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A B S T R A C T   

Purpose: To create and investigate a novel, clinical decision-support system using machine learning (ML). 
Methods and Materials: The ML model was developed based on 79 radiotherapy plans of brain tumor patients that were prescribed a total dose of 60 Gy delivered with 
volumetric-modulated arc therapy (VMAT). Structures considered for analysis included planning target volume (PTV), brainstem, cochleae, and optic chiasm. The 
model aimed to classify the target variable that included class-0 corresponding to plans for which the PTV treatment planning objective was met and class-1 that was 
associated with plans for which the PTV objective was not met due to the priority trade-off to meet one or more organs-at-risk constraints. Several models were 
evaluated using double-nested cross-validation and an area-under-the-curve (AUC) metric, with the highest performing one selected for further investigation. The 
model predictions were explained with Shapely additive explanation (SHAP) interaction values. 
Results: The highest-performing model was Logistic Regression achieving an accuracy of 93.8 ± 4.1% and AUC of 0.98 ± 0.02 on the testing data. The SHAP analysis 
indicated that the ΔD99% metric for PTV had the greatest influence on the model predictions. The least important feature was ΔDMAX for the left and right cochleae. 
Conclusions: The trained model achieved satisfactory accuracy and can be used by medical physicists in a data-driven quality assurance program as well as by ra-
diation oncologists to support their decision-making process in terms of treatment plan approval and potential plan modifications. Model explanation analysis 
showed that the model relies on clinically valid logic when making predictions.   

Introduction 

In modern radiation therapy, the main steps in the treatment plan-
ning process are well established. After the treatment plan is created it is 
then routinely reviewed by a clinician to ensure that the treatment ob-
jectives are met and dosimetric trade-offs, when required, are at 
acceptable levels[1–3]. For those plans that may require a dosimetric 
trade-off, this sometimes complex decision-making process could benefit 
from the knowledge of similar plans that were developed, approved, and 
successfully delivered in the past to patients[4–8]. However, in practice, 
the extraction, analysis, and interpretation of meaningful information 
from relevant historical data are very time-consuming and not achiev-
able by radiation oncology professionals in the busy clinical environ-
ment. Machine learning (ML) helps to overcome those difficulties and 

can be used to assist medical physicists and physicians to make better 
informed, data-driven decisions in the radiation therapy process. 

During recent years there has been growing interest in the applica-
tion of ML models to develop quality assurance (QA) tools and support 
the treatment planning process. For example, Hirashima et al. and Wall 
et al. used XGBoost and Extra-Trees methods respectively to predict the 
gamma passing rate for patient specific QA results for volumetric 
modulated radiation therapy (VMAT) plans[9,10]. Osman et al. utilized 
an artificial neural network for the prediction of the MLC leaf position 
deviations during dynamic IMRT treatment delivery using log file data 
[11]. ML has also been explored in many other QA applications in 
medical physics[12–16]. 

Machine learning-based enhancement of the treatment planning 
process has also been of strong recent interest. Knowledge-based 
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planning (KBP) is a commonly studied application that leverages rele-
vant features of previous, successfully delivered treatment plans in order 
to predict specific treatment planning parameters or the possible 
attainable dose-volume histograms (DVHs) [17,18]. KBP has been suc-
cessfully used across various clinical sites such as head and neck[19,20], 
prostate[21,22], lung[23–25], rectum[26,27], breast[28,29], pelvis 
[30], and brain[31]. 

The purpose of this study was to apply ML techniques to create a 
novel decision support application which has not been investigated 
before. Specifically, a machine learning model was trained to classify 
previously delivered VMAT plans of brain tumor patients into two cat-
egories. The first category contained plans that met PTV treatment 
planning objectives. The second category included plans for which PTV 
objectives were not met due to the priority given to one or more OARs (i. 
e. a trade-off was required); those plans, however, were still clinically 
acceptable and delivered. Once trained, the ML algorithm would be able 
to indicate which new plans required a compromise (or not). This is a 
novel ML application and will have a very practical impact on the 
decision-making process in a clinical environment (more details about 
clinical use and future utility of the system are included in the Discussion 
section). Furthermore, our study applied double nested cross-validation 
for model selection and tuning as well as comprehensive global and local 
model explainability analysis. In the literature, numerous studies use k- 
fold cross-validation[32], but few apply nested cross-validation[33–35], 
and none that are similar to our application. Model explainability is 
rarely performed in applications of ML in radiation therapy but has been 

identified as a strong need in the research community in order to 
properly interpret model results[36]. The explainability analysis 
included in this work may be particularly valuable to both medical 
physics and radiation oncology professionals working in a clinical 
environment. 

Methods and materials 

Treatment plans data 

This study involved 79 brain tumor patients that were prescribed a 
total dose of 60 Gy delivered in 30 fractions, 2 Gy per fraction using two- 
arc VMAT plans. The data necessary to train machine learning models 
were derived from dose-volume histograms and anatomical contours 
delineated by two experienced radiation oncologists. DVHs provided 
dosimetric information while segmentations provided geometric infor-
mation for feature extraction. Structures considered for analysis 
included PTV, brainstem, left and right cochlea as well as optic chiasm. 

Model inputs 

Dosimetric features 
Fig. 1a-b summarizes the dosimetry data and deviations from the 

treatment objectives for each structure. Forty-one plans met all dose 
objectives, while 12, 13, 9, and 4 plans did not meet one, two, three, and 
four dose objectives, respectively. Appendix 1 (Figure A1) shows DVHs 

Fig. 1. a) Percentage deviations from treatment planning objectives ΔD for all 79 patients and associated structures, where the red dashed line indicates the 
boundary between positive and negative ΔD; b) percentage deviations from treatment planning objectives for plans which did not meet a specified objective. The 
percentage values of ΔD were used as dosimetric features for training the machine learning model. ΔD correspond to the mean deviation for n plans. c) Cumulative 
distribution of the 5th percentile of Hausdorff distances between the PTV and organs-at-risk. d) The absolute PTV volume for each plan. The size and the colors of the 
markers are proportionate and correspond to the PTV volume measure. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 
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for all plans and structures as well as indicates plans for which a specific 
number of treatment planning objectives were not met. 

Geometric features. The first type of geometric features included the 
minimum distance Δd measured in millimetres between OARs and PTV 
calculated by the 5th percentile of minimum Hausdorff distances[37] as 
shown in Fig. 1(c). The second type of geometric feature was PTV vol-
ume measured in cm3 as presented in Fig. 1(d). 

Model outputs 

The models in this study were trained for the binary classification 
task thus the model output was represented by the binary categorical 
variable. The value of ‘zero’ corresponded to plans for which the PTV 
treatment planning objective was met while the value of ‘one’ was 
associated with plans for which the PTV objective was not met due to the 
priority trade-off to meet one or more OAR constraints. This classifica-
tion was established through independent review by two radiation on-
cologists. The proportion of plans belonging to classes zero and one was 
68.4% (54 plans) and 31.6% (25 plans) respectively. This class imbal-
ance was not significant and was not observed to impact results. 

Model and hyperparameters selection 

Four models commonly used in ML were considered: Support Vector 
Machine Classifier, Elastic Net, Logistic Regression, and Random Forest 
Classifier (as implemented in the scikit-learn Python module[38]). A 
priori justification for use of particular models and their parameters is 
desirable from a scientific standpoint but is challenging in practice due 
to the large number of possible combinations of hyperparameters. 
Therefore, in this work, the classification algorithms were selected due 
to simplicity, computational efficiency, and common usage in the ML 
community. 

Only one model was selected for further comprehensive analysis of 
the results on unseen testing data. The model selection process was 
based on the nested cross-validation that was shown to be superior 
relative to single cross-validation in minimizing the bias for model and 
hyperparameters selection as well as reducing overfitting[39,40]. The 
metric used for scoring the models was the area under the curve (AUC) 
of receiver operating characteristic (ROC)[38]. A detailed description 
regarding the principle of operation of double nested cross-validation is 
included in Figure A2 (Appendix 1). 

Hyperparameters and their ranges for selected models were specified 
in Table A1 (Appendix 1). The search for optimal hyperparameters was 
performed using a grid search method that explores all the possible 
combinations of hyperparameters. For large data sets, it is often not a 
viable option, however for the sample size and number of features 
selected for this study, it was reasonably computationally efficient. The 
processor used for computations was a 2-core Intel Xeon CPU @2.3 GHz. 

Model evaluation 

The model with hyperparameters tuned after nested cross-validation 
was evaluated on the test data that accounted for 20% (15 plans) of all 
the data (79 plans) using single 5-fold cross-validation. For each fold, the 
areas under the ROC curves were reported. Additionally, the confusion 
matrix with true and predicted classes together with the precision, 
recall, and accuracy metrics (standard ROC definitions as in Pepe et al. 
[41]) for one of the cross-validation folds were also included in the re-
sults for more intuitive performance interpretation. 

Model explainability 

To better understand the predictions generated by the model we 
analyzed the Shapely additive explanation (SHAP) interaction values 

[42] for both global and local explainability. The Shapley value reflects 
a mean value of marginal feature contributions to the prediction and can 
be interpreted as a contribution to explain the difference between the 
average prediction of the model and the actual individual prediction. 

Results 

Model and hyperparameter selection 

Based on the nested cross-validation, the mean and standard devia-
tion of the ROC score was 0.9726 (±0.0059) for Support Vector Ma-
chine, 0.9986 (±0.0028) for Elastic Net, 0.9994 (±0.0012) for Logistic 
Regression, and 0.9979 (±0.0025) for Random Forest Classifier. The 
Logistic Regression model received the highest score and showed the 
lowest SD for inner loop evaluation metrics. The computational time of 
nested cross-validation for model selection was 50 s. 

The hyperparameters for the best performing model (ie. Logistic 
Regression) also were selected with a cross-validation technique. Only 
two sets of hyperparameters were evaluated in this step because during 
model selection those two sets were associated with the best score for 
more than one fold. The hyperparameters were: pipeline 1 - regulari-
zation L1, C = 0.077, and liblinear solver achieving mean AUC of 0.9666 
(±0.0668), and pipeline 2 - regularization L1, C = 1.668, and liblinear 
solver achieving mean AUC of 0.9898 (±0.0074). The computational 
time of nested cross-validation for hyperparameter selection was 3 s. 

Model evaluation 

The mean accuracy of the Logistic Regression model selected was 
93.8 ± 4.1% while the mean area under the ROC curve was 0.98 ± 0.02 
on the testing data. Fig. 2(a) and 2(b) shows the confusion matrix with 
precision, recall, and f1 scores for two classes and one (i.e. fourth) cross- 
validation fold. 

The fourth fold was selected as an example because the resulting 
accuracy was approximately the same as the average accuracy of the 
model. The performance measures reported in Fig. 2 are similar for all 
the remaining folds and are included in Appendix 2 (Figure A3). Their 
definition and interpretation are included in Appendix 2 (Table A2). 
Fig. 2(c) shows the AUC values for ROC curves associated with each fold. 
All evaluation metrics were calculated based on the testing data. 

Fig. 2. Confusion matrices a) and Logistic Regression model evaluation metrics 
b) for fourth cross-validation fold. The meaning behind each metric was briefly 
summarized in Appendix 2 (Table A2); c) Receiver Operating Characteristic for 
five cross-validation folds created based on the testing data and the perfor-
mance of the Logistic Regression model. The dashed diagonal line (‘Chance’ in 
the legend) represents the random assignment of classes. 

P. Siciarz et al.                                                                                                                                                                                                                                  



Clinical and Translational Radiation Oncology 31 (2021) 50–57

53

Model explainability 

The model explainability was addressed both globally and locally. 
Fig. 3 shows global explainability as an impact of each feature on the 
model output. Fig. 3(a) provides directional SHAP values and relative 
values of geometric and dosimetric model features. Fig. 3(b) shows the 
average impact (ie. mean SHAP) of each feature on the model output. 
Overall, the SHAP analysis indicates that the deviation from the D99% 
(ΔD99%) metric for PTV had the greatest influence on the model pre-
dictions and is approximately 3.5 times larger (i.e. more important) than 
the second most important feature – ΔD1% for optic chiasm. The least 
important features were percentage deviations from the maximum dose 
delivered to the left and right cochlea. A more in-depth interpretation of 
this analysis is interesting from a clinical perspective and will be dis-
cussed further in the discussion section. 

It is also very practical to determine the relationship between orig-
inal values (not scaled for the model training) of individual features and 
their global contribution to the model performance. Fig. 4 shows these 
relationships for both geometric and dosimetric features. 

Generally, for geometric features, it is seen that the larger the dis-
tance between the PTV and the OARs and the larger the PTV volume, the 
lower the SHAP value. Regarding the dosimetric features, for the ma-
jority of them, there is a linear and positively correlated relationship 
between the feature and its contribution to the model prediction. The 
only exception is ΔD99% for PTV; in this case, SHAP values are linearly 
but negatively correlated to this feature. 

The model predictions can also be interpreted locally by examining 
individual model predictions as shown in Fig. 5. In particular, the bar 
charts for each prediction show the feature importance in the form of 
directional SHAP values as well as the probability of the prediction 
belonging to class 0 and class 1 (i.e. the class predicted by the model). 
The determination of whether the prediction was correct (or not) is also 
included. It can be noticed that out of 10 model features only 7 are 
present in the local explainability graphs. This is because the three 
remaining features were not significantly contributing to these indi-
vidual predictions. Appendix 3 illustrates local feature importance for 
all predictions. 

Discussion 

After executing double nested cross-validation of several models, the 
Logistic Regression algorithm was selected as the best performing model 
for further use. Double-nested cross-validation was employed instead of 
single-nested for model selection transparency. In terms of computa-
tional efficiency, this would also be a preferable method if the data set 
and the range of hyperparameters were larger. As for the Logistic 
Regression model, it is a relatively simple and easy-to-interpret model 

that can be trained and provide new predictions (model inference) 
quickly. The Logistic Regression model has also been of interest in recent 
radiation oncology research[43–46]. 

The model was selected based on its performance measured by the 
AUC, not accuracy. This is mainly because the ROC curve is insensitive 
to data sets with unbalanced classes and additionally reflects the clas-
sifier’s performance for all values of the discrimination threshold. These 
characteristics make AUC a preferable metric in the evaluation of ML 
models[45–48]. However because our study included imbalanced data 
we have also provided precision-recall curves in Appendix 2. The model 
did not overfit the data because the model performance on testing data 
for each cross-validation fold is both satisfactory and consistent. 

The SHAP analysis results presented in Fig. 3 requires further dis-
cussion. First, negative SHAP values do not mean that the feature 
importance is smaller than for positive SHAP values. Rather, SHAP 
values below zero drive the prediction towards class 0 while positive 
SHAP values drive the prediction towards class 1. This characteristic 
combined with the color-coded values of the particular feature delivers 
interesting model interpretations. For example, in the case of ΔD99% for 
PTV, it can be seen that what drives the predictions towards the class 
0 are high values of ΔD99% that, if we look at Fig. 1, correspond to a high 
probability of this treatment planning objective being met. In this sce-
nario, the fact that class 0 is associated with plans for which the PTV 
objective was also met, shows that the model interpretation is consistent 
with the clinical interpretation. Another example includes the geometric 
features i.e. Fig. 3(a) illustrating that larger distances Δd between PTV 
and OARs tend to drive model predictions towards the acceptable plans 
(class 0) as well. This is also a very common observation in clinical 
practice because with larger Δd, it is easier to create a treatment plan 
that would provide desirable PTV coverage and simultaneously spare 
OARs. 

It is also interesting to note that the best performing model is logistic 
regression, which is less complex than SVM. We believe that it is most 
likely due to the simplicity of our classification task (binary classifica-
tion) and because of the presence of the feature(s) with strong predictive 
power as shown in the global explainability chart (Fig. 3), that indicates 
the ΔD99% metric for PTV as the feature that contributes to the model 
outputs the most significantly. This observation confirms an important 
characteristic of ML, namely that an increase in model complexity does 
not always lead to an increase in model performance. 

Additionally Fig. 4(a) shows that the smaller the distance between 
PTV and right cochlea, the higher the probability of a high dose being 
delivered to that organ. The same relationship can be observed between 
PTV-to-brainstem distance and ΔD1% for optic chiasm. By examining the 
partial dependency charts for dosimetric features in Fig. 4(b) it can be 
seen that the strongest mutual interaction of ΔD1% for optic chiasm 
exists with PTV-brainstem distance. The most important model feature, 

Fig. 3. a) Feature importance represented by the impact of directional SHAP values and particular feature values on the output of the model; b) The average feature 
contribution to the model output measured by mean absolute SHAP values. 
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ΔD99% for PTV, had the strongest interaction with distance to optic 
chiasm, demonstrating that if PTV is located in the proximity of optic 
chiasm there is a low probability of meeting the PTV dose objectives. 
This is consistent with observation in clinical practice where the PTV 
coverage trade-off needs to be made in order to meet treatment objec-
tives for critical structures. 

The proposed ML classifier and model explainability work together 

to provide additional value to the clinical processes. After the plan is 
created and the algorithm classifies the treatment plan, the model 
explainability analysis (performed instantly) indicates the attributes 
behind the plan classification (i.e. which plan and patient-related at-
tributes caused the plan to require trade-off). Therefore the clinician 
would not have to analyse the treatment plan and/or schedule a 
consultation with the treatment planner/dosimetrist or other radiation 

Fig. 4. Partial dependency charts for a) geometric features and b) dosimetric features. The color bars associated with each chart indicate the feature with which the 
evaluated feature (on the x-axis) has the strongest interaction. Specifically, the interaction indicates the influence those two features have on the model prediction. 
For example, if we consider a feature on the x-axis, then another feature on the color bar will be automatically selected in order to maximize the mutual impact of 
those two features on the model prediction. Partial dependency charts for all cross-validation folds are included in Appendix 3. 
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oncologists to find the cause. This opens up an opportunity of devel-
oping an automated notification system for clinicians (not explored in 
our study but possible for future work). 

Furthermore for challenging plans (those with trade-offs), it is found 
to be useful both in our clinic as well as in the recent literature, to look at 
similar past plans, and make data-driven decisions regarding further 
steps in treatment planning (e.g. plan modifications). A new plan, once 
classified as a plan with trade-offs in the proposed ML system, is auto-
matically compared to similar plans delivered in the past. The clinician 
does not have to search through the clinical database to find similar 
plans. 

Potential future applications of such an ML system could expand 
beyond a single institution. One can envision smaller radiation therapy 
centers sending challenging plans (ie. those with tradeoffs) to a large 
experienced center for ML analysis, and thus providing an invaluable 
planning QA tool. The large center could incorporate the new plans in 
the ML training set and refine their model (ie. continual learning). This 
data and technology-sharing environment could potentially equalize the 
standard of care regardless of the resource availability of a given medical 
facility. This example can intuitively be expanded to broad collaboration 
between many large and small institutions across the world. 

Another potential clinical impact of the presented system is for 
management of adaptive radiation therapy. Specifically, patients with 
dosimetric compromises (tradeoffs) might justify more accurate dose 
delivery and positioning. Therefore these patients could be identified as 
high priority for Adaptive Radiation Therapy (ART). 

This study has two limitations. The first is the limited number of plan 
datasets, which may impact the model robustness. This is mainly due to 
the limitations of data availability for local brain tumor plans qualified 
for this study (i.e. total dose delivered, fractionation, delivery tech-
nique). Data availability is a common problem in radiation therapy 
studies involving the application of ML. There are many papers where 

ML models are trained using < 150 and as little as 11 patients 
[9,31,49,50]. A second limitation of this study is the simplified, binary 
classification of plans. At the design stage of the study, we found that 
plans, where the priority trade-offs were made for OARs, could have 
been additionally divided into plans with higher and lower priority 
trade-offs. However, our relatively small data set would cause those two 
potential classes to be significantly under-sampled, therefore ultimately 
the classification of trade-off priorities was not pursued in this study. 
Both these limitations could however be addressed in future work. 
Additionally, a possible subsequent study could also involve testing the 
model using unapproved plans to further evaluate a model performance. 

Conclusions 

The trained ML model achieved satisfactory accuracy on the test data 
and can be used by medical physicists in a data-driven quality assurance 
program as well as by radiation oncologists to support their decision- 
making process in terms of treatment plan approval and potential plan 
modifications. Model explainability analysis facilitated a better under-
standing of the machine learning model reasoning for the generated 
predictions and showed consistency with clinical observations. 
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