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Abstract
Mycobacterium avium complex (MAC) contains clinically important nontuberculous mycobacteria worldwide and is the second largest medical

complex in the Mycobacterium genus after the Mycobacterium tuberculosis complex. MAC comprises several species that are closely

phylogenetically related but diverse regarding their host preference, course of disease, virulence and immune response. In this study we

provided immunologic and virulence-related insights into the M. colombiense genome as a model of an opportunistic pathogen in the

MAC. By using bioinformatic tools we found that M. colombiense has deletions in the genes involved in p-HBA/PDIM/PGL, PLC, SL-1 and

HspX production, and loss of the ESX-1 locus. This information not only sheds light on our understanding the virulence mechanisms

used by opportunistic MAC pathogens but also has great potential for the designing of species-specific diagnostic tools.

© 2016 The Author(s). Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases.
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Introduction
Mycobacterium avium complex (MAC) contains clinically

important nontuberculous mycobacteria and is the second
largest medical complex in the Mycobacterium genus after
the Mycobacterium tuberculosis (Mtb) complex. MAC affects

patients with chronic obstructive pulmonary disease and
cystic fibrosis, as well as immunosuppressed individuals

with HIV/AIDS [1]. MAC is currently composed of 12
species which are very close phylogenetically related, but

they are diverse regarding to their host preference, course
of disease, virulence and immune response, such as

M. avium, M. intracellulare and M. colombiense. The reasons
of this variability among very closely related species are not
yet clear.
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M. colombiense (Mcol) infections were initially described in
HIV patients in Bogotá, Colombia [2]. In this initial study, Mcol

was confirmed to be the causative agent of pulmonary disease
and bacteraemia in this group of people who died of HIV/Mcol
coinfection. After this study Mcol has been isolated in other

scenarios such as lymphadenopathy, subcutaneous infections
and disseminated disease in HIV-negative patients in countries

like Spain, France, China, Canada and Russia. In this study we
attempted to find the Mcol virulence factors from the genome

sequence to decipher its possible skills as a MAC opportunistic
pathogen.
Methods
The Mcol CECT 3035 genome was sequenced using PacBio
technology (Institute for Genomes Sciences, University of

Maryland, College Park, MD, USA), then automatically anno-
tated using the GenDB 2.4 platform [3]. To study the Mcol

pathogenome, we used different bioinformatics tools to search
for prophages sequences (Phast tool [4]), genomic islands
(IslandViewer [5] and GIPSy/PIPS [6] tools), protein families
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FIG. 1. (A) Visualization of genomic islands in Mycobacterium colombiense CECT 3035 genome. Image created with IslandViewer. Islands are labelled

with colour depending on island prediction method: red, integrated; green, IslandPick; orange, SIGI-HMM; blue, IslandPath-DIMOB. Black line plot

represents G+C content (%) of genomic DNA. (B) Visualization of islands in M. colombiense CECT 3035 genome compared to other mycobacterial

species. Image created with GIPSy/PIPS tool with M. indicus pranii genome as closest related nonpathogenic species.
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(PathogenFinder [7]) and mycobacterial virulence factors

(VFDataBase (VFDB) [8]). The islands detected with Island-
Viewer were classified using the National Center for Biotech-

nology Information functional annotation and the Conserved
Domain Database, and for the GIPSy/PIPS analysis we used the

M. indicus pranii genome as the closest related nonpathogenic
species. To search for the Mcol singletons, we created a
mycobacterial database using the genomes of M. avium subsp.

hominissuis 104 (RefSeq NC_008595), M. avium subsp. para-
tuberculosis K-10 (RefSeq NC_002944), M. avium subsp. para-

tuberculosis MAP4 (RefSeq NC_021200), M. intracellulare ATCC
13950 (RefSeq NC_016946), M. intracellulare MOTT-36Y

(RefSeq NC_017904), M. intracellulare MOTT-02 (RefSeq
NC_016947), M. intracellulare MOTT-64 (RefSeq NC_016948),

M. indicus pranii MTCC 9506 (RefSeq NC_018612),
M. yongonense 051390 (RefSeq NC_021715), Mtb H37Rv

(RefSeq NC_000962) and Mcol CECT 3035 with the EDGAR
tool [9]. Then we detected the secretory singletons using
© 2016 The Author(s). Published by Elsevier Ltd on behalf
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PRED-TAT [10] and PRED-LIPO [11] tools. For the detection

of transmembrane singletons we used TMHMM server 2.0 [12],
and for the detection of the cell wall singletons we used CW-

PRED [13].
Results
Prophages and genomic island detection
Using the tools Phast, IslandViewer and GIPSy/PIPS, we did

not detect prophage sequences in the Mcol genome. In
addition, we did not find structures compatible with CRISPR/

Cas systems by applying the CRISPR Finder tool [14]. How-
ever, we detected a total of 45 genomic islands (nine of these

are classified as pathogenicity island), which contain a total of
320 predicted genes. Interestingly, 92.8% of these genes code

for hypothetical proteins with unknown functions (Fig. 1). In
addition, the Mcol pathogenicity islands contain genes that
of European Society of Clinical Microbiology and Infectious Diseases, NMNI, 14, 98–105
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FIG. 2. Mycobacterium colombiense singletons classified by Clusters of

Orthologous Groups (COGs) database categories. Four main functional

COGs category distributions are shown for singletons found in this

bacterium.
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code for the DrrA-C transporter, which is involved in the

transportation of phthiocerol dimycocerosates (PDIMs) and
also contains the rmt2 and mmpl4 genes, which are involved in

the synthesis and transmembrane transportation of glyco-
peptidolipids (GPLs).

Singleton detection with EDGAR
Using the EDGAR tool for comparative genomics analysis of a
selected set of mycobacterial genomes we detected a total of

452 singletons, which represent 8.4% of the Mcol genome.
According to a classification of these singletons into functional

Clusters of Orthologous Groups (COGs) categories 87 genes
are involved in cellular processing and signaling, 75 are involved

in information storage and processes, 163 are involved in
metabolism of Mcol and 122 are grouped as poorly charac-
terized (Fig. 2). The majority of singletons (85%) contain typical

Sec signal peptides for recognition of the preprotein by the
general secretory pathway, and 22% contain varying numbers of

transmembrane helical segments for a putative integration into
the cytoplasmic membrane. We also detected one singleton

with an LPXTG motif that is an indication of cell wall localiza-
tion of the respective protein. Among these Mcol singletons we

found a gene coding for a cysteine desulfurase protein. It should
be noted that a recent study shows that the cysteine desul-
furase–encoding gene sufS2 is inducible in response to oxida-

tive stress and is important for the survival of Agrobacterium
tumefaciens [15]. We also found a gene coding for the urease

accessory protein UreD2. The presence of urease in patho-
genic bacteria strongly correlates with pathogenesis in some

human diseases and is an important virulence factor. Addi-
tionally, Cryptococcus gattii knockout mutants for genes encoding

the urease accessory proteins Ure4 and Ure6 showed reduced
multiplication within macrophages [16].

VFDB analysis
The VFDB analysis allowed us to detect a total of 204 Mcol
genes that are homologous with previously described myco-

bacterial virulence factors. As shown in Fig. 3, the largest
groups of genes comprise deduced virulence factors assigned to

the class’s cell surface components and secretion system.

Analysis of protein families
Analysis of protein families with the PathogenFinder 1.1 tool
allowed us to predict 32 virulence factors in the Mcol genome
sequence. Of these genes 65.6% (n = 21) encoded hypothetical

proteins and 5.5% (n = 2) encoded potentially secreted proteins
with characteristic Sec signal peptides. Among these ten were

also found in the VFDB, and 23 are new potential virulence
factors.
© 2016 The Author(s). Published by Elsevier Ltd on behalf of European Society of Clinical Micr
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Among these new potential Mcol virulence factors we
found several genes homologous to the M. avium subsp. para-

tuberculosis str. k10 genome: MAP_0847, MAP_1945c,
MAP_0092, MAP_3697c, MAP_1909, MAP_3223c, MAP_0908c,
MAP_2811c and MAP_2636. According to Basic Local Align-

ment Search Tool (BLAST) searches, these genes (except
MAP_1909) are likely not to be present in the Mtb H37Rv

genome. Interestingly, the MAP_1909 gene encodes the LppM
lipoprotein, which in Mtb is an important virulence factor

involved in the manipulation of the phagosomal maturation in
macrophages [17]. We also found several genes homologous to

the M. avium subsp. hominissuis 104 genome: MAV_4325 (codes
for ABC transporter, ATP-binding protein), MAV_1611 (codes
for transcriptional regulator, TetR family protein), MAV_4258

(codes for the RsbW protein) and MAV_2193 (codes for acyl
carrier protein), MAV_2835 (codes for enoyl-CoA hydratase/

isomerase family protein), as well as the MAV_3699,
MAV_0045, MAV_1178, MAV_1177, MAV_4234, MAV_0139,

and MAV_3009 genes (code for hypothetical proteins). Ac-
cording to BLAST search, all these genes (except MAV_4258)

are likely to not be present in the Mtb H37Rv genome. In
addition, the RsbW protein in Mtb is involved in the response

to heat, cold, oxidative, starvation and anaerobic stresses [18].
Finally, we found a homologue to the MMAR_4989 gene from
the M. marinum M genome. This gene encodes the YrbE4A

conserved membrane protein, which has an unknown role in
virulence but is predicted to be involved in lipid catabolism in

Mtb. Experimental studies are necessary to decipher the role of
these new potential virulence factors in opportunistic patho-

gens such as Mcol.
obiology and Infectious Diseases, NMNI, 14, 98–105
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Discussion
One of the hostile environments to which mycobacteria have

to adapt during infection in the host is the macrophage.
Therefore, among all of the probable Mcol virulence factors
these have special importance because they are involved or are

possibly implicated in macrophage modulation mechanisms
(Fig. 4).
M. colombiense virulence factors that are also present in
Mtb
Mcol has genes that encode the trehalose-recycling ABC
transporter LpqY-SugABC. Trehalose is an important com-

pound for several mycobacterial cell wall glycolipids, including
sulfolipid-1 (SL-1), trehalose monomycolate and trehalose

dimycolate (TDM) [19]. On the other hand, Mcol has the gene
that encodes the WhiB3 protein, which is an important viru-

lence factor that is involved in several processes, including up-
regulation of the synthesis of SL-1 and TDM, probably through

the sensing of the reactive oxygen species (ROS) and nitric
oxide [20].

Mcol has genes that encode the antigen 85 complex. This

complex constitutes a group of extracellular mycolyl trans-
ferases (Ag85A, Ag85B and Ag85C), which play important roles

in the biosynthesis of major components of the mycobacterial
cell envelope, such as TDM and mycolylarabinogalactan [21].

Mcol has the genes that code for the Sec export systems,
secA1 and secA2. The housekeeping SecA1 protein of Mtb is

involved in the secretion of the virulence factors LprG and
FIG. 3. Mycobacterium colombiense virulence factors detected by VFDataBas

factors found in this bacterium.

© 2016 The Author(s). Published by Elsevier Ltd on behalf
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LpqH. These lipoproteins are TLR2 ligands involved in the

manipulation of macrophage responses. In addition, the SecA2
export system secretes important virulence factors such as

superoxide dismutase (SodA) involved in the survival inside
macrophages [22] and catalase–peroxidase protein (KatG)

involved in isoniazid resistance [23].
Mcol has the gene encode protein kinase G (PknG), which

prevents phagosome– lysosome fusion by blocking lysosomal

delivery [24]. This process blocks the intracellular degradation
of mycobacteria in lysosomes and mediates intracellular survival

of mycobacteria within macrophages [24].
Mcol has genes that code for proteins that in Mtb are

associated with protection against ROS; these are Ndk, NuoG,
SOD and KatG. In Mtb Ndk damages the phagocyte nicotin-

amide adenine dinucleotide phosphate (NADPH) oxidase
complex in macrophages [25]. NADPH oxidase is responsible
for the production of ROS, which are radical molecules that

are crucial for the control of mycobacterial infections. In
addition Ndk also prevents phagosome– lysosome fusion

through a mechanism that involves the inactivation of macro-
phages Rab proteins [26]. It has been suggested that the Ndk

protein could be exported through ESX-1, which is lacking in
MAC members, including Mcol. Therefore, experimental

research is necessary to investigate Ndk secretion in Mcol. In
Mtb NuoG is an important virulence factor that can neutralize

ROS produced by NADPH oxidase and with this inhibits
macrophage apoptosis [27]. In addition, SodA and KatG pro-
teins are secreted by the SecA2 export system [28]; they

protect against ROS by forming H2O2, which is further
detoxified by KatG [20].
e (VFDB). Shown are main VFDB category distributions for virulence
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FIG. 4. Mycobacterium colombiense virulence factors involved in survival mechanisms inside macrophages. Black notations indicate M. colombiense

virulence factors that are also present in Mycobacterium tuberculosis (Mtb); red, Mtb virulence factors not present in M. colombiense; blue, virulence

factors only present in M. colombiense; purple, effects in macrophages. Green indicates cell wall; brown, cytoplasmic membrane; white, cytoplasm.
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Two-component systems (TCSs) are major regulatory
systems for bacterial adaptation to environmental changes.
The PrrA/B, MprA/B, PhoP/R and DosR/S TCSs are the most

studied and are involved in important virulence mechanisms in
Mtb. All of them are present in the Mcol genome. In Mtb the

PrrA/B system has been implicated in macrophage phagocy-
tosis and is transiently required for the early stages of

macrophage infection [29]. The MprA/B is a stress-responsive
TCS that directly regulates expression of several sigma fac-

tors, and it also regulates the espA operon in Mtb and mod-
ulates ESX-1 function [30]. In Mtb PhoP/R controls 30 genes

directly, whereas regulatory cascades are responsible for
signal amplification and downstream effects through proteins
like EspR, which controls Esx1 function [31]. PhoP also con-

trols the noncoding RNA (ncRNA) Mcr7, which controls the
secretion of the twin arginine translocation (Tat) substrates,

such as antigen Ag85 complex proteins (Ag85A and Ag85c)
[31]. In Mtb the DosR/S TCS regulates the expression of

around 48 genes under hypoxic and nitric oxide stress and is
© 2016 The Author(s). Published by Elsevier Ltd on behalf of European Society of Clinical Micr
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/lice
required for full virulence and pathogenicity in different animal
models [32].

Mcol has genes that code for proteins that are involved in the

transportation and regulation of iron, such as irtA, irtB, viuB,
ESX-3 and IdeR. To obtain iron Mtb synthesizes a cell-

associated siderophore named mycobactin and a secreted
one, carboxymycobactin, which sequesters iron and delivers it

to the bacterium via specialized Fe3+ siderophore transporters
[33]. In Mtb Fe-carboxymycobactin can be secreted through

IrtA transporters and is translocated by the IrtB-ViuB ABC
transporter [34]. The secretion and translocation of myco-

bactin is not entirely understood, but inM. smegmatis the ESX-3
secretion system plays an important role for the mycobactin-
mediated iron uptake [35].

Mtb virulence factors that are probably absent in
M. colombiense

Sulfolipid-1 (SL-1) is a cell wall glycolipid and important viru-
lence factor that restricts Mtb growth in macrophages [36]. SL-
obiology and Infectious Diseases, NMNI, 14, 98–105
nses/by-nc-nd/4.0/).
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1 has been also proposed to alter superoxide (O2−) production

[37] and blocks phagosome– lysosome fusion [38]. Several
enzymatic steps are necessary for the SL-1 biosynthesis;

MmpL8 and Sap proteins then transport SL1 across the mem-
brane [39]. Mcol possesses the genes involved in the SL-1

biosynthesis and transport, except the pks2. It has been
confirmed that Mtb pks2 mutant does not produce sulfolipids
[40]. Therefore, it is highly probable that Mcol does not pro-

duce SL-1. Additionally, the production of this glycolipid is
suggested to be restricted to pathogenic mycobacteria, espe-

cially to members of the Mtb complex.
Mtb produces phospholipase C (PLC), which is an important

virulence factor that induces the inhibition of cyclooxygenase-2
expression (COX-2), and this blocks prostaglandin E2 (PGE2)

synthesis by macrophages. (PGE2 is an essential factor involved
in the activation of the membrane repair mechanism, and
therefore its inhibition is associated with necrosis of macro-

phages [41].) Analysis of the Mcol genome suggests that the
genes involved in the phospholipase C production (plcA, plcB,

plcC and plcD) are missing. Therefore, it is a feasible that this
species does not utilize this virulence mechanism during

macrophage infection.
PDIMs and phenolglycolipids (PGLs) are two groups of

complex cell wall–associated lipids that are important myco-
bacterial virulence factors. Members of Mtb complex also

produce p-hydroxybenzoic acid derivatives (p-HBADs), which
are precursors of PGL biosynthesis. According to VFDB,
several genes participating in PDIM/PGL/p-HBAD synthesis and

transportation are lacking in Mcol.
The ESX secretion system is a specialized secretion system

for the transport of extracellular proteins across the myco-
bacterial cell wall [42]. In mycobacteria there are five ESX

systems (ESX-1, ESX-2, ESX-3, ESX-4, ESX-5), and all of them
are present in the Mtb genome. The ESX-1 secretion system

exports important Mtb virulence factors such as ESAT-6 and
CFP-10, and it also induces apoptosis in macrophages and
generates a semiporous phagosome [43,44]. Mcol possesses all

of the ESX systems except ESX-1, and Mcol also lacks the
ESAT-6 and CFP-10 genes.

Finally, Mcol lacks the hspX gene. The heat shock protein
HspX is under the control of the DosR/S TCS during hypoxic

conditions, and is suggested to be involved in the long-term
survival of Mtb inside macrophages [45].

Probable M. colombiense virulence factors that are not
present in Mtb
The GPLs are a class of glycolipids produced by several non-

tuberculous mycobacteria [46]. GPLs are exported to the cell
wall by Gap protein. However, the MmpS and MmpL proteins

assemble into a complex that contribute to GPLs biosynthesis
© 2016 The Author(s). Published by Elsevier Ltd on behalf
This is an open access artic
and export [47]. GPLs are involved in the inhibition of the

phagosome– lysosome fusion [48]. In M. avium GPLs from
promote macrophage activation in a TLR2- and MyD88-

dependent manner [49]. Mcol possesses a GPL locus; it is
highly possible that this species is able to produce GPL. How-

ever, experimental studies are necessary to establish the Mcol
GPL serovar structure.

In conclusion, Mcol possesses many of the Mtb virulence

mechanisms that have been involved in apoptosis, necrosis
and inhibition of phagosome– lysosome fusion. However,

Mcol has deletions in the genes involved in the p-HBA/
PDIM/PGL, PLC, SL-1 and HspX production, and loss of the

ESX-1. The inability to produce these compounds may be
related to its lower virulence in mice infected with Mcol

compared to mice infected with Mtb [50]. Thus, the
opportunistic nature of Mcol could be associated with its
inability to produce significant virulence mechanisms used by

Mtb during its adaptation to the host. In addition, the sin-
gletons and the virulence-associated genes conserved in the

Mcol genome could be used to design molecular diagnostic
tools.
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