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Quadrupedal mammals have fore-aft asymmetry in their body structure, which affects their
walking and running dynamics. However, the effects of asymmetry, particularly in the
transverse plane, remain largely unclear. In this study, we examined the effects of fore-aft
asymmetry on quadrupedal trotting in the transverse plane from a dynamic viewpoint using
a simple model, which consists of two rigid bodies connected by a torsional joint with a
torsional spring and four spring legs. Specifically, we introduced fore-aft asymmetry into
the model by changing the physical parameters between the fore and hind parts of the
model based on dogs, which have a short neck, and horses, which have a long neck. We
numerically searched the periodic solutions for trotting and investigated the obtained
solutions and their stability. We found that three types of periodic solutions with different
foot patterns appeared that depended on the asymmetry. Additionally, the asymmetry
improved gait stability. Our findings improve our understanding of gait dynamics in
quadrupeds with fore-aft asymmetry.
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1 INTRODUCTION

Quadrupedal mammals have fore-aft asymmetry in their body structure. For example, their fore and
hind legs have not only different skeletal structures but also different masses and properties of
muscles (Payne et al., 2005a, b; Williams et al., 2008a, b). During their locomotion, while the fore legs
generate more braking forces than the hind legs, the hind legs domore propulsive forces than the fore
legs (Lee et al., 1999; Bertram and Gutmann 2008). Furthermore, the fore and hind legs have different
connections to the body; while the fore legs are suspended by muscles through the scapula, the hind
legs are connected to the pelvis via skeletal articulation (Hildebrand and Goslow, 2001). In addition,
the front part of the bodies of horses and dogs is heavier than the hind part because the front part has
a head and neck and the thorax has higher density and larger mass than the abdomen (Buchner et al.,
1997; Jones et al., 2018). To compensate for the asymmetric mass distribution, the forelegs generally
support more of the body weight than the hind legs (Rollinson and Martin, 1981; Merkens et al.,
1993; Lee et al., 1999). Additionally, horses, which have a long neck to increase fore-aft asymmetry,
use not only their forelegs but also their thoracic muscles to support their weight (Payne et al.,.
2005b). These asymmetric body structures affect their walking and running dynamics. However, the
effects of fore-aft asymmetry on quadrupedal locomotion remain largely unclear. To date, these
effects have been investigated in the sagittal plane using both biological approaches (Lee et al., 2004;
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Lee, 2010) andmodeling approaches (Zou and Schmiedeler, 2006;
Yamada et al., 2022). For example, in a modeling study using a
simple model, researchers demonstrated that the forward offset of
the center of mass (COM) position reduces the stability of
bounding gait in the sagittal plane (Zou and Schmiedeler,
2006). The effects of asymmetry are crucial not only in the
sagittal plane but also in the transverse plane. However, few
studies have investigated the effects in the transverse plane; thus,
the effects remain unclear.

In this study, we investigate the effects of fore-aft asymmetry
on trotting in the transverse plane using a simple model.
Although quadrupedal mammals use various gaits, such as
walking, trotting, and galloping, depending on their
locomotion speed, trotting is widespread among quadrupedal
mammals (Muybridge, 1957; Alexander and Jayes, 1983). In
trotting, their four legs are used in two pairs, that is, the
diagonal fore and hind legs, and these two pairs of legs touch
the ground alternately (Hildebrand, 1965, 1968). During such
trotting, quadrupedal mammals basically keep their bodies
parallel to the ground unlike other gaits (Muybridge, 1957;
Heglund et al., 1974; Dunbar et al., 2008). Although the
diagonal touchdown generates moments to rotate the fore and
hind parts of the body in opposite directions not only in the
sagittal plane but also in the transverse plane, which makes it
difficult to maintain their posture during trotting, quadrupedal
mammals stabilize their body using trunk muscles (Schilling and
Carrier, 2009). In our previous work (Adachi et al., 2020), we used

a simple fore-aft symmetrical model in the transverse plane,
which had two segmented bodies connected by a torsional
joint with a torsional spring and four spring legs, and found
that the appropriate stiffness in the body and legs produced stable
trotting. However, the fore-aft asymmetry makes differences
between the moments by the diagonal touchdown, which
changes the gait characteristics and stability. To investigate the
effects of fore-aft asymmetry on transverse dynamics in trotting,
we extend our previous model to incorporate fore-aft asymmetry
and examine the asymmetry effects on trotting from a dynamic
viewpoint.

2 MATERIALS AND METHODS

2.1 Model
Each leg of a quadrupedal mammal has only 10% or less of the
total mass (Buchner et al., 1997; Amit et al., 2009; Kilbourne and
Hoffman, 2013). The main function of the legs is to produce
reaction forces from the ground to support the body and can be
represented by a spring (e.g., Full and Koditschek, 1999). Because
stabilization of the body posture is crucial to generate stable gait,
we focused on the dynamics of the body posture in the transverse
plane and used massless springs for the legs in our model.
Specifically, the model consists of two rigid bodies and four
massless springs (Figure 1). The two rigid bodies represent
the fore and hind parts of the body (Bodies F and H,
respectively), and are connected by a joint at their COM. The
four massless springs represent the legs (Legs FL, FR, HL, and
HR). Legs iL and iR (i = F, H) are connected to Body i on the left
and right sides, respectively. Because mediolateral ground
reaction forces (GRFs) are much smaller than vertical forces
during trotting of quadrupedal mammals (Merkens et al., 1993;
Gillette and Angle, 2008), we ignore the horizontal dynamics of
our model, as in previous studies (Berkemeier, 1998; De and
Koditschek, 2018) and focus on the vertical and rotational
movements of the bodies. Z is the vertical position of the
COM of the bodies. θi (i = F, H) is the angle of Body i
relative to the horizontal line. Lij (i = F, H, j = L, R) is the
length of Leg ij. The mass and moment of inertia around the
COM of Body i (i = F, H) are Mi and Ii, respectively. The body
joint has a torsional spring with a spring constant of KB that
produces the body torsional movement. The body spring is at the
equilibrium position when the bodies have the same posture (θF =
θH). The spring constants of the forelegs (Legs FL and FR) and
hind legs (Legs HL and HR) are KF and KH, respectively. All the
legs have the same nominal length L0. The distance between the
COM of the bodies and the root of the leg spring is D for both the
fore and hind bodies. The gravitational acceleration is g.

When Leg ij (i = F, H, j = L, R) is in the air, it remains vertical
andmaintains the nominal length (Lij = L0). When the tip touches
the ground, the leg spring starts to compress to receive a GRF.
When its length returns to the nominal length (Lij = L0) after
compression, the tip leaves the ground. Because touchdowns and
liftoffs occur at the nominal length, our model is energy
conservative.

The equations of motion of the model are given by

FIGURE 1 |Our model composed of two rigid bodies and four massless
springs. The bodies are connected at their COM by a joint with a torsional
spring.
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MF +MH( ) €Z + ∑
i∈I , j∈J

Fij + MF +MH( )g � 0 (1a)

Ii€θi + ∑
j∈J

FijDj cos θi +KB θi − φi( ) � 0 i � F,H, (1b)

I � {F,H}, J � {L,R}, φF � θH, φH � θF, DL � D, DR � −D, and

Fij � Ki Lij − L0( ) stance phase
0 swing phase

{ i � F,H, j � L,R,

where Lij = Z + Dj sin θi. Leg ij touches the ground when its tip
reaches the ground and leaves the ground when its length returns
to the nominal length. These conditions are both given by

Rij Q( ) � Z +Dj sin θi − L0 � 0 i � F,H, j � L,R, (2)
where Q � [Z θF θH _Z _θF _θH]T.

To generalize the dynamics of the model, we non-
dimensionalize the governing equations using the mass scale
MF + MH, length scale D, and time scale

����
D/g

√
. The

dimensionless equations of motion are given by

€z + ∑
i∈I , j∈J

fij + 1 � 0 (3a)

μi
€θi + ∑

j∈J
djfij cos θi + kB θi − φi( ) � 0 i � F,H, (3b)

z � (Z − L0)/D, τ � t/
����
D/g

√
,

fij � ki z + dj sin θi( ) stance phase
0 swing phase

{ i � F,H, j � L,R,

μi = Ii/((MF +MH)D
2), ki = KiD/((MF +MH)g) (i = F, H), kB = KB/

((MF + MH)gD), dL = 1, dR = −1, and hereafter, _* indicates the
derivative of variable * with respect to τ. The dimensionless
condition for the touchdown and liftoff of Leg ij is given by

rij q( ) � z + dj sin θi � 0 i � F,H, j � L,R, (4)
where q � [z θF θH _z _θF _θH]T.
2.2 Gait Assumptions
During trotting, the four legs work in two pairs. Specifically, the
diagonal legs (Legs FL and HR, and Legs FR and HL) are paired.
These two pairs touch the ground alternately. In this study, we
focus on the motions during which one pair of legs touches and
leaves the ground and then the other pair does the same. We
assume that each leg touches the ground only once in a single gait
cycle. Additionally, when one leg of a pair touches the ground, it
never leaves the ground until the other leg of that pair touches the
ground, that is, a double stance phase exists for each pair. We
define the following four phases: flight (F), fore stance (FS), hind
stance (HS), and double stance (DS) phases. In the flight phase, all
the legs are in the air. In the fore (hind) stance phase, only the fore
(hind) leg of a pair is in contact with the ground. In the double
stance phase, both legs of a pair are in contact with the ground.

Because the model is left-right symmetric, the motion
during which one pair touches and leaves the ground, and
the motion during which the other pair touches and leaves the
ground can be expressed using the same expression when the

left and right sides of the model are reversed. Specifically, we
use q+ = BLRq

− at the apex (i.e., at _z � 0 in the flight phase),
where BLR = diag(1, −1, −1, 1, −1, −1). In this study, *+ and *−

indicate the states immediately after and before reversing,
respectively. Therefore, we focus on the touchdowns and
liftoffs for only one pair of legs, specifically using the pair
of legs FL and HR.

Themotion from one apex to the next apex is obtained from the
phase transitions between the four phases (i.e., flight, fore stance,
hind stance, and double stance phases), as illustrated in Figure 2.
These phase transitions occur when the corresponding conditions
(Conditions 1–12 in Figure 2) are satisfied. For example, the
transition from the flight phase to the double stance phase
occurs when Condition 2 is satisfied, when Conditions 4 and 5
are sequentially satisfied, or when Conditions 8 and 9 are
sequentially satisfied. We use rA = 0 to represent the condition
where the COM reaches an apex, rF = 0 to represent the condition
where the fore leg of the pair touches and leaves the ground, rH = 0
to represent the condition where the hind leg of the pair touches
and leaves the ground, and rD = 0 to represent the condition where
both legs of the pair simultaneously touch and leave the ground.
Specifically, Condition i (i = 1, . . . , 12) is given by

ri q( ) �
rA q( ) � 0 i � 1, 12
rD q( ) � rF q( ){ }2 + rH q( ){ }2 � 0 i � 2, 3
rF q( ) � 0 i � 4, 6, 9, 11
rH q( ) � 0 i � 5, 7, 8, 10,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(5)

where rA(q) � _z, rF(q) = rFL(q), and rH = rHR(q).
Based on these phase transitions, the motion from one apex to the

next apex can be explained using nine sequences (Sequences 1–9), as
illustrated in Figure 2. In Sequence 1, both legs of the pair touch the
ground simultaneously and then leave the ground simultaneously
(flight–double stance–flight). In Sequence 2, both legs of the pair
touch the ground simultaneously, but the hind leg then leaves the
ground earlier than the fore leg (flight–double stance–fore
stance–flight). In Sequence 3, both legs of the pair touch the
ground simultaneously, but the foreleg then leaves the ground
earlier than the hind leg (flight–double stance–hind stance–flight).
In Sequence 4, the foreleg touches the ground earlier than the hind leg,
but both legs then leave the ground simultaneously (flight–fore
stance–double stance–flight). In Sequence 5, the foreleg touches the
ground earlier than the hind leg, but the hind leg then leaves the
ground earlier than the foreleg (flight–fore stance–double stance–fore
stance–flight). In Sequence 6, the fore leg of the pair touches and then
leaves the ground earlier than the hind leg (flight–fore stance–double
stance–hind stance–flight). Sequences 7–9 are then obtained by
exchanging the behavior of the fore and hind legs shown in
Sequences 4–6, respectively.

2.3 Search of the Periodic Solutions and
Stability Analysis
We search the periodic solutions using a Poincaré map by
taking a Poincaré section immediately after the reversal of the
left and right sides of the model at the apex ( _z � 0). Therefore,
we define the state on the Poincaré section as
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x � [z θF θH _θF _θH]T. The Poincaré map is then denoted by xi+1
= P(xi), where xi is the state immediately after the reversal at
the ith apex. A fixed point x* on the Poincaré section, which
satisfies x* = P(x*), corresponds to a periodic solution. We
search the periodic solutions numerically by solving the
following:

S x*( ) � x* − P x*( ) � 0, (6)
where we determine z* by comparing the simulation results and
measured data of animals as described in Section 2.4.

We add a perturbation δxi to the obtained solutions
immediately after the reversal at the ith apex. The
linearization of the Poincaré map P around x* yields

δxi+1 � Jδxi, (7)
where J is the Jacobian matrix of P. If all eigenvalues of J are
located inside (inside and on) the unit circle on the complex
plane, the periodic solution is asymptotically (marginally) stable;
otherwise, the solution is unstable. Because the model is energy

conservative, no asymptotically stable solutions exist. Therefore,
we simply refer to marginally stable as stable. We define Λ =
maxi=1,. . .,5|λi|, where λi (i = 1, . . . , 5) are the eigenvalues of J. If Λ
= 1 is satisfied, the periodic solution is stable; otherwise, the
solution is unstable.

2.4 Asymmetric Properties
Although we used the same physical parameters between the
fore and hind bodies in the model in our previous study
(Adachi et al., 2020), quadrupedal mammals, such as dogs
and horses, generally have different physical properties
between the fore and hind bodies. In particular, different
body masses, moments of inertia, and leg stiffnesses greatly
affect the locomotion dynamics. Because the difference of the
mass between the fore and hind bodies has no effect on the
equations of motion Eq. 3) of our model in the transverse
plane (only the total mass has effects), we focus on the
differences in the moments of inertia (μF and μH) and leg
stiffnesses (kF and kH). To highlight the fore-aft asymmetry
between these parameters, we define the averaged values of the

FIGURE 2 | Phase transitions from an apex to the next apex. (A) Possible phases and the associated phase transitions. The phase transitions occur when
conditions 1–12 are satisfied. The left and right sides of the model are then reversed at the next apex. (B) Nine sequences (Sequences 1–9) explain the phase transitions
from an apex to the next apex. Each gray arrow with a number indicates the condition of the phase transition. Conditions 1 and 12 are not shown because they are
common to all sequences.
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moments of inertia and leg stiffnesses between the fore and
hind bodies as μ0 and k0, respectively, and represent these four
properties using asymmetric parameters εμ and εk as follows:

μF � 1 + εμ( )μ0 (8a)
μH � 1 − εμ( )μ0 (8b)
kF � 1 + εk( )k0 (8c)
kH � 1 − εk( )k0. (8d)

εμ = εk = 0 corresponds to the symmetrical model used in our
previous work (Adachi et al., 2020). Because the fore body of most
quadrupedal mammals is typically heavier than the hind body
(Rollinson and Martin, 1981) and the forelimbs support greater
loads than the hind limbs (Merkens et al., 1993; Lee et al., 1999,
2004; Witte et al., 2004), we use εμ, εk ≥ 0.

In this study, we use two types of physical parameter sets
based on large breed dogs (e.g., German Shepherd), which have
a short neck, and warmblood horses, which have a long neck.
For dogs, we useMF +MH = 35 kg and IF + IH = 0.43 kgm2 based
on Amit et al. (2009) and Jones et al. (2018) and D = 0.10 m
based on the distance between the left and right hip joints of the
hind limbs (Carrier et al., 2005; Belhaoues et al., 2020), which
yields μ0 = 0.62. For horses, we useMF +MH = 538 kg and IF + IH
= 37.5 kgm2 based on Buchner et al. (1997) and D = 0.22 m
based on Gómez et al. (2009), which yields μ0 = 0.72. We also
estimate εμ based on Buchner et al. (1997), Amit et al. (2009),
and Jones et al. (2018) and εk based on Herr et al. (2002), which
results in εμ = 0.12 and εk = 0.21 for dogs and εμ = 0.14 and εk =
0.25 for horses.

For the symmetric model (εμ = εk = 0) in our previous study
(Adachi et al., 2020), the ratio of the leg and body-torsional spring
constants, that is, κ = kB/k0, mainly determined the characteristics
of the periodic solutions. In this study, we use κ instead of kB. We
determine k0 and κ by comparing the simulation results and
measured data of dogs and horses. Specifically, we first use the
symmetric model (εμ = εk = 0, μ0 = 0.62 in the dog model and 0.72
in the horse model) to determine k0, κ, and z* so that the half cycle
duration τ* (duration from an apex to the next apex), magnitude
of the vertical movement δz, and duty ratio averaged among the
four legs β0 of the periodic solution minimize
V � c1(τ* − �τ*)2 + c2(δz − �δz)2 + c3(β0 − �β0)2, where c1, c2, and
c3 are the coefficients and �τ*, �δz, and �β0 are the measured data of
τ*, δz, and β0, respectively, during fast trotting in animals (Froude
number is about 1.3; 3.5 m/s for dogs and 4.5 m/s for horses). In
particular, we use �τ* � 1.9 [0.2 s (Heglund et al., 1974; Maes et al.,
2008)], �δz � 0.11 [0.011 m (Farley et al., 1993; Blickhan and Full,
1993)], and �β0 � 0.46 (Fischer and Lilje, 2016; Maes et al., 2008)
for the dog model and �τ* � 1.7 [0.25 s (Heglund et al., 1974;
Heglund and Taylor, 1988)], �δz � 0.11 [0.024 m (Blickhan and
Full, 1993; Farley et al., 1993)], and �β0 � 0.4 (Dutto et al., 2004;
Bullimore and Burn, 2006) for the horse model. Because �τ* is
larger than �δz and �β0, we use c1 = 0.1 and c2 = c3 = 1. Using the
obtained values of k0, κ, and z*, we then introduce asymmetry (εk,
εμ) in the model (εμ = 0.12 and εk = 0.21 in dogs and εμ = 0.14 and
εk = 2.5 in horses). Table 1 summarizes the parameters of the dog
and horse models.

3 RESULTS

3.1 Effects of Asymmetry on the Gait Pattern
We obtained a periodic solution uniquely through the
optimization in the symmetric model for dogs (μ0 = 0.62, εμ =
εk = 0), which yielded k0 = 1.5, κ = 0.2, and z* = 0.06. By changing
εμ and εk based on the symmetric periodic solution, we uniquely
obtained the periodic solution for each set of (εμ, εk). Figure 3
shows the time profiles of typical periodic solutions. Regardless of
εμ and εk, the curve of z is sinusoidal and those of θF and θH are
parabolic. When εμ = εk = 0, the magnitudes of θF and θH were
identical and flight–double stance phase transition directly
occurred (Figure 3A), which resulted in Sequence 1. When
increasing εμ with εk = 0, the magnitude of z remained almost
unchanged, whereas that of θF decreased and that of θH increased
(Figure 3B). This made the stance phase durations of the hind
legs longer than those of the forelegs and resulted in the
appearance of the hind stance phase between the flight and
double stance phases, which resulted in Sequence 9. By
contrast, when we increased εk with εμ = 0, the magnitude of
θF increased and that of θH decreased (Figure 3C), which is
opposite to the result when we increased εμ in Figure 3B. This
made the stance phase durations of the fore legs longer than those
of the hind legs and resulted in the appearance of the fore stance
phase between the flight and double stance phases, which means
Sequence 5. Furthermore, we found a proportional relationship
between εμ and εk (εμ = aεk, a = 0.69), which never changed the
profiles of θF and θH from those in the symmetric model (εμ = εk =
0) and maintained Sequence 1 (Figure 3D). Sequence 5 appeared
for εμ < aεk and Sequence 9 appeared for εμ > aεk (Figure 3E). The
estimated values of the asymmetric parameters in the dog model
(εμ = 0.12 and εk = 0.21) satisfied εμ < aεk and thus generated
Sequence 5. We compared the locomotion characteristics (half
gait cycle duration, vertical displacement of COM, roll amplitude
of the hind body, maximum vertical GRFs of the fore and hind
legs, and duty ratios of the fore and hind legs) between simulation
results using the estimated parameters of dogs and the measured
data of dogs in Table 2. The locomotion characteristics of the

TABLE 1 | Parameters of dog and horse models. μ0, εμ, and εk are determined
based on the measured data of animals and k0, κ, and z* are determined
through the optimization of simulation.

Parameter Value

Dog Horse

MF + MH (kg) 35a 538d

IF (kgm2) 0.26a 23.4d

IH (kgm2) 0.17a 14.1d

D (m) 0.1b 0.22e

KF/KH 1.27c 1.33c

μ0 0.62 0.72
εμ 0.12 0.14
k0 1.5 2.2
εk 0.21 0.25
κ 0.20 0.21
z* 0.06 0.06

a: Amit et al. (2009); Jones et al. (2018), b: Carrier et al. (2005); Belhaoues et al. (2020), c:
Herr et al. (2002), d: Buchner et al. (1997), e: Gómez et al. (2009).
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simulation results are consistent with those of the measured data
except for the roll amplitude of the hind body.

Similar to the dog model, we obtained a periodic solution and
k0 = 2.2, κ = 0.21, and z* = 0.06 through the optimization in the
symmetric model for horses (μ0 = 0.72, εμ = εk = 0). When
changing εμ and εk, we also achieved Sequences 1, 5, and 9
depending on εμ,aεk, where a = 0.69 (see Supplementary
Appendix SA). The estimated values of the asymmetric
parameters in the horse model (εμ = 0.14 and εk = 0.25) also
satisfied εμ < aεk and generated Sequence 5. We compared the
simulated locomotion characteristics using the estimated
parameters of horses with the measured data of horses in
Table 2. The locomotion characteristics of the simulation
results of the horse model are also consistent with those of the
measured data except for the roll amplitude of the hind body.

FIGURE 3 |Gait dependence on εk and εμ in dog model. Time profile of periodic solution (A) for the symmetric model (εk = εμ = 0) and those for two values of (B) εμ
with εk = 0, (C) εk with εμ = 0, and (D) εk with εμ = aεk. Cyan, green, pink, and yellow regions indicate flight (F), fore stance (FS), hind stance (HS), and double stance (DS),
respectively. Dotted lines indicate the periodic solution of the symmetric model. (E) Gait dependence on εk and εμ.

TABLE 2 | Comparison of locomotion characteristics between models and
animals using dimensionless values.

Dog Horse

Model Animal Model Animal

Half cycle duration 1.75 1.9a 1.54 1.7f

Vertical COM displacement 0.12 0.11b 0.11 0.11b

Hind roll amplitude (deg) 29 6c 20 5g

Fore maximum GRF 1.1 1.5d 1.2 1.2h

Hind maximum GRF 0.7 0.8d 0.6 0.8h

Fore duty factor 0.47 0.48e 0.45 0.42i

Hind duty factor 0.46 0.44e 0.44 0.38i

a: Heglund et al. (1974); Maes et al. (2008), b: Farley et al. (1993); Blickhan and Full
(1993), c: Fischer et al. (2018), d: Voss et al. (2010), e: Fischer and Lilje (2016); Maes et al.
(2008), f: Heglund et al. (1974); Heglund and Taylor (1988), g: Byström et al. (2021), h:
Merkens et al. (1993); Witte et al. (2004), i: Dutto et al. (2004); Bullimore and Burn (2006).
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Next, we investigated the phase transition of the periodic
solution by independently changing μ0, k0, and κ by ± 50%
from the dog parameter set (μ0 = 0.62, k0 = 1.5, and κ = 0.2)
in Figure 4. In the same manner as the above results, Sequences 1,
5, and 9 appeared for εμ = aεk, εμ < aεk, and εμ > aεk, respectively.
Although the coefficient a changed slightly when μ0 and k0
increased (Figures 4A,B,D,E), it largely decreased as κ

increased (Figures 4C,F). These tendencies were also observed
in the horse model (see Supplementary Appendix SB).

3.2 Effects of Asymmetry on Gait Stability
We investigated the stability of the obtained periodic solutions for
εk and εμ using the horse parameter set (μ0, k0, κ) = (0.72, 2.2,
0.21) by calculating the maximum eigenvalue Λ of the Jacobian

FIGURE 4 |Gait dependence on physical parameters in the dog model. Condition of εk and εμ (εμ = aεk) to achieve Sequence 1 for three values of (A) μ0, (B) k0, and
(C) κ, while holding the other parameters constant at μ0 = 0.62, k0 = 1.5, and κ = 0.2. Sequences 5 and 9 appeared when εμ < aεk and εμ > aεk, respectively. Dependence
of a on (D) μ0, (E) k0, and (F) κ.

FIGURE 5 | Stability of periodic solutions for εμ and εk. Contour of the maximum eigenvalue Λ in the (A) horse model and (B) dog model. White and gray regions
indicate the stable and unstable regions, respectively. εμ = aεk ± b corresponds to the boundary of Λ = 1. b > 0 in the horse model, whereas b = 0 in the dog model.
Crosses indicate the estimated values of εμ and εk in animals.
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matrix of the Poincaré map (Figure 5A). When εμ = aεk was
satisfied (including εk = εμ = 0), Λ was much larger than 1 and the
periodic solutions were highly unstable (the instability increased
as εk increased). As the distance of (εk, εμ) from εμ = aεk increased,
Λ decreased. The solutions became stable with Λ = 1 when (εk, εμ)
moved across two parallel lines εμ = aεk ± b, where b = 0.02. This
means that the trotting of the symmetric horse model was
unstable, whereas fore-aft asymmetry stabilized it. The
estimated asymmetric parameters of horses (εμ = 0.14 and εk =
0.25) satisfied εμ < aεk − b, which indicates that the trotting of
horses was stable. By contrast, the periodic solutions for the dog
parameter set (μ0, k0, κ) = (0.62, 1.5, 0.2) were always stable for 0 ≤
εμ ≤ 0.3 and 0 ≤ εk ≤ 0.3, including the symmetric case εk = εμ = 0
(Figure 5B). This result corresponds to b = 0 in the above horse
model. Therefore, trotting of dogs was also stable with respect to
the estimated asymmetric parameters of dogs (εμ = 0.12 and
εk = 0.21).

Next, we investigated the stability of the periodic solutions in
the asymmetric model (εk, εμ ≥ 0) by independently changing μ0,
k0, and κ from the parameter sets of dogs and horses. We found
that εμ = aεk ± b determined the stability for both cases in the
samemanner as that for the above results. Specifically, if b = 0, the
periodic solutions were stable regardless of εμ and εk. By contrast,
if b > 0, while the periodic solutions were unstable when εμ = εk =
0, they became stable when εμ ≥ aεk + b or εμ ≤ aεk − b. Therefore,
although large asymmetry was necessary as b increased, fore-aft

asymmetry stabilized the periodic solutions. We examined
whether b depended on μ0, k0, and κ in the same manner as a
in Figure 4. Specifically, we investigated b by independently
changing μ0, k0, and κ by ± 20% from the parameter sets for
dogs (μ0 = 0.62, k0 = 1.5, and κ = 0.2) and horses (μ0 = 0.72, k0 =
2.2, and κ = 0.21) in Figures 6A,B, respectively. In both parameter
sets for dogs and horses, when μ0 exceeded a certain value, b
increased from 0. When k0 or κ fell below a certain value, b
increased from 0.

In our previous study (Adachi et al., 2020) using the symmetric
model (εμ = εk = 0), we demonstrated that k0 hardly affected the
stability of the periodic solutions, and μ0 and κmainly determined
the stability. Specifically, the periodic solutions were stable when μ0
≤ κ + 0.5 and unstable when μ0 > κ + 0.5.We investigated b around
this stability boundary (μ0 = κ + 0.5) with k0 = 1.5, 1.85, and 2.2 in
Figure 6C, where k0 = 1.5 and k0 = 2.2 correspond to the dog and
horse parameters, respectively. For each value of k0, the boundary
between b = 0 and b > 0 existed around μ0 = κ + 0.5.

4 DISCUSSION

4.1 Effects of Fore-Aft Asymmetry on the
Transverse Dynamics of Trotting
Regardless of the dog and horse models, we found periodic
solutions, which had several types of phase transitions

FIGURE 6 | Dependence of b on μ0, k0, and, κ. b vs., μ0, k0, and, κ using the parameter sets for (A) dogs and (B) horses, while holding the other parameters
constant at (μ0, k0, κ) = (0.62, 1.5, 0.2) for dogs and (0.72, 2.2, 0.21) for horses. (C)Contour of b around μ0 = κ + 0.5 for k0 = 1.5, 1.85, and 2.2. Red and blue lines indicate
μ0 = κ + 0.5 and boundary of b = 0 and b > 0, respectively. White and gray regions indicate b = 0 and b > 0, respectively.
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depending on the asymmetric parameters εμ and εk. Specifically,
Sequences 1 (flight–double stance–flight), 5 (flight–fore
stance–double stance–fore stance–flight), and 9 (flight–hind
stance–double stance–hind stance–flight) appeared when εμ =
aεk, εμ < aεk, and εμ > aεk, respectively (Figure 3), where a
depended on the physical parameter set (μ0, k0, and κ) as shown
in Figure 4. For us to understand the mechanism for generating
these sequences, understanding the relationship between the
averaged angle of the fore and hind bodies (θ = (θF + θH)/2)
and torsional angle (ϕ = (θF − θH)/2) is crucial. Sequence 1
requires simultaneous touchdowns and liftoffs by the paired fore
and hind legs. In our previous study (Adachi et al., 2020) using
the symmetric model (εμ = εk = 0), we demonstrated that
Sequence 1 appeared only when θ = 0, that is, the fore and
hind bodies always rotated in the opposite direction (θF = −θH). In
the present study, we demonstrated that even if the model had
asymmetric properties εμ and εk, the relationship εμ = aεk
produced θF = −θH (θ = 0), which resulted in Sequence 1.
This relationship was analytically obtained using perturbation
theory (see Supplementary Appendix SC). By contrast, because
εμ ≠ aεk caused θF ≠ −θH (θ ≠ 0), other sequences appeared. In
particular, when θ and ϕ had the same sign, the rotation of the
fore body (θF = θ + ϕ) became larger than that of the hind body
(θH = θ − ϕ), which induced Sequence 5. When θ and ϕ had
opposite signs, the rotation of the hind body became larger than
that of the fore body, which induced Sequence 9.

In previous studies (Zou and Schmiedeler 2006; Yamada
et al., 2022), the researchers used a single rigid body for their
simple models to investigate quadrupedal bounding in the
sagittal plane and demonstrated that the fore-aft asymmetry of
the CoM position of the body reduced gait stability. However,
our results demonstrate that even if the trotting of the fore-aft
symmetric model with εμ = εk = 0 in the transverse plane was
unstable, it was stabilized by introducing εμ and εk to satisfy εμ
< aεk − b or εμ > aεk + b (Figure 5), where b also depended on
the physical parameter set (μ0, k0, and κ) as shown in Figure 6;
that is, fore-aft asymmetry did not reduce gait stability, but
rather improved it in the transverse plane. These different
effects of asymmetry on gait stability were mainly caused by
different effects on the entire dynamics. Specifically, because in
previous studies (Zou and Schmiedeler, 2006; Yamada et al.,
2022), researchers used a single rigid body in the model and
incorporated fore-aft asymmetry in the single body, the
asymmetry directly affected the entire dynamics. By
contrast, we used two segmented bodies in our model and
incorporated fore-aft asymmetries as different properties
between the bodies. The fore-aft asymmetries indirectly
affected the entire dynamics via the torsional body joint
that connected the two bodies.

In this study, the boundary between b = 0 and b > 0 existed
near μ0 = κ + 0.5 in the μ0-κ plane (Figure 6), which
corresponds to the stability boundary (μ0 ≤ κ + 0.5: stable,
μ0 > κ + 0.5: unstable) in the symmetric model (εk = εμ = 0), as
achieved in (Adachi et al., 2020). When μ0 < κ + 0.5, the
introduction of εμ and εk to the symmetric model never
changed the stability, and the periodic solutions remained
stable, which resulted in b = 0 for the stability condition εμ

≷ aεk ± b in Figure 5. By contrast, when μ0 > κ + 0.5, the
introduction of εμ and εk made the periodic solutions stable for
εμ ≷ aεk ± b (b > 0). Therefore, we expect that the boundary
between b = 0 and b > 0 is identical to μ0 = κ + 0.5 in the μ0-κ
plane. However, our results had some differences between
them, as shown in Figure 6. This is mainly because we
obtained the periodic solutions numerically based on the
non-linear governing equations, whereas in our previous
work (Adachi et al., 2020), we obtained them approximately
by linearizing the governing equations.

4.2 Biological Relevance of Our Findings
Our results showed that the fore-aft asymmetry improves gait
stability during trotting. Although our model incorporated only
passive forces using springs, unstable gait can be stabilized by
additional control inputs. However, when the system has passive
stability, it needs less control inputs and sensory feedbacks. This
results in low energy consumption, which is therefore beneficial
for quadrupedal animals.

Because the front part of the body is generally heavier and
has larger moment of inertia in the transverse plane than the
hind part in quadrupeds (Rollinson and Martin, 1981), the
forelegs need to generate more impulse than the hind legs to
achieve trotting by inhibiting body pitching. In fact, the
stance phase durations of the fore legs are basically longer
than those of the hind legs during trotting in quadrupeds
(Merkens et al., 1993; Lee et al., 1999; Weishaupt et al., 2004;
Robilliard et al., 2007; Fischer and Lilje, 2016). These
characteristics appeared only in the periodic solutions with
Sequence 5 in our model.

In this study, we used the parameter set estimated in dogs.
The average and difference of the moments of inertia between
the fore and hind bodies were both relatively small (μ0 = 0.62
and εμ = 0.12) and μ0 < κ + 0.5 was satisfied (i.e., the periodic
solution of the symmetric model was stable). As a result, we
achieved b = 0 and the periodic solutions were stable even when
we introduced the asymmetries εμ and εk. Additionally, εμ < aεk
was satisfied for the estimated values in dogs, which yielded
Sequence 5 (Figure 5B). These characteristics are consistent
with those of trotting in dogs (Lee et al., 1999, 2004; Lee, 2010;
Fischer and Lilje, 2016). By contrast, horses have a longer neck
than dogs (Loscher et al., 2016) and the estimated average and
difference of the moments of inertia were both larger than those
of dogs (μ0 = 0.72 and εμ = 0.14). The periodic solution of the
symmetric horse model with εμ = εk = 0 was unstable. However,
that was stabilized by making the fore legs stiffer (εk = 0.25,
Figure 5A). Researchers have suggested that horses enhance the
elasticity of their fore legs using their thoracic muscles, such as
serratus ventralis thoracis, and generate a large difference in
stiffness between their fore and hind legs (Payne et al., 2005b).

4.3 Limitations of Our Study and Future
Work
In this study, we investigated the effects of fore-aft asymmetry on
quadrupedal trotting in the transverse plane using a simple
model. Our results demonstrated that asymmetry improves
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gait stability. In addition, many locomotion characteristics of
the simulation results were consistent with those of the
measured data of animals, as shown in Table 2. However,
our model does not necessarily explain all phenomena of
trotting in animals and has limitations. For example, the
roll amplitude of the hind body in our models was larger
than that of the measured data of animals (Table 2). This
discrepancy could be due to the different joint structure at the
leg roots. Specifically, although we used smooth rotational
joints, quadrupeds have muscles around the joints, which
prevent large leg abduction (Schilling et al., 2009). In the
future, we would like to incorporate this effect of the
muscles around the leg roots to our model.

Secondary, our horse model showed Sequence 5 (flight–fore
stance–double stance–fore stance–flight), where the fore leg of
the pair touches the ground earlier and leaves it later than the
hind leg. Although horses show Sequence 5 during trotting
(Weishaupt et al., 2004), they basically show Sequence 6
(flight–fore stance–double stance–hind stance–flight), where
the fore leg of the pair touches and leaves the ground earlier
than the hind leg (Hildebrand, 1965). One possible reason for
this discrepancy is the absence of pitching dynamics in our
model. Lee (Lee, 2010) demonstrated that the disturbance of
trotting in dogs that results from changing the ground
inclination and added mass position changes their foot
pattern through the regulation of balance in pitching.
Additionally, quadrupeds whose COM is located in an
extremely forward position (which corresponds to large εμ
in this study), such as gnus, do not use trotting, but do use
walking and cantering (Pennycuick, 1975). This is mainly
because it is difficult for them to keep the body pitching
parallel to the ground with the extreme fore-aft asymmetry.
To investigate these characteristics in quadrupedal
locomotion, we would like to introduce pitching dynamics
in our model in the future.

5 CONCLUSION

In this study, we examined the effects of fore-aft asymmetry on
trotting by quadrupedal mammals in the transverse plane using a
simple model. Our results demonstrated that the asymmetry gives
different foot patterns and improves gait stability. Our findings
improve our understanding of gait dynamics in quadrupeds with
fore-aft asymmetry.
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