
micromachines

Article

Research on the Disc Sensitive Structure of a Micro
Optoelectromechanical System (MOEMS)
Resonator Gyroscope

Xiang Shen, Liye Zhao * and Dunzhu Xia

Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Ministry of Education,
School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China;
shenxiang91@163.com (X.S.); xiadz_1999@163.com (D.X.)
* Correspondence: liyezhao@seu.edu.cn; Tel.: +86-139-0517-8308

Received: 20 March 2019; Accepted: 17 April 2019; Published: 19 April 2019
����������
�������

Abstract: A micro optoelectromechanical system (MOEMS) resonator gyroscope based on a waveguide
micro-ring resonator was proposed. This sensor was operated by measuring the shift of the
transmission spectrum. Modal analysis was carried out for the disc sensitive structure of the MOEMS
resonator gyroscope (MOEMS-RG). We deduced the equations between the equivalent stiffness and
voltage of each tuning electrode and the modal parameters. A comprehensive investigation of the
influences of the structure parameters on the sensitivity noise of the MOEMS-RG is presented in
this paper. The mechanical sensitivity and transducer sensitivities of the MOEMS-RG, with varying
structural parameters, are calculated based on the finite-element method. Frequency response test
and the fiber optic spectrometer displacement test were implemented to verify the reliability of the
model. Research results indicate that the resonant frequencies of the operating modes are tested to be
5768.407 Hz and 5771.116 Hz and the resonant wavelength change ∆X was 0.08 nm for 45◦ rotation
angle. The resonant wavelength, which has a good linear response in working range, changes from
−0.071 nm to 0.080 µm. The MOEMS-RG, with an optimized disc sensitive structure, can detect
the deformation of the sensitive membrane effectively, and has a high sensitivity. This resonator
shows very large meff, low f0, and very high Q. Therefore, this resonator can provide a small
ARWB(0.09◦/

√
h), which makes it a promising candidate for a low-cost, batch-fabricated, small size

inertial-grade MOEMS gyroscope. The multi-objective optimization method could be expanded
to include other objectives, constraints, or variables relevant to all kinds of gyroscopes or other
microelectromechanical systems devices.

Keywords: micro optoelectromechanical system (MOEMS); resonator gyroscope; waveguide
micro-ring resonator; modal analysis; structural simulation; frequency response; optic displacement

1. Introduction

Research on micro-resonator gyroscopes has been going on for decades. Techniques such as
displacement detection, signal acquisition and analysis are widely used in vibration sensing, navigation
systems, and impact detection [1,2]. Compared with conventional types, sensors based on optical
effects have the advantage of high sensitivity, low weight, anti-electromagnetic interference and low
manufacturing cost. Optical interference-based sensors with different structures can be designed and
fabricated using the principles of interference effects, fiber bragg gratings, and waveguide coupling
theory [3,4].

As a new type of high-performance gyroscope, the micro optoelectromechanical system resonator
gyroscope (MOEMS-RG) consists of a series of concentric rings connected through alternating spokes
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to a central anchor. There are a rich set of abundant internal electrodes for driving and electrostatic
trimming [5]. The micro-ring resonator based on the optical waveguide structure can be integrated on
a large scale due to the MOEMS process. Excellent optical properties, such as a high-quality factor
and small volume, are easy to obtain by the process of the main path. Its transmission spectrum has a
large free spectral width. This width allows for extremely high resolution, making it easier to produce
MOEMS sensors with relatively good performance.

It is well known that the disc sensitive structure has a great impact on the performance of the
MOEMS-RG. Most of the proof mass and stiffness of the MOEMS-RG is contributed by the nested rings.
The varying structural parameters (including ring number, sensitive membrane offset distance and
structure height) of the disc sensitive structure are critical to the sensitivity and mechanical noise of the
MOEMS-RG. In addition, the manufacturing process of a micro-resonator gyroscope invariably creates
random minute mass and stiffness asymmetries that cause the natural frequencies of these modes
to deviate from one another, thereby degrading sensor performance, such as mechanical sensitivity.
Besides, the antinode orientations of the two modes depend on the distribution of these random minute
mass and stiffness. If the antinode orientation deviates from the midline of the driving electrodes,
the coupling of the two modes will be strengthened. The coupling of the two modes would farther
impact bias instability. The reduction of this frequency split can be achieved by mass perturbation,
such as ablating mass [6–8] and mass deposition [9].

The theoretical model of mass perturbation for a ring has been discussed in many papers [10–13].
In most of these studies, the intuitive functional relation between mass distribution and frequency split
has been derived. And the theoretical model of mass perturbation for a ring has been successfully
applied on disc sensitive structure gyroscopes, as they have a similar structure.

A MOEMS-RG based on a waveguide micro-ring resonator is introduced in this paper. This sensor
operates by measuring the shift of the transmission spectrum. Modal analysis was carried out for
the disc sensitive structure of MOEMS-RG. We deduce the equations between equivalent stiffness, or
voltage, of each tuning electrode and the modal parameters. The concepts of the tuning model are
studied to better illustrate this theory. A comprehensive investigation of the influences of the structure
parameters on the sensitivity noise of the MOEMS-RG is presented. The mechanical sensitivity and
transducer sensitivity of the MOEMS-RG with varying structural parameters (including ring number,
sensitive membrane offset distance and structure height) is calculated based on the finite-element
method. A frequency response test and the fiber optic spectrometer displacement test were implemented
to verify the reliability of the model. This study can give an explicit guideline for designing all kinds
of MOEMS-RGs. The multi-objective optimization method could be expanded to include other
objectives, constraints or variables relevant to all kinds of gyroscopes or other microelectromechanical
systems devices.

2. Working Mechanism Analysis of MOEMS-RG

The principle of modal vibration of MOEMS-RG is introduced firstly. Like all solid-state wave
gyroscopes, the working mechanism of the MOEMS-RG is based on the inertia effect of the standing
wave in two vibration modes of the axisymmetric resonator caused by Coriolis force. Modal refers
to cases where stiffness perturbations are added on an imperfect resonator. As shown in Figure 1,
radial springs are added on an ideal ring resonator, which causes the undamped natural frequency
(free vibration) of the second mode to split into two different frequencies (ω1, ω2). The relationship
between the stiffness perturbations and modal frequencies are reproduced below from Equations (1)–(2).



Micromachines 2019, 10, 264 3 of 22Micromachines 2019, 10, x FOR PEER REVIEW 3 of 23 

 

Φ

 
Figure 1. Ring with added radial springs. 

tan4ψj= ∑ (kFsin4ϕj)
N
j=1∑ (kFcos4ϕj)
N
j=1

 (1) 

⎩⎪⎨
⎪⎧ ω1

2=ω0
2(1+α2  (

kF

4S0
(1+cos(4ϕj − 4ψj))

N

j=1

))

ω2
2=ω0

2(1+α2  (
kF

4S0
(1 − cos(4ϕj − 4ψj))

N

j=1

))

 (2) 

where kF represents the stiffness of the added springs, and the corresponding angular location on 
the ring relative to a ring-fixed coordinate system is ϕj, j = 1, 2,…, N. α is the amplitude ratio of the 

radial and tangential displacement for modes with n = 2 modal diameters, and S0 is the strain energy 
of perfect ring in 2 nodal diameter mode; ω0 represents the natural frequency of the degenerate 
modes of the unperturbed perfect ring. We assume that the first and second order modal frequencies 
are ω1 and ω2, and the corresponding anti-node orientation is ψj; we also assume 0 ≤ ψj ≤ 90°. 

Thus, the frequency split can be derived as: 

ω1 − ω2=ω0
α2

4S0
ቌ kFcos4ϕj

N

j=1

ቍ cos4ψj+ ቌ kFsin4ϕj

N

j=1

ቍ sin4ψj (3) 

The right-hand side of Equation (3) can be denoted as σc and σs respectively: 

⎩⎪⎨
⎪⎧σc=

ω0α2

4S0
 kFcos4ϕj=(ω1 − ω2)

N

j=1

cos4ψ1

σs=
ω0α2

4S0
 kFsin4ϕj=(ω1 − ω2)

N

j=1

sin4ψ1

 (4) 

Equation (4) seems to imply that the imbalance parameters of an imperfect ring are only caused 
by stiffness perturbations. In practice, the initial imbalance parameters are estimated by ψ1 and 𝜔 
after measuring the modal frequencies and anti-node orientations, so they include both stiffness and 
mass contributions to the frequency split. 

The working mechanism of the MOEMS-RG is shown in Figure 2. An evanescent wave field will 
be produced when light travels through the waveguide. The evanescent wave is relatively strong on 
the surface of the waveguide. Light is coupled into the annular microcavity in the form of an 
evanescent wave when the coupling parameters of annular microcavity and the optical waveguide 
have better matching performance. The light of the annular microcavity resonates when the 

Figure 1. Ring with added radial springs.

tan 4ψ j =

∑N
j=1(kFsin 4φ j)∑N
j=1(kFcos 4φ j)

(1)


ω2

1 = ω2
0(1 + α2

N∑
j=1

( kF
4S0

(1 + cos(4 φ j − 4ψ j))))

ω2
2 = ω2

0(1 + α2
N∑

j=1
( kF

4S0
(1 − cos(4φ j − 4ψ j))))

(2)

where kF represents the stiffness of the added springs, and the corresponding angular location on the
ring relative to a ring-fixed coordinate system is φ j, j = 1, 2, . . . , N. α is the amplitude ratio of the radial
and tangential displacement for modes with n = 2 modal diameters, and S0 is the strain energy of
perfect ring in 2 nodal diameter mode; ω0 represents the natural frequency of the degenerate modes of
the unperturbed perfect ring. We assume that the first and second order modal frequencies are ω1 and
ω2, and the corresponding anti-node orientation is ψ j; we also assume 0 ≤ ψ j ≤ 90◦.

Thus, the frequency split can be derived as:

ω1 −ω2 = ω0
α2

4S0


 N∑

j=1

kFcos 4φ j

cos 4ψ j +

 N∑
j=1

kFsin 4φ j

sin 4ψ j

 (3)

The right-hand side of Equation (3) can be denoted as σc and σs respectively:
σc =

ω0α
2

4S0

N∑
j=1

kFcos 4φ j = (ω1 −ω2)cos 4ψ1

σs =
ω0α

2

4S0

N∑
j=1

kFsin 4φ j = (ω1 −ω2)sin 4ψ1

(4)

Equation (4) seems to imply that the imbalance parameters of an imperfect ring are only caused
by stiffness perturbations. In practice, the initial imbalance parameters are estimated by ψ1 and ω after
measuring the modal frequencies and anti-node orientations, so they include both stiffness and mass
contributions to the frequency split.

The working mechanism of the MOEMS-RG is shown in Figure 2. An evanescent wave field will
be produced when light travels through the waveguide. The evanescent wave is relatively strong on the
surface of the waveguide. Light is coupled into the annular microcavity in the form of an evanescent
wave when the coupling parameters of annular microcavity and the optical waveguide have better
matching performance. The light of the annular microcavity resonates when the frequency of the
evanescent wave is equal to the eigenfrequency on the equatorial plane of the annular microcavity.
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Figure 2. Working mechanism of the Micro Optoelectromechanical System resonator gyroscope
(MOEMS-RG).

When the mode shape of the disc gyroscope changes, the distance ∆L of the optical fiber to the
sensitive silicon membrane changes. The minimum transmission response shifts along the wavelength,
and the offset value ∆X is positively correlated with ∆L. It is possible to estimate the mode shape
change of the disc gyroscope and obtain its attitude change by detecting the ∆L value.

3. Modal Analysis of the MOEMS-RG

3.1. Establishment of the Modal Mathematical Model

Modal analysis of the MOEMS-RG is carried out in this section. The working mechanism of
the MOEMS-RG is based on the inertia effect of the standing wave in two vibration modes of the
axisymmetric resonator caused by the Coriolis force. When a fixed frequency is applied, the MOEMS-RG
vibrates in a modal direction at a certain frequency. Vibration velocity vectors and Coriolis force vectors
of the active mode are shown in Figure 3.Micromachines 2019, 10, x FOR PEER REVIEW 5 of 23 
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While the resonator is in active mode, if the gyroscope is rotating about the Z axis with an angular
velocity (to be measured), the Coriolis force Fc in the vibrating ring, which is perpendicular to the
vibration velocity vector of the active mode and the angular velocity vector. For the piezoelectric
effect, the strain of piezoelectric elements produces an output signal Us, which is proportional to
angular velocity and can be detected by the readout circuit. A-H are the positions of the electrode
applied. In Figure 3, the symbol Ω represents the rotation angle of the disc and θ represents the
sensitive angle of the disc;

.
v and

.
w represent the circumferential velocity vector and the radial velocity

vector, respectively.
The dynamic radial and circumferential displacement functions of the ring in active mode are

subjected to Equation (5) based on a dynamic magnification method [14–20].
va(θ, t) = v0

1√
(1−v2

a)
2
+4ξ2v2

a

cos 2θ sin(pt −φa)

wa(θ, t) = w0
1√

(1−v2
a)

2
+4ξ2v2

a

cos 2θ sin(pt −φa)
(5)

in which va = p/ωa is the frequency ratio, φa = arctan2ξva/
(
1− v2

a

)
is the phase angle,

and 1/
√(

1− v2
a

)2
+ 4ξ2v2

a is dynamic magnification coefficient. If the active frequency of the voltage
applied on piezoelectric element is exactly equivalent to the natural frequency of the active mode.
Then, va = 1 and φa = π/2a. Therefore, the displacement functions of the ring in active mode can be
simplified as the following form: va(θ, t) = v0

1
2ξ sin 2θ sin(ωat− π

2 )

wa(θ, t) = w0
1

2ξ cos 2θ sin(ωat− π
2 )

. (6)

According to Equation (6), the vibration velocity functions of the ring in active mode can be
expressed by:  .

va(θ, t) = v0
1

2ξωa sin 2θ sinωat =
.
v0 sin 2θ sinωat

.
wa(θ, t) = v0

1
2ξωa cos 2θ sinωat =

.
w0 cos 2θ sinωat

. (7)

While the gyroscope is rotating about the Z axis in clockwise at the angular velocity, there are
Coriolis forces acting on the vibrating ring, and the forces caused by the radial vibration velocity and
the circumferential vibration velocity on each infinitesimal element can be formulated by the Coriolis
force definition: {

fcw(θ, t) = mdθ
π

.
wa(θ, t)Ω = mΩ

π
.

w0 cos 2θ sinωatdθ
fcv(θ, t) = mdθ

π
.
va(θ, t)Ω = mΩ

π
.
v0 sin 2θ sinωatdθ

. (8)

According to the definition of Coriolis force, the Coriolis force vectors caused by the radial
vibration velocity are in a circumferential direction, and the Coriolis force vectors caused by the
circumferential vibration velocity are in a radial direction. The distribution of vibration velocity vectors
and Coriolis force vectors is shown in Figure 3.

The static radial displacement wc0 and circumferential displacement vc0 of the ring caused by the
static Coriolis force fcw and fcv are subjected to Equation (9) based on plate and shell theory. vc0 = −

(
m

.
w0Ω

4kFπ
+ m

.
v0Ω

2kFπ

)
R3

EI1

wc0 = −
(

m
.

w0Ω
2kFπ

+ m
.
v0Ω

kFπ

)
R3

EI1

(9)

in which R is the neutral radius of the ring, I1 is the inertia moment of the ring’s entire cross-sectional
area computed about the neutral axis, and E is Young’s modulus; kF is the radial tensile stiffness
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coefficient. Therefore, the displacement functions of the ring in sense mode can be simplified as the
following form:  va(θ, t) =vc0

1
2ξ cos 2θ sin(ωat− π

2 )

wa(θ, t) =wc0
1

2ξsin 2θ sin(ωat− π
2 )

. (10)

3.2. The Modal Simulation Analysis of MOEMS-RG

The modal of the MOEMS-RG is built by changing Young’s modulus and the density of several
elements, so that the frequency split caused by both mass perturbation and stiffness perturbation is
simulated, and relative parameters can be obtained from Equation (4). The frequency split and the
parameters of the sample resonator are listed in Table 1.

Table 1. Frequency split and relative parameters of the MOEMS-RG.

ω/Hz ψ1/deg σc/Hz σs/Hz

11.7328 7.6335 10.9182 5.9218

Mathematical simulations of the sample resonator discussed in Section 3.1 are carried out
successfully and summarized in Table 1; These simulations show the frequency split achieved after
setting the values of kF by solving Equation (9). The results of modal analysis before and after
tuning of the sample resonator are shown as Figure 4. Where FREQ represents the natural frequency.
DMX represents the Displacement Max, and SMX represents the Solution Max. N represents the
ring number. In the initial mode, the maximum positive displacement is at −X and Y deflection, and
the maximum negative displacement is at X and Y deflection. Otherwise, the maximum positive
displacement is at X and Y deflection, and the maximum negative displacement is at −X and Y
deflection in the operating mode. The maximum displacement of the modal is higher than the initial
modality. These simulations reveal that the stiffness perturbations guided by our algorithm can
effectively reduce the frequency split. The residual frequency detuning can be further reduced by
using the iterative method.Micromachines 2019, 10, x FOR PEER REVIEW 7 of 23 
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Figure 4. The initial modes (a) and the operating modes (b) of the sample resonator.

The ideal resonator model is built through meshing symmetrically. Then, equivalent stiffness kF

is applied on a single electrode in a given step, and the equivalent stiffness of other electrodes is 0,
and the frequency difference and antinode orientation are measured respectively. Finally, simulation
results on electrode A and B are shown in Figure 5a,b and reveal that when kF > 0, the corresponding
frequency split increases linearly with kF, and the anti-node orientation ψ1 consistent with the centroids
of corresponding electrodes; when kF < 0, the corresponding frequency split increases linearly with the
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absolute value of kF, and the anti-node orientation ψ1 deviates from the centroids of the corresponding
electrodes by 45◦.

In addition, when kF > 0, the slopes of these straight lines shown in Figure 5a equal to the
sensitivity parameters. According to the symmetry of the resonator, electrodes on the same layer have
the same sensitivity parameter, and an intuitive conclusion, which has been verified by the simulations
shown in Figure 5b, is that the sensitivity parameter of the outer electrodes is greater than those with a
more inboard position.

Clearly, the imbalance parameters are all positive. Thus, according to Equation (4), stiffness
is applied on the equivalent springs of electrode A, C, E and G to reduce the imbalance parameter
σc. The stiffness is increased in a given step, and the imbalance parameters are calculated after each
increase of the stiffness. Finally, the results are shown in Figure 5c. These results reveal that the
imbalance parameter σc decreases linearly as the stiffness increases. Further, as the stiffness increases,
σs remains unchanged. Similarly, in order to reduce σs, stiffness is applied to electrodes B, D, F, H.
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4. Disc Sensitive Structure Analysis of MOEMS-RG

4.1. Disc Sensitive Structure Design of MOEMS-RG

The disc sensitive structure of the MOEMS-RG is shown in Figure 6. The disc sensitive structure
consists of several concentrically nested rings interconnected through 16 spokes [21]. The resonator is
suspended from a single central anchor. The ring number is N. The outer diameter of the MOEMS-RG
is D. The anchor diameter is d. The structure height is h. The ring thickness is rt. The spoke thickness
is st. The width of the slots is sw. The MOEMS-RG uses the n = 2 wine-glass modes as the driving and
sensing mode. d’ represents the diameter of sensitive silicon membrane and x is the distance from the
center of the sensitive silicon membrane to anchor.
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4.2. Mathematical Modal Analysis of the MOEMS-RG

4.2.1. Mathematical Modal Analysis of a Rigid Body

In order to simplify the research, the gyroscope is analyzed as a rigid body firstly because the
deformation of the disc has little effect on the study of the working range of the MOEMS disc resonators.
Figure 7 represent a schematic diagram of the force model of a rigid body. The (X, Y) coordinate was
converted into a (x, y) coordinate. The transformation relationship is expressed as Equation (11):{

x = X cos(π2 − ψ) + Y sin(π2 − ψ)
y = X cos(π2 − ψ) −Y sin(π2 − ψ)

(11)

As shown in the Figure 7, R is the diameter of sensitive silicon membrane. l is the distance between
the edge of resonator. Therefore, the radius of the resonator is R + l, Assuming that the sensitive silicon
membrane is originally at the center of the gyroscope, the offset is y and the electrostatic force angle
is α. ly is the distance of the sensitive silicon membrane from the edge of the large disc along the
electrostatic force direction.

Clearly, the excitation voltage is composed of a DC voltage and an AC voltage. The general
form of the voltage is V0 ± V1sinωt. The frequency ω is usually much larger than the frequency
of the measurement signal and the natural frequency of the mechanical structure itself. Therefore,
the frequency is applied to the electrode. The force is the average value of the voltage electrostatic
force and is shown as follows:

Fc =
Aεε0

2(l− y)2

(
V2

0 + V2
1/2

)
(12)
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The effective voltage V is defined as V =
√(

V2
0 + V2

1/2
)
. The electrostatic force applied to the

electrode is in the form of:
Fc =

Aεε0

2(l− y)2 V2. (13)

According to the Figure 7:

(R + l)2 = y2 + (R + ly)
2
− 2y(R + ly) cos(π− α) (14)

ly = −R− y cosα+
√
(R + l)2

− y2(sinα)2. (15)

When the gyroscope is subjected to the static acceleration signal a, its deformation is ignored,
according to the static balance:∫ π

2

−
π
2

ε0hRV2

2(l− y cosα)2 dα−
∫ 3π

2

π
2

ε0hRV2cos(π − α)

2(l− y cosα)2 dα+ ma− ky = 0 (16)

∂
∂y


4ε0hRV2arctan

 l+y
√

l2−y2


√

l2−y2
−

2ε0hRV2
2arctan

 l+y
√

l2−y2

−csgn

 l+y
√

l2−y2

π
√

l2−y2


+ma− ky = 0 (17)

in which, sgn(y) = [1, (if y > 0); 0, (if y = 0); −1, (if y < 0)]. y is the offset distance of the silicon sensitive
membrane, ε0 is the vacuum dielectric constant and h is the thickness of the gyroscope chassis. R is the
radius of the silicon sensitive membrane; α is the angle of the electrostatic force and ly is the distance of
the sensitive silicon membrane from the edge of the large disc along the electrostatic force direction.

Let p = πε0hRV2

2kl3
, q = ma

kl , r =
y
l , the Equation (17) can be simplified as:

2pr
(1 − r2)

+q− r = 0 (18)



Micromachines 2019, 10, 264 10 of 22

and when a voltage is applied, defining the function:

q (r, p) = r

1−
2p

(1 − r2)
3
2

 (19)

Equation (19) can be described in Figure 8. As can be seen from Figure 8, the curves have a
maximum value qmax for a specific value p. When q ≥ qmax, r has no real solution, which means
that the gyroscope is attracted under the combined action of electrostatic force and inertial force.
If q ≥ 0.5, there is no stable solution, which means that the gyroscope is unstable. In a certain situation,
when p = 0.1 and q = 0.2, there are two intersections in the range of [0,1], in which, r1 = 0.2569,
r2 = 0.7623, respectively.
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Let ∂q/∂r = 0 to obtain Equation (20):(
1− y2

)5
= 4p2(1 + 2y2)

2
(20)

and when combined with Equation (11), Equation (21) can be obtained:

(
1− (X cos(

π
2
− ψ) −Y sin(

π
2
− ψ))

2)5
= 4p2

(
1 + 2

(
X cos(

π
2
− ψ) −Y sin(

π
2
− ψ)

)2
)2

. (21)

4.2.2. Mathematical Modal Analysis of an Elastomer Body

Based on the research in Section 4.2.1, the deformation of the gyroscope was discussed in this
section. According to Hooke’s law, the solid tensile strain εn is linear with the cross-sectional stress σn

within the proportional limit within the elastic range, that is, σn = Yεn.
Figure 9 shows the schematic diagram of the force model of an elastomer body. As shown in

Figure 9, the disc sensitive structure gyroscope is deformed by resonance. In order to simplify the
calculation, it is approximately elliptical. h is its chassis thickness, where y1 is the shape variable of
the sensitive silicon membrane, and y0 is the distance between the deformed chassis and the sensitive
silicon membrane of the disc. The shape variable and the lower shape variable of the sensitive
silicon membrane are simplified for the convenience of calculation. According to the same method as
described above, the distance between the chassis and the sensitive silicon membrane during the offset
can be found.



Micromachines 2019, 10, 264 11 of 22Micromachines 2019, 10, x FOR PEER REVIEW 12 of 23 

 

α

α

α α

αα

 
Figure 9. Schematic diagram of the force model of an elastomer body. 

Also, (R + l1) is the ellipse short axis length, (R + l2) is the ellipse long axis length, and (R + lα) is 
the radius length of the angle α with the short axis; this can yield: 

la = (l1 − l2)sinα+l1. (22) 

It can be known from the balance of forces that: 

න ε0hRV2cosα

2 ቀly0
− y0cosα− y1cosαቁ2

π
2ିπ2 dα− න ε0hRV2cosα

2 ቀly0
− y0cosα− y1cosαቁ2

3π
2

π
2

dα+ma − ky0 = 0 (23) 

where y0 is the offset distance of the silicon sensitive membrane; y1 is the shape variable of the 
sensitive silicon membrane; ε0 is the vacuum dielectric constant; h is the thickness of the gyroscope 
chassis; R is the radius of the silicon sensitive membrane before deformation; α is the angle of the 
electrostatic force and ly0 is the distance of the sensitive silicon membrane from the edge of the large 
disc along the electrostatic force direction. 

Simplified for Equation (23): 

∂
∂x ⎣⎢⎢

⎡ε0hRV2

2 − 2πටly0
2 − (y0cosα+yଵcosα)2⎦⎥⎥

⎤
+ma − ky0 = 0. (24) 

Let p= πε0hRV2

2kly0
య , q= ma

kly0
,  r=

y0
l
,  s=

yభ
l
, and simplified for Equation (24): 

2p(r+s)

(1 − (r+s)2)
3
2

+q − r = 0. (25) 

Let s = 0.01, that is, y1 = 0.01l, obtain Equation (26): 

Figure 9. Schematic diagram of the force model of an elastomer body.

Also, (R + l1) is the ellipse short axis length, (R + l2) is the ellipse long axis length, and (R + lα) is
the radius length of the angle α with the short axis; this can yield:

la = (l1 − l2)sinα+l1. (22)

It can be known from the balance of forces that:∫ π
2

−
π
2

ε0hRV2cosα

2
(
ly0 − y0cosα− y1cosα

)2 dα−
∫ 3π

2

π
2

ε0hRV2cosα

2
(
ly0 − y0cosα− y1cosα

)2 dα+ ma− ky0 = 0 (23)

where y0 is the offset distance of the silicon sensitive membrane; y1 is the shape variable of the sensitive
silicon membrane; ε0 is the vacuum dielectric constant; h is the thickness of the gyroscope chassis;
R is the radius of the silicon sensitive membrane before deformation; α is the angle of the electrostatic
force and ly0 is the distance of the sensitive silicon membrane from the edge of the large disc along the
electrostatic force direction.

Simplified for Equation (23):

∂
∂x

ε0hRV2

2
−

2π√
l2y0 − (y 0cosα+ y1 cosα)2

+ma− ky0 = 0. (24)

Let p =πε0hRV2

2kl3y0

, q = ma
kly0

, r = y0
l , s = y1

l , and simplified for Equation (24):

2p(r + s)

(1− (r + s)2)
3
2

+q− r = 0. (25)
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Let s = 0.01, that is, y1 = 0.01l, obtain Equation (26):

q (r, p) = r−
2p(r + 0.01)

(1− (r + 0.01)2)
3
2

(26)

The q(r,p) curves for the deformed gyroscope are shown in Figure 10. Same as when it is not
deformed, the curves have a maximum value qmax for a specific value p. When q ≥ qmax, r has no real
solution, which means that the gyroscope is attracted under the combined action of electrostatic force
and inertial force. If q ≥ 0.5, there is no stable solution, which means that the gyroscope is unstable.
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Let ∂q/∂r = 0, obtain Equation (27):

1−
2p

(1− (y + 0.01))
3
2

+
3p(y + 0.01)(−2y− 0.02)

(1− (y + 0.01)2)
5
2

= 0. (27)

Combined with Equation (11), the following equation can be obtained:

1− 2p

(1−((X cos( π
2 −ψ)−Y sin( π2 −ψ))+0.01))

3
2
+

3p((X cos( π
2 −ψ)−Y sin( π2 −ψ))+0.01)(−2(X cos( π2 −ψ)−Y sin( π2 −ψ))−0.02)

(1−(y+0.01)2)
5
2

= 0
(28)

The relationship curves between qmax and p are shown in Figure 11. The solid line part is
the relationship between qmax and p when neglecting deformation, and the dotted line part is the
relationship between qmax and p when considering deformation. It can be seen from Figure 11 that when
the deformation is considered, the relationship curve is located below the rigid body. The maximum
value of p is 0.45 when the deformation spacing is 0.01, which is 0.5 when the deformation is ignored.
Therefore, the deformation of the gyroscope changes its work reliability range.
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5. Structural Simulation Analysis of the MOEMS-RG 

5.1. Mechanical Sensitivity and Transducer Sensitivity Model of MOEMS-RG 

The mechanical sensitivity Smech is defined as the displacement amplitude of the sensing mode 
under each unite input angular rate, which can be expressed by [22,23]: 
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where y1 is the shape variable of the sensitive silicon membrane, and y0 is the distance between the 
deformed chassis and the sensitive silicon membrane of the disc. Ω is the input angular rate; Q is 
the quality factor; ω0 is the angular resonant frequency of the n = 2 working mode; Ag is the angular 
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5. Structural Simulation Analysis of the MOEMS-RG

5.1. Mechanical Sensitivity and Transducer Sensitivity Model of MOEMS-RG

The mechanical sensitivity Smech is defined as the displacement amplitude of the sensing mode
under each unite input angular rate, which can be expressed by [22,23]:

Smech =
y1

Ω
=

4AgQy0

ω0
(29)

where y1 is the shape variable of the sensitive silicon membrane, and y0 is the distance between the
deformed chassis and the sensitive silicon membrane of the disc. Ω is the input angular rate; Q is the
quality factor; ω0 is the angular resonant frequency of the n = 2 working mode; Ag is the angular gain.
Generally, the drive-loop circuit will ensure that the driving amplitude stays constant. The driving
amplitude is fixed when comparing the mechanical sensitivities of different MOEMS-RGs. In this
study, the driving amplitude is assumed to be a constant 1 µm.

The variation of the electrode capacitor caused by the mechanical displacement of the resonator
can be expressed by:

∆C =
Aεε0y

l2
(30)

where A and l are the capacitive area and initial gap of the sensing electrode, respectively. ε0 is the
permittivity of vacuum, and ε is the relative permittivity. y is the average displacement of the resonator
region facing the electrode, which can be expressed by y = ky1. The scale factor k is the ratio of the
average displacement and the displacement amplitude of the electrode.

The transducer sensitivity Stran is defined as the variation of the electrode capacitor of the sensing
mode under each unite input angular rate, which can be expressed by:

Stran =
∆C
Ω

=
Smechεε0

l2
∑

i

kiAi =
4εε0AgQy0

l2ω0

∑
i

kiAi (31)

where i is the electrode number and ki is the scale factor of each electrode, which depends on the mode
shape of the resonator. For the MOEMS-RG, ki is always smaller than 1, and the outer electrode has a
larger ki.

∑
i

kiAi can be called the effective capacitive area. In this study, the capacitive gap is assumed

to be a constant 15 µm.

5.2. Varying Structural Parameters Simulation Analysis of the MOEMS-RG

As we know that most of the proof mass and stiffness of the MOEMS-RG is contributed by
nested rings. Therefore, the number of the nested rings can greatly affect the performance of the
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MOEMS-RG [24]. When the ring number decreases to one, the MOEMS-RG would degenerate into
the traditional resonator gyroscope. In this part, the effects of the varying structural parameters
(including ring number, sensitive membrane offset distance and structure height) on the sensitivity
and mechanical noise of the MOEMS-RG are discussed based on the finite-element method.

5.2.1. The Ring Number

In this part, the effects of the ring number on the sensitivity and mechanical noise of the MOEMS-RG
are discussed. When the ring number is changed from 9 to 15, Smech and Stran of the MOEMS-RG are
calculated. Smech is calculated based on the typical electrodes sets shown in Equation (29). Stran is
calculated based on the typical electrodes sets shown in Equation (30). Two cases were discussed in
this section. Firstly, adjust the ring number by changing the ring spacing sw with the anchor size fixed
(Case 1). Secondly, adjust the ring number by changing the diameter d of the anchor with the ring
spacing sw fixed (Case 2). The other structural parameters are fixed in Table 2. The simulated results
are presented in Figures 12 and 13. Where SUB represents the sub-iteration step. FREQ represents
the natural frequency. DMX represents the Displacement Max, and SMX represents the Solution Max.
N represents the ring number.

Table 2. Key design parameters of disc sensitive structure of MOEMS.

Parameter Value Parameter Value

D 450 (µm) st 5 (µm)
d 150 (µm) rt 5 (µm)
d’ 15 (µm) sw 5 (µm)
h 40 (µm) Number of rings N 15
y 207.5 (µm) Number of spokes Ns 16
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Figure 13. (a) Case 1 (b) Case 2. 

It can be seen from Figure 12 that as the ring number increases, the operating mode direction is 
basically the same, but the value of maximum vibration mode displacement increases significantly, 
and the silicon sensitive membrane becomes more sensitive. 

The mechanical sensitivities and the transducer sensitivities of the MOEMS-RGs with different 
ring numbers are provided in Figure 13. In case one (as shown in Figure 13a), the MOEMS-RG with 
11 rings has the poorest Smech. Because thermo-elastic dissipation is relatively low and natural 
frequency is relatively high in this region. However, Stran of the MOEMS-RG improves with the 
increase of the ring number. This is due to the improvement of the effective capacitive area. In case 
two (as shown in Figure 13b), if the diameter d of the anchor decreases, both Smech and Stran of the 
MOEMS-RG increase when the ring number increases. It can be concluded that a smaller anchor size 
ratio should be chosen. But when the anchor size ratio is less than 0.4, other problems involving 
anchor loss, structural strength, and so on would emerge when the anchor size ratio is too small. 

5.2.2. The Offset Distance of the Sensitive Membrane 
The offset distance of the sensitive membrane is one of the primary factors which must be 

decided at the MOEMS-RG designing. It is of great importance to study how the offset distance of 
the sensitive membrane affects the sensitivity and mechanical noise of the MOEMS-RG. Smech and Stran 
of the MOEMS-RG with the offset distance are changed from 147.5 μm to 207.5μm are calculated. 
Smech is calculated based on the typical electrodes sets shown in Equation (29). Stran is calculated based 
on the typical electrodes sets shown in Equation (31). In this case, the resonator height is 40 μm, the 
thicknesses of the rings and spokes are 5 μm. The other structural parameters, except the slot width, 
are fixed in Table 2. The results are demonstrated in Figure 14a. 

As is shown in Figure 14a, the shape variable of the sensitive silicon membrane y1 increased with 
the offset distance of the sensitive membrane x increasing. Smech and Stran of the MOEMS-RG increased 
simultaneously. The results show that the larger the offset distance of the sensitive membrane, the 
more sensitive the MOEMS-RG is. 
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It can be seen from Figure 12 that as the ring number increases, the operating mode direction is
basically the same, but the value of maximum vibration mode displacement increases significantly,
and the silicon sensitive membrane becomes more sensitive.

The mechanical sensitivities and the transducer sensitivities of the MOEMS-RGs with different
ring numbers are provided in Figure 13. In case one (as shown in Figure 13a), the MOEMS-RG
with 11 rings has the poorest Smech. Because thermo-elastic dissipation is relatively low and natural
frequency is relatively high in this region. However, Stran of the MOEMS-RG improves with the
increase of the ring number. This is due to the improvement of the effective capacitive area. In case
two (as shown in Figure 13b), if the diameter d of the anchor decreases, both Smech and Stran of the
MOEMS-RG increase when the ring number increases. It can be concluded that a smaller anchor size
ratio should be chosen. But when the anchor size ratio is less than 0.4, other problems involving anchor
loss, structural strength, and so on would emerge when the anchor size ratio is too small.

5.2.2. The Offset Distance of the Sensitive Membrane

The offset distance of the sensitive membrane is one of the primary factors which must be decided
at the MOEMS-RG designing. It is of great importance to study how the offset distance of the sensitive
membrane affects the sensitivity and mechanical noise of the MOEMS-RG. Smech and Stran of the
MOEMS-RG with the offset distance are changed from 147.5 µm to 207.5µm are calculated. Smech

is calculated based on the typical electrodes sets shown in Equation (29). Stran is calculated based
on the typical electrodes sets shown in Equation (31). In this case, the resonator height is 40 µm,
the thicknesses of the rings and spokes are 5 µm. The other structural parameters, except the slot
width, are fixed in Table 2. The results are demonstrated in Figure 14a.

As is shown in Figure 14a, the shape variable of the sensitive silicon membrane y1 increased with
the offset distance of the sensitive membrane x increasing. Smech and Stran of the MOEMS-RG increased
simultaneously. The results show that the larger the offset distance of the sensitive membrane, the more
sensitive the MOEMS-RG is.
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Figure 14. (a) The y1, mechanical sensitivities and the transducer sensitivities with different ring 
numbers (b) The mechanical sensitivities and the transducer sensitivities with the height of the 
MOEMS-RG. 

5.2.3. The height of the MOEMS-RG 
The height of the MOEMS-RG is decided based on concerns such as the capacitive area and 

fabrication capability [25]. This part mainly studies the effects of the structure height h on the 
sensitivity and the mechanical noise of the MOEMS-RG. Smech and Stran of the MOEMS-RG with 
heights ranging from 20 μm to 60 μm are calculated. Meanwhile, the ring number is 15, The other 
structural parameters except the slot width are fixed in Table 2. The simulated results are summarized 
in Figure 14b. It can be seen from Figure 14b that Smech decreases, whereas Stran increases when the 
resonator height h increases. This increase is due to the enhancement of the capacitive area provided 
by the increase of the height. 

6. Experiment Test of the MOEMS-RG 
The MOEMS-RG with optimized disc sensitive structure was processed by 

microelectromechanical systems (MEMS) processing methods according to Section 4.2 and Section 5. 
The disc sensitive structure has rings to measure the Coriolis-based rotation rate signal. An SEM 
image of the device is shown in Figure 15, and key design parameters are summarized in Table 2. In 
this work, we demonstrate that it is possible to reduce the frequency splits in silicon through slight 
modifications in the geometric design of the disc sensitive structures. 
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5.2.3. The height of the MOEMS-RG

The height of the MOEMS-RG is decided based on concerns such as the capacitive area and
fabrication capability [25]. This part mainly studies the effects of the structure height h on the sensitivity
and the mechanical noise of the MOEMS-RG. Smech and Stran of the MOEMS-RG with heights ranging
from 20 µm to 60 µm are calculated. Meanwhile, the ring number is 15, The other structural parameters
except the slot width are fixed in Table 2. The simulated results are summarized in Figure 14b. It can
be seen from Figure 14b that Smech decreases, whereas Stran increases when the resonator height h
increases. This increase is due to the enhancement of the capacitive area provided by the increase of
the height.

6. Experiment Test of the MOEMS-RG

The MOEMS-RG with optimized disc sensitive structure was processed by microelectromechanical
systems (MEMS) processing methods according to Sections 4.2 and 5. The disc sensitive structure
has rings to measure the Coriolis-based rotation rate signal. An SEM image of the device is shown in
Figure 15, and key design parameters are summarized in Table 2. In this work, we demonstrate that
it is possible to reduce the frequency splits in silicon through slight modifications in the geometric
design of the disc sensitive structures.
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numbers (b) The mechanical sensitivities and the transducer sensitivities with the height of the 
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The epi-seal process starts with a 40 µm-thick (100) SOI (Silicon-On-Insulator) wafer with a
2 µm-thick buried oxide layer. The devices were patterned and etched using DRIE (Deep Reactive Ion
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Etching). Then, the trenches are filled with a 2 µm-thick sacrificial LPCVD (Low Pressure Chemical
Vapor Deposition) oxide layer, and contact holes are subsequently etched into this oxide. These contact
holes provide electrical access to the device structure and electrodes, creating a mechanical anchor.
A first encapsulation layer (6 µm) was epitaxially grown on top of the sacrificial oxide, and vent
holes were etched. Vapor-phase HF was then used to etch the oxide and release the device structure.
A thick (20 µm) second encapsulation layer is deposited epitaxially to seal the vent holes and create the
hermetic cavity. An aluminum for electrical contact was patterned and deposited. Final annealing was
performed in a low temperature (400 ◦C) nitrogen environment to diffuse the residual hydrogen gas out
from the cavity, providing a low pressure, oxide-free environment that is less than 10 Pa, which yields
high Q devices.

A frequency response test was implemented in a vacuum chamber at 25 ◦C. A block diagram of the
experimental set up is shown in Figure 16. During the frequency response test, a sweeping frequency
AC signal produced by the oscillator subsystem (OSC) of the frequency response analyzer is modulated
into a 500 kHz carrier and used to drive the resonator. The capacitor variation of pickoff electrodes is
converted into an AC output signal by a charge amplifier. The output signal is amplified and high-pass
filtered (HPF) to reduce the low-frequency noise (LPF) [26]. The output signal is then synchronously
demodulated by a multiplier and a low-pass filter. The driving signal and the output signal are input to
the CH1 and CH2 ports of the FRA (Fiber Raman Amplifier), respectively. A double-pole double-throw
switch S2 is used to change the testing axis. Signal is gathered by NI-DAQ (National Instruments Data
Acquisition) card.
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spectrum super-luminescent diode (SLD) laser is fed into the displacement meter through a 
polarization controller (PC). The output from the wavelength shift was monitored by an optical fiber 
spectrometer (OSA, Avaspec-2048 with a resolution of 0.04 nm) to measure the displacement ΔL, as 
shown in Figure 18. The resonant wavelength change ΔX for the applied displacement ΔL was 0.08 
nm for a 45° rotation angle.  

Figure 16. Block diagram of the experimental.

The frequency response test results are shown in Figure 17. The resonant frequencies of the
operating modes are tested to be 5768.407 Hz and 5771.116 Hz. This 2.709 Hz frequency split is
caused by the nonuniformity of the material and asymmetry in the fabrication. The fiber optic
spectrometer displacement test was also performed. When the MOEMS-RG vibrates in the operating
mode, the silicon sensitive membrane is free to move and deform in the direction of the vibration
mode. The distance ∆L of the optical fiber to the sensitive silicon membrane changes. Light from
the wide spectrum super-luminescent diode (SLD) laser is fed into the displacement meter through
a polarization controller (PC). The output from the wavelength shift was monitored by an optical
fiber spectrometer (OSA, Avaspec-2048 with a resolution of 0.04 nm) to measure the displacement ∆L,
as shown in Figure 18. The resonant wavelength change ∆X for the applied displacement ∆L was
0.08 nm for a 45◦ rotation angle.
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Dynamic response of the MOEMS-RG was also tested in this paper. The results are shown in
Figure 19. From Figure 19, we can know that the working range of the MOEMS-RG covers 0◦ to 180◦.
The response range of ∆L is from−1805.92 µm to 2031.66 µm, which is within the linear range [−2291.75,
2291.75] µm. The resonant wavelength changes from −0.071 nm to 0.080 µm. The MOEMS-RG has a
good linear response in the working range.
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curve of the resonant wavelength change ∆X and input signal ∆L. 
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The effective mass meff and Coriolis coupled massγ of the stiffness-mass decoupled disk resonator’s
n = 2 mode can be calculated using finite element analysis [27]. The angular gain Ag of the n = 2
mode can also be calculated based on Ag = γ/2meff. meff, γ, and Ag are calculated to be 2.71 mg,
2.16 mg, and 0.4, respectively. The proposed resonator is very easy to actuate. The driving amplitude
of 2.5 µm can be actuated by applying only a 1.5V DC voltage and a 1.5V AC voltage. The ARWB of
the resonator is calculated to be 0.09◦/

√
h based on:

ARWB =

√
meffkBT0

2π f 0x2
0γ

2Q

(180
π
×60◦

)
/
√

h (32)

where x0 is the driving amplitude (2.5 µm), kB is the Boltzmann’s constant (0.0259 eV) and T0 is the
absolute temperature of the environment (298.15K). Related parameters are listed in Table 3.

Table 3. Key character parameters of the MOEMS-RG.

Character 1 MOEMS-RG

f0 13,756.005 Hz
Q(2Pa) 71,500
τ(2Pa) 1.705s

meff 0.47mg
γ 0.37 mg

ARWB
2 0.09◦/

√
h

1 All the parameters are based on the n = 2 mode. 2 Calculated based on the assumption that the driving amplitude
is 2.5 µm.

This design concept exploits the size effect. A stiffness-mass decoupled disk resonator for
gyroscopic application is demonstrated. This resonator shows very large meff, low f0, and very high Q.
Therefore, this design can provide a small ARWB(0.09◦/

√
h), which makes it a promising candidate for

a batch-fabricated, low cost, small size inertial-grade MOEMS gyroscope.
Figure 20 shows the performance comparison of various types of resonator gyroscopes.

Where scale factor stability is expressed in parts per million, as a function of the bias stability for
Mechanical Gyroscopes (MG), Ring Laser Gyroscopes (RLG), Interferometric Fiber-Optic Gyroscopes
(IFOG), Quartz, Dynamically Tuned Gyroscopes (DTG), Rate and Integrating Gyroscopes (RIG),
Micro Electromechanical System Resonator Gyroscope (MEMS-RG) and MOEMS-RG. It can be seen
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from Figure 20 that MOEMS-RGs have a superior bias stability and scale factor stability. The MOEMS-RG
is expected to achieve the requirements of high performance and low volume.
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(MG), Ring Laser Gyroscopes (RLG), Interferometric Fiber-Optic Gyroscopes (IFOG), Quartz,
Dynamically Tuned Gyroscopes (DTG), Rate and Integrating Gyroscopes (RIG), Micro Electromechanical
System Resonator Gyroscope (MEMS-RG) and MOEMS-RG.

7. Conclusions

A MOEMS-RG based on a waveguide micro-ring resonator was proposed. This sensor operates by
measuring the shift of the transmission spectrum. Modal analysis was carried out for the disc sensitive
structure of a MOEMS-RG. We deduce the equations between the equivalent stiffness or voltage of
each tuning electrode and the modal parameters. And the concepts of the tuning model are introduced
to better illustrate this theory. A comprehensive investigation of the influences of the structure
parameters on the sensitivity noise of the MOEMS-RG was present in this paper. The mechanical
sensitivity and transducer sensitivity of MOEMS-RG with varying structural parameters (including
ring number, sensitive membrane offset distance and structure height) are calculated based on the
finite-element method. A frequency response test and the fiber optic spectrometer displacement test
were implemented to verify the reliability of the model. Research results indicate that the resonant
frequencies of the operating modes are tested to be 5768.407 Hz and 5771.116Hz and the resonant
wavelength change ∆X was 0.08 nm for 45◦ rotation angle. The resonant wavelength changes from
−0.071 nm to 0.080 µm, which has a good linear response in working range. The MOEMS-RG with
optimized disc sensitive structure can detect the deformation of sensitive membrane effectively, and has
a high sensitivity. This resonator shows very large meff, low f0, and very high Q. Therefore, it can
provide small ARWB(0.09◦/

√
h), which makes it a promising candidate for batch-fabricated, low cost,

small size inertial-grade MOEMS gyroscope.
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