
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In some instances, the physiological role of a number
of miRNAs in neurodevelopment is well-documented. For
example, miR-124 controls neurite outgrowth in differ-
entiating mouse P19 cells [71] and stimulates neuronal
differentiation in the developing chick spinal cord by
counteracting the antineural activity of one of its targets,
namely, the small C-terminal domain phosphatase 1 (SCP1)
[40]. Furthermore, functional studies in vivo have recently
demonstrated that miR-124 controls adult neurogenesis in
the mouse subventricular zone via a time-regulated control
of neuroblast generation from transit-amplifying precursors.
In particular, neuronal differentiation is promoted through
downregulation of the transcription factor Sox9, shown to
be one of the targets of miR-124 [41, 72]. A second example
relates to miR-132, which oversees dendritic morphogenesis
by inhibiting translation of the synaptic protein p250GAP,
suggesting a key role of miR132 p250GAP pathway in
synapse growth and plasticty [42, 43, 73]. Additionally,
miR-133b regulates maturation and function of midbrain
dopaminergic neurons through a negative feedback affecting
the paired-like homeodomain transcription factor Pitx3
[44], while miR-134 activity leads to dendritic spine devel-
opment through downregulation of the Lim domain kinase-
1 [45].

miRNAs may also play significant roles in apoptosis,
which is crucial in neurogenesis and during the subsequent,
continued expansion of the brain size following a massive
loss of neurons (i.e., 20%–80%) typical of embryonic
development [74]. It was proposed that several aspects of
neuronal function, for example, the control of plasticity, are
directly mediated by miRNAs [75].

Instead, not much evidence has yet become available to
define the impact of miRNAs on neural induction, namely,
the stage when embryonic cells assume a neuronal identity.
However, in light of a specific expression in stem cells, it
is possible that miRNAs play a role in self-renewal and
differentiation events through the regulation of key genes
[76], as suggested by the ability of embryonic stem cell-
specific miRNAs to enhance murine stem cell reprogram-
ming [77, 78].

As regards human miRNAs, the miRBase Sequence
Database of the Sanger Center (Release 14.0, dated
September 2009) contains 706 sequences (http://microrna
.sanger.ac.uk/sequences/). It was estimated, based on high-
throughput sequencing data, that the number of miRNAs
expressed in the human brain may well exceed one-thousand
[68]. Interestingly, many miRNAs expressed in the human
brain are not conserved beyond primates, suggesting a recent
evolutionary origin [68]. Although functions have been
assigned to only very few brain-specific miRNAs, increasing
evidence suggests key roles in normal development, dif-
ferentiation events, and homeostasis, as well as in related
pathological conditions [11, 13, 33, 36, 46, 47, 52, 100].

4. miRNA and Neurodegenerative Diseases

Neurodegenerative diseases result from dysfunction, pro-
gressive deterioration, and extensive loss of neurons in

the central and/or peripheral nervous system [10, 100]. In
this regard, Alzheimer’s disease (AD)[101–104], Parkinson’s
disease (PD) [105–107], prion diseases [108], amyotrophic
lateral sclerosis (ALS) [109, 110], and hereditary spastic
paraplegia [111, 112] may have a genetic or sporadic
etiology. Instead, Huntington’s disease (HD) [113, 114] and
metabolic disorders with neurological involvement, such as
the GM2-gangliosidoses [115–119], can only be genetically
transmitted.

There is now compelling evidence that dysregulation
of miRNA networks is implicated in the development and
onset of human neurodegenerative diseases (see Table 2 and
[12, 120]). This, in turn, may provide the opportunity to
elucidate underlying disease mechanisms and open up novel
strategies for therapeutic applications.

4.1. Alzheimer’s Disease. AD is the most common form of
dementia. While several hypotheses have been proposed to
explain the disease’s etiology, the causes of AD and means
of stopping its progression are still elusive matters [101–
104, 121–125]. Features of the disease encompass neuronal
loss, intraneuronal neurofibrillary tangles (i.e., aggregates of
the microtubule-associated protein tau following hyperphos-
phorylation), and extracellular deposits of amyloid plaques
(i.e., deposits of Aβ-peptide) [102, 121–125].

Only 10%–15% of AD cases represent an inheritable
disease which follows an autosomal dominant Mendelian
pattern, while the majority arise sporadically. Apparently,
the disease may be caused by a genetic predisposition, as
shown by the identification of specific DNA mutations
in a large number of families [101, 122–125]. Despite a
variable etiology, a common pathogenetic cascade resulting
from distinct gene defects and/or unknown environmental
factors cannot be ruled out. For example, accumulation
of the Aβ peptide, the cause of which is unknown, is
consistently observed. In approximately 30% of sporadic AD
patient samples, the expression of BACE1 protein, a secretase
associated with the formation of Aβ-peptide, is significantly
increased [126].

In AD, several miRNAs exhibit abnormal expression
levels, suggesting a dysfunctional orchestration of gene
expression [79, 80, 127, 128].

Interestingly, Boissonneault et al. have recently found
that miR-298 and miR-328 bind to the 3′-UTR of BACE1
mRNA, thereby producing a regulatory effect on enzyme
expression in cultured neuronal (N2a) cells. Presence of both
miR-298 and miR-328 in the hippocampus of APPSwe/PS1
mice, a well-documented model for AD, and the observation
that their levels of expression decrease with aging suggest that
altered levels of these miRNAs may deregulate BACE1 and, in
turn, lead to increased Aβ formation and disease progression
[81].

Moreover, BACE1 can be controlled by the miR-29a/b-
1 cluster, consistent with their inverse pattern of expression
observed in sporadic AD patients; in addition, a causal
correlation was shown in vitro between this cluster and the
appearance of the Aβ peptide [12, 79, 80]. miRNAs may
also be involved in the neuroinflammatory process associated

http://www.sciencedirect.com/science?_ob=ArticleURL\&_udi=B6VS3-4T50CBG-1\&_user=3782037\&_coverDate=06%2F30%2F2008\&_rdoc=1\&_fmt=full\&_orig=search\&_cdi=6251\&_sort=d\&_docanchor=\&view=c\&_acct=C000061366\&_version=1\&_urlVersion=0\&_userid=3782037\&md5=f48d762144fd4c2da84a6170580d9f99
http://www.sciencedirect.com/science?_ob=ArticleURL\&_udi=B6VS3-4T50CBG-1\&_user=3782037\&_coverDate=06%2F30%2F2008\&_rdoc=1\&_fmt=full\&_orig=search\&_cdi=6251\&_sort=d\&_docanchor=\&view=c\&_acct=C000061366\&_version=1\&_urlVersion=0\&_userid=3782037\&md5=f48d762144fd4c2da84a6170580d9f99
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Table 2: miRNAs involved in neurological diseases.

microRNA Neurological disease Effect Reference number

miR-29a/b-1 Alzheimer’s disease downregulation [79]

miR-128a Alzheimer’s disease upregulation [80]

miR-298 Alzheimer’s disease downregulation [81]

miR-328 Alzheimer’s disease downregulation [81]

miR-146a Alzheimer’s disease upregulation [82]

miR-133b Parkinson’s disease downregulation [83]

miR-19 Spinocerebellar ataxia type 1 downregulation [84]

miR-101 Spinocerebellar ataxia type 1 downregulation [84]

miR-130 Spinocerebellar ataxia type 1 downregulation [84]

miR-9 Hungtington’s disease downregulation [85, 86]

miR-1 Tourette syndrome deregulation [87]

miR-206 Tourette syndrome deregulation [87]

miR-21 Glioblastoma upregulation [88]

miR-124 Glioblastoma downregulation [89]

miR-137 Glioblastoma downregulation [89]

miR-124a Medulloblastoma downregulation [90]

miR-34a Neuroblastoma downregulation [91]

miR-184 Neuroblastoma downregulation [92]

miR-15a Pituitary adenoma downregulation [93–95]

miR-16 Pituitary adenoma downregulation [93–95]

miR-221 Glioblastoma upregulation [88, 96–98]

miR-128 Glioblastoma upregulation [88, 96–98]

miR-181a Glioblastoma upregulation [88, 96–98]

miR-181b Glioblastoma upregulation [88, 96–98]

miR-181c Glioblastoma downregulation [88, 96–98]

miR-9 Medulloblastoma downregulation [99]

miR-125a Medulloblastoma downregulation [99]

with deposition of the Aβ-peptide. In this regard, the NF-
kB-sensitive miRNA-146a, which targets complement factor
H, an important repressor of inflammatory responses in the
brain, was found to be up-regulated in AD [82].

Finally, a recent work from Carrettiero et al. shows that
miR-128a regulates the cochaperone BAG2 and, in turn,
a pathway of degradation for microtubule-associated tau
proteins with a propensity for misfolding. BAG2 would
normally direct tau toward an ubiquitin-independent path-
way and selectively reduce the levels of sarkosyl-insoluble
protein [129]. Thus, the observation that miR-128a is upreg-
ulated in AD [80] may highlight a molecular mechanism
that underlies tau inclusions in neurodegeneration. Taken
together, these findings suggest a mechanistic involvement
of miRNAs in both the amyloid and tau hypotheses for AD
pathogenesis.

4.2. Parkinson’s Disease (PD). PD is the second most com-
mon neurodegenerative disorder, characterized by resting
tremor, muscular rigidity, bradykinesia, and impaired bal-
ance and coordination [105–107, 130–132]. Other symptoms
include dysautonomia, dystonic cramps, and dementia. Typ-
ical pathological features are loss of dopaminergic neurons
in the substantia nigra (SN) and presence of Lewy bodies,

which consist of intracellular inclusions affecting surviving
neurons in various areas of the brain [130–132]. Several gene
loci have been implicated in autosomal, dominant forms of
PD. These include PARK1 and PARK4 (due to a mutation or
a triplication of the α-synuclein gene [SNCA] on 4q21 and
4p15, resp.), PARK3 on 2p13, PARK5 (due to a mutation in
the UCHL1 gene) on 4p14, PARK8 (due to a mutation in the
LRRK2 gene) on 12q12, PARK10 on 1p, PARK11 on 2q, and
PARK13 (due to a mutation in the HTRA2 gene) on 2p12
[105–107, 133, 134].

The implication of miRNAs in PD is intriguing. In
murine models, the competence of embryonic stem cells to
differentiate into midbrain dopamine neurons in vitro was
shown to be disrupted by Dicer deletion and subsequent
suppression of miRNA biogenesis, suggesting a physiological
role for miRNAs in cell differentiation and/or survival. These
results were confirmed in vivo, using mice conditional for
Dicer, which exhibited impaired locomotor activity that
recapitulated motility problems observed in PD patients.
Through a subtractive approach, performed by comparing
miRNA expression profiles in normal human adult versus
PD patients midbrains, it was shown that miR-133b is
specifically missing in PD and that, based on both over-
expression and inhibitory tests in vitro, is likely implicated
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in the maturation and function of dopaminergic neurons
[44, 83]. A markedly reduced expression of miR-133b
was found in Aphakia mice [44], a dopaminergic neuron
deficiency model, which lack Pitx3 [135], a homeobox
transcription factor required for neuron survival and normal
motor activity susceptible to polymorphisms associated with
sporadic PD [136]. Together, these observations suggest a
relationship between miR-133b and Pitx3, which operate
through a negative feedback loop, wherein Pitx3 promotes
the expression of miR-133b that, in turn, downregulates
Pitx3 [83]. While these results point to a functional role of
the miR-133b/Pitx3 system in ensuring correct dopaminergic
function, miR-133b knock-out mice, which are currently
unavailable, would establish the extent of miR-133b impact
on PD etiology.

On the other hand, a more recent study showed that
deletion of Dicer in dopaminoceptive neurons of the murine
striatum led to aberrant anatomical features (smaller brain,
reduced neuron size, astrogliosis) and motor impairments
(clasping and ataxia) but, surprisingly, not neurodegen-
eration [137]. As dysfunction, but not necessarily loss,
of dopaminoceptive neurons was previously implicated in
PD [138], these observations, taken together, suggest that
the link between Dicer, miRNAs, and neurodegeneration
is restricted to dopaminergic neurons, thereby pointing to
distinct functional roles in dopaminoceptive cells.

Finally, Wang et al. found that in PD brains and in
vitro cell models disruption of the binding site for miRNA-
433 led to increased translation of fibroblast growth factor-
20 (FGF20). Notably, an FGF20 polymorphism at 8p21.3–
22 was previously identified as a PD risk factor correlated
with increased α-synuclein expression, and consequently PD
onset [139].

4.3. Spinocerebellar Ataxia. Spinocerebellar ataxia type 1
(SCA1), which is caused by the expansion of a CAG repeat
encoding glutamine within the gene ATXN1, is characterized
by the death of cerebellar Purkinje cells [140]. In eight-week
old mice, depletion of Dicer from murine Purkinje neurons
is irrelevant to cell function and survival, whereas 13-week-
old animals are affected by a progressive degeneration of
Purkinje neurons leading to cell death. Further, these older
mice develop a slight tremor and mild ataxia, both of which
worsen with advancing age [141].

In 2008, Lee et al. found that miR-19, miR-101, and
miR-130 coregulate Ataxin-1 protein levels and that their
inhibition enhance the cytotoxic effects of polyglutamine
(PolyQ)-expanded Ataxin-1 in human cells. Thus, mutations
in the miRNA binding sites or the miRNA genes themselves
might be linked to neurodegenerative phenotypes as a result
of Ataxin-1 accumulation [84]. Consistent with this possibil-
ity are earlier results showing that, in both Drosophila and
human cells, the elimination of miRNAs via Dicer mutation
was followed by enhanced pathogenic polyQ protein toxicity.
Altogether, these observations point to a neuroprotective
function of miRNAs [142].

4.4. Huntington’s Disease (HD). HD is a fatal, hereditary
neurodegenerative disorder characterized by involuntary

ballistic movements, depression, and dementia [113, 114,
143]. Hallmarks of HD are progressive chorea, rigidity, and
frequent accurrence of seizures, emotional problems, loss
of cognition, as well as atrophy of the caudate nucleus.
The causal factor of HD is a gene mutation consisting of
abnormally extended repeats of the CAG sequence within
the HTT gene, which translates into a huntingtin protein
containing an excessively increased glutamine segment [113,
114, 143].

Disruption of miRNA homeostasis, most likely in con-
nection with an aberrant functionality of the transcriptional
repressor REST, was recently shown to play a dynamic role
in HD. In fact, levels of several miRNAs with upstream RE1
sites are decreased in HD patient cortices relative to healthy
controls. Interestingly, one of these, the bifunctional, brain-
enriched miR-9/miR-9∗ targets two components of the REST
complex: miR-9 targets REST and miR-9∗ targets CoREST
[85, 86]. As a consequence of a markedly altered miRNA
expression, target mRNAs are subject to dysregulated levels
which, in turn, affect the physiological status of forebrain
neurons [85, 86].

In 2005, RNA interference was shown to produce
therapeutically-relevant effects in HD mouse models [144,
145]. Moreover, McBride et al. reported that RNA inter-
ference through miRNA technology, as compared to the
shRNA-based approach, is a more appropriate strategy
for HD treatment. In particular, shRNAs targeting mutant
human HD transgenes were found to cause overt toxicity
in the mouse striatum, whereas the same sequences intro-
duced into artificial miRNA expression constructs markedly
alleviated the neurotoxic profile without compromising
achievement of an efficient silencing effect on the murine HD
gene homolog [146].

5. Other Neurological Diseases

5.1. Fragile X Mental Retardation. The Fragile X syndrome
is one of the most common forms of inherited, X-linked
dominant mental retardation affecting approximately one
in every 4000 males and 8000 females [147, 148] with
reduced penetrance of 80% and 30%, respectively [148, 149].
The clinical presentations of Fragile X syndrome include
mild to severe mental retardation, that is reflected by IQ
values ranging between 20 and 70, some abnormal facial
features affecting jaw and ears as well as macroorchidism in
postpubescent males [149].

The gene responsible for the Fragile X syndrome, FMR1,
encodes a protein, FMRP, that interacts with target RNAs
[150] and is implicated in mRNA transport and translational
control [148]. In particular, FMRP is linked to the miRNA
pathway in light of its association with RISC, as shown
in Drosophila [151, 152], and with Argonaute proteins,
Dicer and miRNAs, as shown in mammals [153–158].
Indeed, FMRP can act as a miRNA acceptor for Dicer and
facilitate the assembly of miRNAs [154, 159, 160]. Thus, the
neurodegenerative outcome caused by mutations in FMR1
may give rise to a host of secondary effects mediated by the
action of FMRP on associated RNA targets.
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The molecular mechanisms which underlie the patho-
genesis of this disorder have yet to be elucidated. However,
Xu et al. reported that miR-124a, a nervous-system-specific
miRNA, is modulated, at least partially, by the Drosophila
homolog of mammalian FMRP (dFMR1), which was found
to associate with miR-124 in vivo [161]. That FMRP
could utilize specific miRNAs to regulate the translation of
target mRNAs was also confirmed by a recent Drosophila
study, in which the bantam miRNA was shown to interact
with dFMR1 to regulate the fate of germline stem cells
[162].

Further, miR-184 was found to be repressed by MeCP2,
a protein that binds to methylated DNA forms and plays an
important role in synaptic plasticity [163]. This observation
points to a link between miRNA and DNA methylation
pathways in the dysregulation of synaptic plasticity, a feature
for which there is growing evidence of an important role
played by miRNAs [164] and that is observed in the Fragile
X syndrome.

5.2. Tourette Syndrome. The paradigm for a disease caused
by a specific miRNA is the G to A transition in the 3′ UTR
of the myostatin/growth differentiation factor 8 gene in Texel
sheep [87]. This mutation creates a target site for miR-1 and
miR-206, which are highly expressed in the skeletal muscle.
The downstream effect is the translational inhibition of the
myostatin gene, which normally limits muscle growth but in
the sheep contributes to muscular hypertrophy. Based on this
finding, it may be postulated that a search of human SNP
databases will reveal mutations that are potentially able to
create or destroy putative miRNA target sites and thereby
contribute to phenotypic variation.

Conceivably, some of these mutations may affect neu-
ronal miRNAs. One such example is a rare sequence variant
of SLIT and Trk-like 1 (SLITRK1), a candidate gene for
Tourette syndrome located on chromosome 13q31.1 which
is involved in neural development [165]. Two independent
instances of the same mutation in the binding site for the
miRNA hsa-miR-189 were detected among a population
of unrelated individuals with Tourette syndrome, while
absent in 3600 control chromosomes. That this mutation
may be implicated in Tourette’s syndrome is supported by
circumstantial evidence showing an overlapping expression
pattern of SLITRK1 mRNA and hsa-miR-189 in several brain
regions implicated in the disease [165].

5.3. miRNAs and Tumours of the Nervous System. Several
studies found that a high proportion of genomic loci con-
taining miRNA genes exhibit DNA copy number alterations
in common cancers [166] and miRNA misexpression has also
been described in tumours of the nervous system (see Table 2
and [88–92, 96, 167–170]). miRNAs have been shown to act
either as tumor suppressors or oncogenes and, depending
on the mRNA target, may accelerate the oncogenic process
[167]. A suppressor effect was observed in pituitary ade-
nomas, the most common tumors of the central nervous
system, in which down-regulation of miR-15a and miR-16
correlates with tumor size [93–95]. Other miRNAs, such

as the miR-155 and miR17-92 cluster, have an oncogenic
effect [171, 172]. The consequence of an upregulation of
miR-21 has been characterised in glioblastoma tumor cells
[88], wherein the knockdown of miR-21 led to increased
apoptotic cell death, suggesting that this miRNA may act as
an antiapoptotic player [88, 96, 173]. In addition, miRNA
profiling in glioblastoma cells has shown high levels of miR-
221, miR-128, miR-181a, and miR-181b and low levels of
miR-181c [88, 97, 98].

miRNA expression analysis may also be used for medul-
loblastoma prognosis. Down-regulation of miR-9 and miR-
125a was observed in aggressive brain malignancy, which
results in the activation of medulloblastoma cell growth
and arrest of apoptosis by activation of the proproliferative
truncated TrkC isoform [99].

Based on these findings, the potential to modulate
multiple messages at the same time via miRNA technology
would therefore represent an intriguing prospect for cancer
treatment.

6. Concluding Remarks and Prospects

Contemporary science has embraced RNA as a central
element of cellular biology. In addition to the canonical role
as an intermediate carrier of information, this molecule may
in fact perform catalytic, structural, and regulatory tasks.
Hence, over the last decade, unravelling the unique versatility
of RNA has renewed impetus towards the concept of an
“RNA world”, which refers to a self-sustaining replication
system, antecedent to DNA and proteins, that was engaged
during a hypothetical stage at the origin of life [174–177].
Along with the most recent, stunning advances in RNA
biology on several fronts, the discovery of gene expression
regulators has opened up a large window into the RNA
world. Three main categories of small RNAs, namely, short-
interfering, micro- and piwi-interacting RNAs, have emerged
as regulatory players within a structurally and functionally
sophisticated, and to some extent overlapping, context [14,
178].

Unlike most of the siRNAs, which silence the same
locus from which they derive, the effect of miRNAs is to
repress genes unrelated to their own loci. Thus, miRNas are
subject to precise sequence requirements for the necessary
interaction with heterologous targets. Several approaches
exist that can be employed to obtain comprehensive miRNA
profiling in cells or tissues [179]; however, the significance
of a specific profile may be difficult to interpret, in light
of the hundreds of target sequences in the human genome
that may be associated with any particular miRNAs. In
this regard, computational predictions and simulations have
a fundamental impact on experimental miRNA research,
considering that the downstream effect of a given miRNA
will result from the complex modulation of multiple targets
along different pathways prone to cross-talk. Conceivably,
experimental and bioinformatic models will continue to
evolve to offer large-scale screenings for the identification
of the most likely miRNA target(s) under a specific devel-
opmental, physiological, environmental, or pathological
status.

http://en.wikipedia.org/wiki/DNA
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Currently, functional characterization of specific miR-
NAs is facilitated by the existence of first-class reagents
such as miRNA mimics and inhibitors, available through
several specialized vendors. These reagents, appropriately
modified to optimize correct strand utilization by RISC
(mimics) and ensure tight binding (inhibitors), can be used
to either increase or decrease the activity of specific miRNAs.
Corresponding applications can be exceptionally informative
with respect to studies on gain (loss)-of-function effects,
development of high-throughput screens to select species
involved in normal and pathological cellular pathways, and
the identification of targets.

However, despite the significant progress in miRNA
research in the field of neurodevelopment and neurological
diseases, it is still elusive as to whether any of the miRNAs
implicated in a neuropathological process is directly involved
in the etiology or progression of the disorder. Indeed, aber-
rant expression of a miRNA could simply be circumstantial.
This causality issue can be addressed, for example, through
an accurate determination of the frequency of specific
miRNA mutations, the definition of temporal and spatial
miRNA profiles within multiple pathways in vitro, and the
development of appropriate in vivo models.

Based on their functional role in fine-tuning metabolic
pathways and genetic networks, miRNAs appear to be
suitable tools for use in diagnosis, prognosis, and therapy.
The problem is to demonstrate which miRNA sequences
should be considered drug discovery targets.

Systemic delivery is another hurdle that must be dealt
with. Initially, this problem was common to all RNA-
based therapeutics, including antisense oligos and siRNAs
(reviewed in [180]). However, second-generation antisense
technologies have shown that drug delivery issues can be
overcome, as shown by systemic drug distribution following
subcutaneous administration.

Specific antisense oligos called antagomirs could be used
to affect the activity of miRNA. In this regard, treatment of
a mouse model of heart disease with an antagomir against
miR-21 prevented heart failure [181], and antagomirs to
target glioma angiogenesis has recently been proposed [182].
miRNA-based therapeutics have great potential because
of their capability to efficiently silence multiple messages
concurrently within an entire disease pathway. Instead,
conventional therapies directed at single targets require
administration of a plurality of drugs giving rise to complex
drug interaction and patient compliance issues.
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