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Abstract

Calcium signals are involved in a large variety of physiological processes. Their versatility relies on the diversity of spatio-
temporal behaviors that the calcium concentration can display. Calcium entry through inositol 1,4,5-trisphosphate (IP3)
receptors (IP3R’s) is a key component that participates in both local signals such as ‘‘puffs’’ and in global waves. IP3R’s are
usually organized in clusters on the membrane of the endoplasmic reticulum and their spatial distribution has important
effects on the resulting signal. Recent high resolution observations [1] of Ca2z puffs offer a window to study intra-cluster
organization. The experiments give the distribution of the number of IP3R’s that open during each puff without much
processing. Here we present a simple model with which we interpret the experimental distribution in terms of two
stochastic processes: IP3 binding and unbinding and Ca2z-mediated inter-channel coupling. Depending on the parameters
of the system, the distribution may be dominated by one or the other process. The transition between both extreme cases
is similar to a percolation process. We show how, from an analysis of the experimental distribution, information can be
obtained on the relative weight of the two processes. The largest distance over which Ca2z-mediated coupling acts and the
density of IP3-bound IP3R’s of the cluster can also be estimated. The approach allows us to infer properties of the
interactions among the channels of the cluster from statistical information on their emergent collective behavior.
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Introduction

The calcium (Ca2z) ion is a universal second messenger that is

involved in a large number of physiological processes [2]. To this

end, cells regulate cytosolic Ca2z concentration ([Ca2z]) very

precisely. At basal conditions free cytosolic [Ca2z] is very low

(*100nM). [Ca2z] is several orders of magnitude higher in the

extracellular medium and in internal reservoirs, such as the

endoplasmic reticulum. Different signals can induce the opening of

specific Ca2z channels located on the plasma membrane or on the

membrane of the internal reservoirs leading to local increments of

the cytosolic [Ca2z] of various durations. This [Ca2z] change

evokes different end responses depending upon the spatio-

temporal distribution of [Ca2z]. Thus, it is of interest to measure

the latter and how different factors shape it.

One of the Ca2z channels involved in intracellular Ca2z signals

is the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) which is

expressed in many cell types and is located at the surface of

intracellular membranes such as the endoplasmic reticulum (ER),

the sarcoplasmic reticulum (SR) and the nucleus. The IP3R is

biphasically regulated by Ca2z, with a bell-shaped open

probability as a function of [Ca2z]. Kinetic models of the IP3R

take this dual effect into account by assuming that the receptor has

at least one activating and one inhibitory site such that Ca2z

binding to the first one induces channel opening (provided that IP3

is also bound to the receptor) and Ca2z binding to the second one

induces channel closing [3–5]. Given that the affinity for Ca2z of

the activating site is larger than that of the inhibitory site, a local

increase of cytosolic Ca2z in the vicinity of an IP3R with IP3

bound induces channel opening first. This leads to a phenomenon

called Ca2z-induced Ca2z-release (CICR) because the Ca2z ions

released by one channel can in turn trigger the opening of other

nearby channels with IP3 bound. Ca2z channels are not uniformly

distributed in the cell. IP3R’s, in particular, are usually organized

in clusters on the membrane of the ER that are separated by a few

microns [6]. These clusters have been estimated to be

400nm|400nm in size in oocytes [7,8]. The simulations of [7]

showed that previous observations could be reproduced assuming

that between 25 and 35 IP3R’s opened simultaneously during

puffs. A similar estimate was obtained in [8] using a mean-field

model that assumed that all channels opened and closed

simultaneously. Simulations that include a stochastic description

of the individual channel openings and closings, however, show

that at most half of the channels with IP3 bound are

simultaneously open during a puff [8]. This implies that even in

clusters with 50 IP3R’s with IP3 bound, the maximum number of

simultaneously open channels is around 20. These results are

consistent with observations of Ca2z signals in the human

neuroblastoma SY5Y cell line in which puffs of up to 20

simultaneously open channels were observed [1]. Measurements

performed using patches of the outer nuclear envelope of the

DT40 cell line give smaller numbers of IP3R’s in each patch [9].

The non-uniform spatial organization of the IP3R’s together with

the channel coupling induced by CICR gives rise to a large variety
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of intracellular Ca2z signals that go from very localized ones to

waves that propagate throughout the cell [10].

The hierarchy of intracellular Ca2z signals that includes Ca2z

‘‘blips’’ (Ca2z release through a single IP3R), ‘‘puffs’’ (Ca2z

release through several IP3R’s in a cluster) and waves that

propagate globally across cells by successive cycles of CICR has

been observed using fluorescence microscopy and Ca2z sensitive

dyes [10–13]. The Xenopus laevis oocyte has been frequently used

for this purpose because of its relatively large size and because the

only Ca2z channels that are present on the surface of the ER are

IP3R’s. Fluorescent images of these signals obtained with confocal

microscopy do not resolve the inner-cluster structure. Therefore,

different modeling strategies have been presented in order to

determine the properties of the dynamics and spatial organization

of IP3R’s within clusters that are compatible with these

experimental observations [7,8,14,15]. In particular, in [8,16] we

made the very simple assumption that the number of IP3R’s that

open during the first puff that occurs at a site is given by the

number of IP3R’s with IP3 bound. The underlying assumption was

that the Ca2z released by the first open channel would induce the

opening of all the other IP3R’s of the cluster with IP3 bound.

Therefore, if all the clusters had approximately the same number

of IP3R’s and all IP3R’s were equally sensitive to IP3, the

distribution of the number of channels that opened during a puff

could be approximated by a binomial or Poisson distribution [8],

provided that the probability that the channels become open were

the same immediately before the occurrence of each puff. This last

condition would not be satisfied in a non-stationary situation, e.g. if

the concentrations of the agonists right before the release event

differed significantly from puff to puff. It would not hold, in

particular, for data containing sequences of puffs that are coupled

through CICR or to puffs in which the inhibitory effect of the

Ca2z released in a previous event was noticeable, as described in

[16]. In oocytes, the latter is only relevant for very long records

containing many puffs at a site, which is usually not the case in

most experiments. Calcium induced calcium release is also affected

by buffers that can trap Ca2z ions as they diffuse. This not only

reduces the [Ca2z] but also alters the rate of Ca2z transport [17].

The distances that separate IP3R’s within a cluster are very small

(10–20nm) [9]. Thus, only large concentrations of very fast buffers

could affect Ca2z-mediated inter-channel coupling in cases with

many active channels [18,19]. The assumption that all the

channels with IP3 bound participate of the first puff of their site

is the simplest way of approaching the complex problem of Ca2z-

mediated inter-channel communication. Yet, it is applicable as

long as the distance between IP3-bound channels is not too large.

In the present paper we drop this assumption and analyze how

Ca2z-mediated inter-channel coupling affects the distribution of

puff sizes. Our approach provides a simple tool to study some of

the effects of buffers on the intra-cluster dynamics.

The quantal properties of Ca2z release during puffs have

recently been revealed in [1] using total internal reflection

fluorescence (TIRF) microscopy in intact mammalian cells of the

human neuroblastoma SY5Y cell line. The proximity of IP3R’s to

the plasma membrane in this cell type allowed the use of TIRF

microscopy in which fluorescence can be elicited in a very small

(attoliter) volume. This, together with the use of a fast CCD

camera, permitted a much better temporal resolution than the one

achieved with confocal microscopy. In this way, abrupt step-wise

transitions between fluorescence levels were observed during the

falling phase of puffs. Furthermore, many puffs could be elicited at

each release site due to the use of a membrane-permeable form of

IP3 [20]. The authors then inferred that the step-wise transitions

between fluorescence levels occurred in multiples of a basic unit

that they identified with the amplitude contribution of each

channel at the site [1]. Using this relationship they could readily

obtain the distribution of the number of channels that open during

a puff. Given that there is a large variability among cluster sites,

they analyzed the subset of events that occur in clusters with a

similar number of IP3R’s. The authors did not find any sign of an

inhibiting effect of the Ca2z released in their records. In spite of

that and even constraining the data set as mentioned before, they

found that a Poisson distribution failed to reproduce the observed

histogram of event sizes particularly in the region of small events

(i.e., puffs with very few open channels). They could approximately

describe the distribution with a model that assumes a weak

cooperativity among channels. Inter-channel cooperativity is

mediated by the Ca2z released through an open IP3R that

subsequently diffuses to a neighboring channel. Thus, the distance

between channels is a key factor that regulates the cooperativity

strength [21]. The approach of [1], however, does not take space

into account.

In the present paper we introduce a simple model that takes into

account both the stochasticity due to IP3 binding and the distance-

dependent Ca2z-mediated cooperativity. It can reproduce the

event size distribution reported in [1] for events involving any

number of open channels. The distribution obtained with our

model approaches a binomial or Poisson distribution as the

cooperativity strength increases so that the opening of one IP3R

induces the opening of all other IP3R’s with IP3 bound. This

transition from Ca2z-dominated to IP3-binding dominated

stochasticity is similar to a percolation transition. It also occurs if

the number of IP3R’s with IP3 bound increases. Therefore, the

transition can be reflected on the distribution of the number of

IP3R’s that open at a given release site.

Percolation in connection with Ca2z signals has been invoked

to explain the transition from abortive to propagating waves in

cells [22–24]. Our paper is the first to identify two limiting regimes

of the intra-cluster dynamics that underlies puffs and to

characterize the change between them as a percolation transition.

Furthermore, we show how information on the transition between

both regimes (the IP3-binding and the Ca2z dominated behaviors)

can be extracted from the distribution of the number of IP3R’s

that open during a puff. Knowledge on this transition can, in turn,

yield information on the largest distance over which Ca2z-

mediated cooperativity acts and on the mean density of IP3-bound

IP3R’s of the clusters. In this way, we can estimate biophysical

parameters that affect the intra-cluster dynamics from statistical

information on the emergent collective behavior of the channels of

the cluster.

The aim of the simple model that we introduce in this paper is

to characterize the basic mechanisms that shape the distribution of

the number of channels that open during puffs. In particular, we

identify the competition between two stochastic processes as the

main determinant of the form of the distribution. Therefore, an

analysis of this form may give information on the relative weight of

the two competing processes. The model does not include a

detailed description of the dynamics that takes place during or

between events. For some time most models of intracellular Ca2z

dynamics were deterministic (see e.g. [25]). The observation of

local signals such as puffs led to the development of several models

that included a stochastic description of Ca2z release

[14,15,26,27] or of the spatial location of the IP3R’s [28]. It is

currently clear that stochastic effects are not only relevant for local

release events but are a fundamental aspect of the Ca2z dynamics

for the full range of observed signals, including waves [29–32].

More information on stochastic models of Ca2z signals can be

found in a recent focus issue on the subject [33]. Simulations of
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these stochastic dynamic models could be used to probe the main

findings of the present paper.

Results

The Model
We introduce here a simple model to describe the distribution of

puff sizes that occur at sites with similar numbers of IP3R’s. The

model is simple in the sense that it does not include a detailed

description of the dynamics of the individual channel openings and

closings or of IP3 or Ca2z binding and unbinding. However, it

does include the stochasticity associated to IP3 binding and

channel coupling via CICR. Given the estimates of [8], the model

assumes that clusters occupy a fixed size region (more specifically,

a circle of radius, R) and that N IP3R’s are randomly distributed

over the cluster region with uniform probability. Each IP3R of the

cluster has a probability p of having IP3 bound. Np is the random

variable that represents the number of available IP3R’s (i.e., of

IP3R’s with IP3 bound) of the cluster before a puff starts. The

distribution of this variable is a binomial of parameters N and p,

that can be approximated by a Poisson distribution of parameter

l~pN for N large and p small enough (for example, with N~20
and p~0:05 the absolute difference between both cumulative

distributions is lower than 0:01 for each Np). The model considers

that if an IP3R with IP3 bound becomes open and Ca2z starts to

flow through its pore all other IP3R’s with IP3 bound that are

within a distance, rinf , of the open IP3R will also become open.

These newly opened IP3R’s in turn trigger the opening of new

IP3R’s with IP3 bound that are within the distance, rinf , from an

open one. This scheme triggers a cascade of openings that stops

when there are no more available IP3R’s within the radius of

influence (i.e., the distance rinf ) of any open IP3R. This cascade

determines the number, n, of channels that open during a puff. We

call PA(Np) the probability that there are Np available IP3R’s

(with IP3 bound) in a cluster and Po(n=Np) the conditional

probability that n channels open during an event given that there

are Np with IP3 bound in the cluster. Given that we are interested

in the distribution of event sizes, we only consider the situations for

which 1ƒnƒNp. Therefore, we renormalize the probabilities so

that
PN

Np~1 PA(Np)~1 and
PNp

n~1 Po(n=Np)~1. In this way,

PA(Np) is a binomial or a Poisson distribution divided by one

minus the probability that there are not IP3R’s with IP3 bound in

the cluster. Using these renormalized versions of PA(Np) and

Po(n=Np), the probability, Pn, of having a puff with n open

channels is given by:

Pn~
XN

Np§n

Po(n=Np)PA(Np), n§1: ð1Þ

PA(Np) is approximated by a Poisson distribution of parameter

l~pN when N??. Pn can be readily compared with

distributions obtained from experimental observations as the one

displayed in Fig. 4D of [1].

Factors That Shape the Distribution of Event Sizes
The two stochastic components of the model are evident in the

expression of Pn. PA(Np) reflects the stochasticity of IP3 binding

and Po(n=Np) the one due to inter-channel coupling via CICR.

The relative weight of both factors on the resulting Pn depends on

the relationship between two typical lengthscales of the problem:

the radius of influence, rinf (the maximum distance between

channels at which CICR still works) and the mean distance

between channels with IP3 bound, D, which is a random variable

that can be computed in terms of R and the number of IP3R’s with

IP3 bound, Np, as:

D(Np)~
R

2

ffiffiffiffiffiffi
p

Np

r
, Npw1: ð2Þ

D can take values between 0 and R
ffiffiffi
p
p

=2. Closely related to D is

the density of available IP3R’s which is given by:

rA:
Np

pR2
: ð3Þ

rA and D are related by: 4D2~1=rA.

The relationship between D and rinf determines the relative

weight of both stochastic components on Pn. In particular, if

rinf =D is very large, the opening of any channel of the cluster will

eventually lead to the opening of all other available channels. If

such a situation holds for most events, then Po(n=Np)&dnNp
and

Pn will mainly be determined by the stochastic component due to

IP3 binding, i.e., Pn&PA(n). If, for most events, rinf =D is very

small, then most of Pn will be concentrated near n~1, regardless

of how many available IP3R’s there are in each realization. We

will refer to both extreme behaviors as IP3 or Ca2z limited.

Depending on the parameters of the model (R, rinf , N, and p), one

or the other situation is favored. However, in many situations one

or the other behavior is favored depending on the value of Np, i.e.,

on the realization. In those cases, the dominant stochastic

component of Pn depends on the value of n.

We first illustrate how the distribution, Pn, varies with the

number of IP3R’s of the cluster, N , while all other parameters are

fixed. As N increases, the most likely values that Np can take on

also increase. This means that it is more probable to have more

available IP3R’s at any given instance. On the other hand, since

the spatial dimensions of the cluster are unchanged (R is fixed) the

mean distance between available IP3R’s, D, is more likely to be

smaller (see Eq. 2). Given that the typical distance for CICR to

occur, rinf , is also fixed, it is more probable that rinf =D be larger.

Therefore, Pn approaches PA as N is increased. This is illustrated

in Fig. 1 where we have plotted the distributions Pn (solid circles)

and PA(Np) (bars) obtained with 1000 realizations of our model

using p~5=18, R~250nm, rinf ~230nm and three values of N. In

A, N~10, the number of available channels is small for most

realizations (its mean value is m~pN~2:8) so that Pn is

dominated by inter-channel Ca2z-coupling and concentrated

around small values of n. In C, N~50, the number of available

channels is large for most realizations (its mean value is

m~pN~13:9) so that D is typically smaller than rinf

(D(13:9)~59:43nm). In this case, Pn is dominated by the IP3-

binding stochasticity and almost indistinguishable from the

distribution of available channels, PA. The example of Fig. 1 B

corresponds to a situation in between these two extreme cases with

N~20. We can observe how, as the number of available channels

is more likely to be larger, Pn approaches PA. We also observe that

for N~10 and N~20, Pn and PA differ mainly in the region of

small values of n. This occurs because it is difficult for one open

channel to induce the opening of another one if the mean inter-

channel distance is large. Thus, if Np is small it is very rare that all

available channels become open. In this way, the relative

frequency of small events becomes larger than the fraction of

instances with a small number of available channels.

A transition from Ca2z-dominated to IP3-binding dominated

stochasticity also occurs as rinf is increased, while all other

parameters are fixed. In this case, PA remains unchanged and so

Percolation of Calcium Signals
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does the mean distance between available IP3R’s, D. By changing

rinf it is possible to go from a situation in which rinf =D is small for

most events and Pn is Ca2z-limited to a situation in which rinf =D
is large and Pn is IP3-binding limited. This is illustrated in Fig. 2

where we have plotted the distribution of event sizes that we

obtain with our model for three different values of rinf . For

rinf ~150nm, the distribution is Ca2z-coupling limited and is

concentrated around n~1. As rinf is increased, the relative

frequency of events with small n decreases. For rinf ~500nm, the

distribution is IP3-binding limited. In this example, PA is well

approximated by a Poisson distribution of parameter l~5 (data

not shown). The situation in between these extreme cases

corresponds to rinf ~250nm and is able to reproduce reasonably

well the experimental distribution of Fig. 4D of [1] (superimposed

with bars in Fig. 2).

In the Ca2z limited behavior the number of open channels, n, is

small for most events, regardless of the value of Np. This implies

nvNp for almost all events. In the IP3-binding limited behavior all

available IP3R’s become open (n~Np in most cases). Therefore, in

order to analyze the transition between the Ca2z-dominated to

IP3-binding dominated stochasticity, we study how often events

occur for which all available IP3R’s become open. This happens

trivially for events with Np~1. Here we are interested in situations

with Npw1. To this end, we compute numerically the probability

that all available IP3R’s, Np, become open, P(n~Np=Np), which

is a function of Np and of only one independent parameter, the

dimensionless radius of influence, rinf =R, (see Methods). We plot

in Fig. 3 A P(n~Np=Np) as a function of rinf =R, for Np~10
(circles), Np~30 (squares) and Np~100 (triangles). As expected,

P(n~Np=Np) is an increasing function of Np for each value of

rinf =R. We also observe that P(n~Np=Np) is an increasing

(sigmoidal-like) function of rinf =R that goes from 0 (i.e. nvNp in

almost all cases, which corresponds to Ca2z-dominated stochas-

ticity) to 1 (i.e. n~Np in almost all cases, which corresponds to IP3-

binding dominated stochasticity) and that such transition occurs

over a smaller interval of rinf =R values the larger Np is.

We can think of the Ca2z-limited and the IP3-binding limited

situations as two phases and the transition between them as a

phase transition in the limit of very large Np. This percolation-like

transition occurs at a well defined value of rinf =R in this limit. For

finite values of Np we introduce two quantities, r
(1)
inf (Np) and

r
(2)
inf (Np), that determine the type of regime that we can expect

(Ca2z-limited if rinf vr
(1)
inf or IP3-binding limited if rinf wr

(2)
inf ) for

each value of Np (see Methods). The arrows in Fig. 3 A indicate

the values of r
(1)
inf =R (*) and r

(2)
inf =R (**) for the Np~10 case. We

show in Fig. 3 B plots of r
(1)
inf =R, r

(2)
inf =R and D=R as functions of

rA (Eq. (3)). It is important to note that these curves are the same,

regardless of the specific parameter values of the model. We

observe that all of them are decreasing functions of rA or,

equivalently, of Np. Np is a stochastic variable that changes from

realization to realization. Therefore, even for a given cluster

(characterized by fixed values of N, p and rinf ) r
(1)
inf and r

(2)
inf may

take on different values depending on the realization. In this way,

depending on rinf and the values that rA may take on, a subset of

the events that occur at a cluster may be IP3-binding limited

(those for which r
(2)
inf vrinf ) while others are not. An analogous

situation may hold regarding the Ca2z-limited behavior.

Furthermore, for some clusters, the Ca2z-limited condition may

hold for some events and the IP3-binding limited for others. If the

parameters N, p, R and rinf are such that most realizations satisfy

r
(2)
inf (rA)wrinf , then most events will be IP3-binding limited. This

happens if rinf or pN are large enough, in which case the

distribution of event sizes, Pn, approaches the distribution of

available channels, PA.

Figure 1. Distribution of puff sizes: transition between Ca2zz-dominated to IP3-binding dominated stochasticity. Solid circles:
distribution of puff sizes, Pn , obtained with our model for p~5=18, R~250nm, rinf ~230nm and three values of N : N~10 (A), N~20 (B) and N~50
(C). Histograms (in grey): corresponding distributions of available channels, PA(Np) for the same parameter values. All distributions were computed
from 1000 realizations for each set of parameters.
doi:10.1371/journal.pone.0008997.g001

Figure 2. Distribution of puff sizes: change of behavior with
the radius of influence and comparison with observations. We
show the probabiliy, Pn , of having a puff with n open channels obtained
with our model for N~18, p~5=18, R~250nm and rinf ~150nm (solid
circles), rinf ~250nm (open circles) and rinf ~500nm (triangles). Each
curve corresponds to 500 realizations of the model. We observe a
transition from a Ca2z-dominated to a IP3-binding dominated
stochasticity distribution as rinf increases. Superimposed with bars:
experimental data taken from Fig. 4D of [1].
doi:10.1371/journal.pone.0008997.g002
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Observing Percolation as a Function of Event Size
The results of Fig. 3 B imply that there are clusters that can

display different types of behaviors depending on the event. For

these clusters, we expect to find, in their distribution, Pn, a trace of

the transition to the limiting behavior that they can display. Here

we are interested in the percolation transition, i.e., the transition to

the IP3-binding dominated stochasticity. As already discussed, the

larger Np the more likely it is that all IP3R’s become open during

the puff (see Fig. 3 A). Thus, the transition to the IP3-binding

dominated stochasticity should occur as Np and, consequently, n
become larger. To study this transition we consider a cluster with

fixed parameters R, rinf , p and N (or l~pN in the Poisson limit)

and define n� as the minimum value of Np such that

rinf §r
(2)
inf (Np). The definition of r

(2)
inf is based on the conditional

probability, P(n~Np=Np), which is independent of N. In cases

with finite N, n� is meaningful provided that it be smaller than N.

Since r
(2)
inf decreases with Np (see Fig. 3 B), taking into account the

definitions of n� and of r
(2)
inf (Np) (see Methods) we conclude that

rinf wr
(2)
inf (Np) and Po(n~Np=Np)§0:9 for all Np§n�. Thus, we

can approximate:

Po(n=Np)&dnNp
, for Np§n�, ð4Þ

with less than 10% error. Inserting this approximation in Eq. (1)

we obtain:

Pn~
Xn�{1

Np~n

Po(n=Np)PA(Np)zPA(n), if nvn� ð5Þ

Pn~PA(n), if n§n�: ð6Þ

We then conclude that the n§n� tail of Pn corresponds to IP3-

binding dominated events. Therefore, it should be possible to

approximate it by a (renormalized) binomial (provided that

n�ƒN) or Poisson distribution in the region of large n. The left

border of this IP3 dominated behavior, n�, gives information on

rinf , i.e. on the maximum distance for which CICR-coupling can

work effectively. Therefore, it should be possible to estimate rinf by

analyzing Pn, i.e., to infer a biophysical parameter that

characterizes the intra-cluster dynamics from statistical informa-

tion on the emergent collective behavior of the channels of the

cluster.

Determining Intra-Cluster Properties from Observations
of the Cluster as a Whole

We now discuss how we can estimate rinf from an experimental

distribution of event sizes, Pn. For the sake of simplicity, we

assume that PA(n) can be approximated by a renormalized

Poisson distribution, Pl(n):ln exp ({l)=((1{ exp ({l))n!), of

unknown parameter l. The goal of this section is to provide a way

to estimate l and n�, the value of n at which Pn and PA(n)&Pl(n)
depart from one another (see Eq. (6)). Once n� is inferred, we

estimate rinf =R as rinf =R&r
(2)
inf (n�)=R using the function displayed

in Fig. 3 B. To this end, we focus on the large n tails of Pn and

Pl by computing the complementary cumulative distribution

functions:

To(‘)~
X
n§‘

Pn, ð7Þ

Tl(‘)~
X
n§‘

Pl(n), ð8Þ

for ‘§2. Given that Pl is proportional to a Poisson distribution,

there is an analytic expression for Tl. Namely, Tl(‘)~
1{C(½‘�,l)=((1{ exp ({l))(½‘�{1)!), where C(x,y) is the incom-

plete C function and ½‘� is the integer part of ‘. If the cluster is such

that n� exists so that rinf is larger than r
(2)
inf (Np) for Np§n� and it is

smaller otherwise, then, according to the calculation of the

previous section, Pn&PA(n)&Pl(n) for n§n�. Therefore, the

complementary cumulative distribution functions of Eqs. (7)–(8)

also satisfy To(‘)&Tl(‘) for ‘§n�.
We now describe how to estimate n� and l. The aim is to obtain

a (renormalized) Poisson distribution, Pl that can approximate Pn

in the large n region. If we find it, we assume that it is a good

approximation of the distribution of available channels, PA. As

illustrated in Fig. 1, the mean value, SnTobs that is obtained using

the experimental distribution, Pn, is smaller than the one that

would be obtained if PA(n) was used instead. On the other hand, if

PA is a good approximation of Pn in the large n region, then the

mean value obtained with PA should be smaller than the size of

the largest observed event, nmax. This implies that

SnTobsƒ
l

1{ exp {l
ƒnmax, ð9Þ

Figure 3. Percolation transition: when all available channels open during a puff. A: Probability that all available IP3R’s become open,

P(n~Np=Np), as a function of the dimensionless radius of influence, rinf =R, for Np~10 (circles), Np~30 (squares) and Np~100 (triangles). B: r
(1)
inf =R

(circles), r
(2)
inf =R (squares) and D=R (triangles) as functions of rA(Np)~Np=pR2 . The values of r

(1)
inf =R and r

(2)
inf =R for the case with Np~10 are indicated

in A with one and two asterisks, respectively.
doi:10.1371/journal.pone.0008997.g003
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if PA can be approximated by a renormalized Poisson distribution

of parameter l. Therefore, we look for the best Pl within a finite

set of renormalized Poisson distributions of parameters li

satisfying (9). In order to estimate rinf from the observations the

relevant quantity that we need to obtain is n�, which is an integer.

For this purpose, it is possible to use a rather coarse grid of l
values within the interval defined in (9). In particular, we have

mainly used integer values of l obtaining good results. Once the

values li are chosen, we compute the complementary cumulative

distribution functions, Tli
(k) given by (8) for each li and

1ƒkƒnmax. We then calculate the error of approximating

To(k) by Tli
(k) over the interval ‘ƒkƒnmax as a function of ‘:

error(To,Tli
):

1

nmax{‘z1

Xnmax

k§‘

jTo(k){Tli
(k)j2: ð10Þ

We set a threshold for the error, �e, and choose n�i for each li as

the smallest value of ‘ for which error(To,Tli
)ƒe. Finally, we

choose the best li as the one with the smallest n�.
The procedure is illustrated in Fig. 4 where the ‘‘experimental’’

distribution comes from a simulation of our model with

R~250nm, p~5=18, rinf ~230nm and N~18. In this case,

nmax~10. We show in Fig. 4 A the complementary cumulative

distribution functions and in Fig. 4 B the errors for the values of l
that we have considered: l1~3 (inverted triangles), l2~4
(triangles), l3~5 (squares) and l4~6 (rhombes). Larger values

of l give very bad approximations and are not shown. We show in

Fig. 4 C the values, n�, obtained for each l using the threshold,

e~0:005 (shown with a horizontal line in Fig. 4 B). In this

example, the best value is l~4 for which n�~8. We estimate the

density of IP3-bound IP3R’s at which the departure between

the experimental and the Poisson distribution occurs as

r�A~n�=(pR2)&41mm{2, where we have used R~250nm.

Using the r
(2)
inf =R vs rA relationship displayed in Fig. 3 B, we

estimate r
(2)
inf (r�A)=R&0:9+0:08 from which we get r

(2)
inf (r�A)&

220nm+20nm. This provides an estimate of the radius of

influence which compares very well with the value that was used

to generate the data, rinf ~230nm. Using the same procedure, we

analyzed the data presented in Fig. 4D of [1] and obtained

rinf ~220nm+20nm assuming R~250nm.

Discussion

Intracellular Ca2z signals are built from localized release events

in which Ca2z enters the cytosol through one or several channels.

Ca2z release from the endoplasmic reticulum through IP3R’s is a

key component of the Ca2z signaling toolkit in many cell types.

IP3R’s are Ca2z channels that need to bind IP3 and Ca2z to

become open and are usually organized in clusters on the

membrane of the endoplasmic reticulum. The intra-cluster

organization and the interactions of the channels within it affect

the dynamics and extent of the signals. Therefore, their study is a

matter of active research.

Recent experiments [1] that use super-resolution optical

techniques are providing detailed data on elementary IP3R-

mediated Ca2z release events in mammalian cells. In the

experiments, the number of IP3R- Ca2z-channels that open

during each event can be inferred from the observed puff

amplitudes without much processing. The observations of [1]

showed that the variability among clusters affected the shape of the

event size distribution, Pn. In order to get rid of this variability, the

distribution coming from sites with similar properties was

computed in [1]. The distribution, Pn, obtained in this way was

not Poisson, as we might have expected if the number of channels

that opened during each event was proportional to the number of

IP3R’s with IP3 bound in the cluster [8]. The authors of [1] could

reproduce Pn approximately (for events larger than a certain size)

assuming a weak cooperativity among channels. Namely, they

assumed that the probability that a channel became open scaled as

some power of the number of open channels and obtained that the

exponent was 1/3 from a fit to the data. The rationale for the

cooperativity assumption relied on the fact that the IP3R’s of a

cluster may be coupled via CICR induced by the Ca2z ions that

travel from an open IP3R to a neighboring one. The model of [1],

however, did not take space into account and did not provide a

mechanistic explanation for the obtained scaling.

In this paper we have presented a simple model that includes a

description of the intra-cluster spatial organization with which we

can reproduce the observed distribution over all event sizes. In the

model the distribution, Pn, is the result of the competition of two

stochastic processes: IP3 binding and distance-dependent CICR.

The model assumes a stationarity condition, namely, that the

agonists concentration at the release site is the same immediately

before the occurrence of each puff. This condition holds as long as

Figure 4. Change of behavior with event size. A: To(‘) for data obtained with our model using R~250nm, p~5=18, rinf ~230nm and N~18
(solid circles). Complementary cumulative Poisson distributions, Tli

(‘), for l1~3 (inverted triangles), l2~4 (triangles), l3~5 (squares), l4~6
(rhombes). B: Error of approximating To(k) by the various Tli

(k) for k§‘ (see text for definition) as a function of ‘. Symbols are the same as in A. From
this figure we choose l~4 as the one that provides the best fit to the tail of To . The error in the l~6 case is larger than 0.02 in most cases and falls
outside the region displayed in the figure. C: n�(l) for the four values of l that we tested. We see that n�(l~4)~8.
doi:10.1371/journal.pone.0008997.g004
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puffs are independent of one another. This is consistent with the

observations reported in [1] where cluster coupling was prevented

using the slow Ca2z buffer EGTA and where IP3R- Ca2z-

inhibition does not play a significant role. In any case, our model is

adequate to describe the distribution of first event sizes that occur

at each cluster before Ca2z can exert any inhibiting effect.

There are two limiting cases in which one of the two stochastic

processes considered in the model is the main determinant of the

distribution shape. If the mean distance between IP3R’s with IP3

bound in the cluster is much smaller than the typical distance of

inter-channel coupling due to CICR for most events, the

distribution is IP3-binding limited and it can be approximated

by a binomial or Poisson distribution. In the opposite case, CICR

dominates and the distribution is peaked around n&1. The Ca2z-

limited and the IP3-binding limited situations can be thought of as

two phases and the transition between them as a percolation-like

transition in the limit in which the number of IP3R’s with IP3

bound, Np, is very large. This interpretation of the factors that

shape the observed distribution can be tested with simulations of

some of the stochastic models of intracellular Ca2z signals

reported in the literature (see e.g. [33] and references therein).

They can also be tested experimentally. One possibility is to

change the most likely values of Np by changing the amount of IP3

that is photo-released in the cell. An alternative option is to

analyze Pn for events coming from clusters that give rise, on

average, to larger events. According to the model, the distribution

should approach a binomial or Poisson distribution as the mean

value of Np becomes larger while other parameters remain the

same. Another way to affect the balance between both stochastic

components is to disrupt Ca2z-mediated inter-channel coupling

by means of a fast buffer such as BAPTA.

Given that Np is a stochastic variable that varies from event to

event, the transition between the Ca2z-dominated and IP3-

binding dominated stochasticity described by the model may be

reflected in the way that Pn depends on the event size, n. In fact,

we have used this property to show how a fingerprint of this

transition may be encountered in Pn and how information on the

inter-channel coupling distance may be extracted from it. This

means that a parameter that characterizes the communication

between pairs of channels can be estimated from statistical

information on the emergent collective behavior of the channels of

the cluster. This information could be used to analyze the effect of

buffers on the intra-cluster dynamics, a matter that is of active

current research [19,34]. Our model provides a simple tool with

which this effect can be analyzed in experiments.

Methods

Each term of the sum that defines Eq. (1) is the product of two

functions. We have an analytic expression for one of them, PA(Np),
but not for Po(n=Np). Thus, we compute Pn numerically

performing realizations of the model with fixed values of N , p, R
and rinf . The location of the channels within the cluster and which

of them have IP3 bound vary among realizations and are chosen

randomly (see Results). We only keep realizations with Np§1.

Once we have the spatial distribution of available IP3R’s, we start

each event by picking at random one of the IP3R’s with IP3 bound

and assume it is open. If Np~1, we assume it gives rise to an event

with n~1. By changing the values of N, p, R and rinf we analyze

how Pn varies with them. In this way we can determine the values of

the parameters that best reproduce the experimental observations.

rinf could be measured in units of the cluster spatial extent, R, in

which case we would get rid of one parameter of the problem, R.

We keep it to make a connection with the experimental data.

However, it is important to note that the number of independent

parameters of the model is 3, for finite N and 2 in the limit in which

PA can be approximated by a Poisson distribution.

For each value, Np, of available IP3R’s, we estimate the fraction

of events such that the Np IP3R’s become open. This fraction is one

for Np~1. For Npw1, we compute the probability that all available

IP3R’s become open, P(n~Np=Np), numerically, performing 500

stochastic realizations of our model for each of which we fix the

value of Np a priori. Namely, we fix at the beginning the values of R,

rinf and Np and then pick Np locations at random over the circle

where we assume there are available IP3R’s. From there on, the

model goes on as before, generating the cascade of openings that

determines n. The distribution of events with n open channels for

each value of Np gives P(n~Np=Np). This function of Np depends

on only one independent parameter, rinf =R. As expected, it is an

increasing function of rinf =R (see Fig. 3 A).

We define two quantities, r
(2)
inf and r

(1)
inf , which are values of rinf for

which P(n~Np=Np) is either close to 1 or to 0, respectively. We

compute them as follows. We first calculate a lower bound for r
(2)
inf as

the minimum value of rinf such that, if rinf is larger than this lower

bound, then Po(n~Np=Np)w0:8. We calculate an upper bound for

r
(2)
inf as the minimum value of rinf for which P(n~Np=Np)~1.

Then, we compute r
(2)
inf as the mean between these two bounds. We

assume that the distance between the bounds is the error with which

r
(2)
inf can be determined. We proceed analogously in the case of r

(1)
inf ,

but in this case the lower bound is the largest value of rinf for which

P(n~Np=Np)~0 and the upper bound is the maximum value of

rinf for which P(n~Np=Np)ƒ0:2. We compute r
(1)
inf and r

(2)
inf in this

way using the numerical estimations of P(n~Np=Np) for various

values of rinf .
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