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Tendinopathy is a disabling musculoskeletal disease, the pathological process of which is tightly associated with inflammation.
Spironolactone (SP) has been widely used as a diuretic in clinical practice. Recently, SP has shown anti-inflammatory features in
several diseases. Tendon-derived stem cells (TDSCs), a subset cell type from tendon tissue possessing clonogenic capacity, play a
vital role in the pathological process of tendinopathy. In the present study, the protective effect of SP on TDSCs was demonstrated
under simulated tendinopathy conditions both in vitro and in vivo. SP contributed to the maintenance of TDSC-specific genes or
proteins, while suppressing the interleukin- (IL-) 1β-induced overexpression of inflammation-mediated factors. Additionally,
IL-1β-induced cellular senescence in TDSCs was inhibited, while autophagy was enhanced, as determined via β-galactosidase
activity, western blot (WB), and quantitative real-time polymerase chain reaction analysis. With the aid of several emerging
bioinformatics tools, the mitogen-activated protein kinase (MAPK) pathway likely participated in the effect of SP, which was
further validated through WB analysis and the use of MAPK agonist. Immunofluorescence analysis and an NF-κB agonist were
used to confirm the inhibitory effect of SP on IL-1β-induced activation of the NF-κB pathway. X-ray, immunofluorescence,
immunohistochemistry, hematoxylin and eosin staining, histological grades, and Masson staining showed that SP ameliorated
tendinopathy in an Achilles tenotomy (AT) rat model in vivo. This work elucidates the protective role of SP on the pathological
process of tendinopathy both in vitro and in vivo, indicating a potential therapeutic strategy for tendinopathy treatment.

1. Introduction

Tendinopathy is a chronic, degenerative condition character-
ized by a failed healing response within the tendon tissue [1],
which accounts for a significant portion of visits to sports
medicine doctors. Despite its socioeconomic and health
burden, the underlying mechanisms of tendinopathy remain
elusive. Recent studies indicate that inflammation is involved
in tendon homeostasis, as well as the resolution of tendon

damage [2, 3]. A number of investigators have demonstrated
that proinflammatory mediators such as interleukin 1β
(IL-1β) initiate fibrosis [4], extracellular matrix degradation,
and apoptosis [5], eventually leading to tendinopathy. Hence,
we hypothesized that modulation of inflammation might be a
potential therapeutic target for tendinopathy. Heterotopic ossi-
fication (HO) is another hallmark of tendinopathy [6, 7]. It has
been proposed that HO plays a significant role in the patholog-
ical progression of tendinopathy [8]. Nonetheless, neither the
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underlying mechanism nor effective treatments for calcium
deposition are fully understood [9].

Tendon-derived stem cells (TDSCs) are isolated subsets
of cell populations from tendon tissues and possess clono-
genic capacity. With a high proliferation rate and multipo-
tency, functional TDSCs may play a dominant role in
tendon maintenance and healing. An increasing number of
studies have focused on TDSCs rather than tenocytes to
investigate tendinopathy. Recently, researchers reported that
inhibition of cellular inflammation in TDSCs contributes to
the amelioration of tendinopathy [10, 11]. For example, aspi-
rin, a cyclooxygenase (COX) inhibitor, inhibits tendinopathy
and decreases rerupture risk of injured tendons by suppress-
ing inflammation [12]. Based on the evidence above, repres-
sing TDSC inflammation might be a potential therapeutic
strategy for treating tendinopathy.

SP, which pharmacologically binds cytoplasmic mineralo-
corticoid receptors and functions as an aldosterone antagonist,
has been widely used in the treatment of ascites, nephrotic
syndrome, and congestive heart failure [13]. Recently, exten-
sive evidence has linked SP to its anti-inflammatory effects;
for example, Mortensen et al. have reported that SP reduces
vascular inflammation in patients with renal transplants
[14], while Zhang et al. have demonstrated that SP is capable
of preventing peritoneal fibrosis and inflammation in patients
undergoing peritoneal dialysis [15]. However, it is currently
unknown whether SP intervention would significantly inhibit
TDSC inflammation in the tendinopathic process. The protec-
tive effect of SP on tendinopathy has not yet been reported.

In the present study, a series of experiments were
designed to investigate the positive effect of SP on tendinopa-
thy both in vitro and in vivo. Several emerging bioinformatics
tools were used to predict the underlying mechanism
involved in SP function, which was further validated by sub-
stantial experiments.

2. Materials and Methods

2.1. Cell Culture. This study was approved by the Institu-
tional Animal Care and Use Committee of Zhejiang Univer-
sity (Hangzhou, China). Achilles tendons were obtained
from 3-week-old Sprague Dawley rats (Zhejiang Academy
of Medical Sciences, Hangzhou, China) and cut into 1mm3

particles. Tendons were then incubated with 3mg/mL type
I collagenase on a horizontal shaker at 37°C for 3 h to isolate
tenocytes. Single-cell tendon-derived cells were cultured in
96-well plates for 7 d, and colonies were collected as passage
0 (P0) and passaged three times prior to use in all experi-
ments. Dulbecco’s modified Eagle medium (DMEM) supple-
mented with 10% feral bovine serum (FBS), 100 units/mL
penicillin, and 100μg/mL streptomycin was used to expand
single-cell colonies. Cells were cultured at 37°C with 5% CO2.

2.2. Reagents. Spironolactone was purchased from Sigma,
USA (CAS50-01-7). DMEM, FBS, streptomycin, penicillin,
and 0.25% pancreatic enzyme were all obtained from Gibco,
NY, USA. Recombinant rat IL-1β was purchased from R&D
Systems (Abingdon, UK), and collagenase II, dimethyl sulf-
oxide, and bovine serum albumin (BSA) were obtained from

Sigma-Aldrich (St. Louis, MO, USA). The bicinchoninic acid
assay kit and radioimmunoprecipitation assay (RIPA) buffer
were purchased from Beyotime Institute of Biotechnology
(Shanghai, China). Asiatic acid and betulinic acid were pur-
chased from Selleck Chemicals.

2.3. Identification of Trilineage Differentiation Potential. Cells
were incubated in specific differentiation media. For osteo-
genesis, cells were incubated in osteogenic induction medium
(Cyagen Biosciences) for 14 d, and Alizarin Red staining was
used to confirm the differentiation to osteoblasts. For adipo-
genesis, cells were incubated in adipogenic induction and
maintenance medium (Cyagen Biosciences) for 14 d, and
Oil Red O staining was used to confirm the differentiation
to adipocytes. For chondrogenesis, cells were incubated in
pellet culture with chondrogenic induction medium (Cyagen
Biosciences) for 21 d, and Safranin O staining was used to
confirm the chondrocyte differentiation.

2.4. Flow Cytometry. Cells were incubated with fluorescent
primary antibody on ice in phosphate-buffered saline (PBS)
for 60min, washed three times, and detected using flow
cytometry. The negative control contained no fluorescent
antibodies. The following fluorescent primary antibodies
were used: fluorescein isothiocyanate (FITC) anti-rat CD29,
FITC anti-rat CD44, phycoerythrin (PE) anti-rat CD45,
and PE anti-rat CD90 (Bioleague).

2.5. Cell Viability Analysis. To analyze the cytotoxicity of SP
on TDSCs, a Cell Counting Kit-8 (CCK-8) assay was con-
ducted according to the manufacturer’s instructions. Cells
(5 × 103) were seeded into 96-well plates and treated with dif-
ferent concentrations of SP (0, 0.1, 1, 10, 50, and 100μM) for
48 h. Cells were incubated with 10μL CCK-8 reagent per well
for 3 h, and then, the absorbance was read at a wavelength of
450 nm with a microplate spectrophotometer.

2.6. Immunofluorescence. TDSCs cultured on 24-well plates
were pretreated with SP (0, 0, and 10μM) for 1 h and then
incubated with IL-1β (10 ng/mL) for 30min. After fixation
with methanol for 30min, the cells were permeabilized with
PBS containing 0.5% v/v Triton X-100 for 15min and
blocked with 5% BSA for 1 h. The cells were incubated with
primary antibody against p65 at 4°C overnight, followed by
incubation with FITC-conjugated secondary antibodies for
1 h. Cell nuclei were stained with 4′,6-diamidino-2-pheny-
lindole (DAPI) for 5min, and then, cells were analyzed using
a Leica fluorescence microscope.

Tendon sections were incubated with the primary
antibody against RUNX family transcription factor 2 at 4°C
overnight. The sections were then incubated with a FITC-
conjugated secondary antibody. Nuclei were stained with
DAPI, according to the manufacturer’s instructions. The
results were visualized by fluorescence microscopy.

2.7. Quantitative Real-Time Polymerase Chain Reaction
(qRT-PCR). Total RNA was extracted using the TRIzol® Plus
RNA Purification Kit (Invitrogen, Carlsbad, CA, USA). The
concentrations of RNA were detected and adjusted using
nucleic acid detector before reverse transcription with
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PrimeScript™ RT Master Mix (Takara). cDNA samples were
replicated with SYBR® Premix Ex Taq™ II (Takara) with an
Applied Biosystems StepOnePlus™. The expression of
scleraxin (Scx), mohawk homeobox (Mkx), tenomodulin
(Tnmd), inducible nitric oxide synthase (iNOS), cyclooxy-
genase 2 (COX2), matrix metalloproteinase 9 (MMP9),
MMP13, autophagy related 5 (ATG5), ATG7, and Beclin-1
was detected. Glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) was used as an endogenous control. The primers
used are listed in Table 1. All of the above experiments were
performed in triplicate according to the manufacturer’s
instructions using three independent samples. The data were
calculated using the 2(−ΔΔCT) method.

2.8. β-Galactosidase Activity Assay. The β-galactosidase
activity assay (Beyotime Biotechnology, Shanghai, China)
was performed to measure cellular senescence according to
the manufacturer’s instructions. Cells were cultured in
β-galactosidase staining buffer for 24h and visualized under
a microscope.

2.9. Reactive Oxygen Species (ROS) Detection. TDSCs cul-
tured on 24-well plates were pretreated with SP (0, 0, and
10μM) for 1 h and then incubated with IL-1β (10 ng/mL)
for 24 h. A ROS assay kit (Beyotime) was used to detect intra-
cellular ROS in TDSCs, according to the manufacturer’s
instructions. The fluorescence intensity of the intracellular
ROS was visualized using fluorescence microscopy and quan-
titated using ImageJ.

2.10. Western Blot (WB) Analysis. After treatment, TDSCs
were washed three times with PBS and lysed with RIPA
buffer for 60min. Then, the samples were separated via
10% or 15% sodium dodecyl sulfate polyacrylamide electro-
phoresis and transferred onto nitrocellulose membranes.
The membranes were blocked with 5% BSA for 1 h and cut
into sections based on different protein molecular weights.
The membranes were incubated with primary antibodies at
4°C overnight. Then, the membranes were incubated with
secondary antibodies for 1 h and luminescence was deter-
mined using the Pierce™ ECL western blotting substrate.
The relative amount of proteins was analyzed using Quantity
One software (Bio-Rad) and normalized to GAPDH. All
assays were performed in triplicate.

2.11. Animal Model. Eighteen male Sprague Dawley rats
(200-250 g; 6 weeks old) were randomly divided into three
groups (six rats per group): negative control (NC), Achilles
tenotomy (AT), and AT+SP. Rats in the NC group under-
went sham surgery, and the other rats underwent Achilles
tenotomy. One week after Achilles tenotomy or sham sur-
gery, the AT+SP group was injected with 0.1mL of 10 ng/mL
SP once a week in the region surrounding the Achilles ten-
don, and the AT group was injected with 0.1mL vehicle. Nine
weeks after Achilles tenotomy or sham surgery, the rats were
sacrificed for X-ray and histological analyses.

2.12. Histological Analysis. The lower limb samples were cut
into 5μm sections deparaffinized with xylene and subse-
quently rehydrated using a graded ethanol series. These

sections were stained with hematoxylin and eosin (HE) and
Masson staining, according to the manufacturer’s instruc-
tions. Histological scores were calculated from HE staining
results [16].

2.13. Immunohistochemistry Analysis. Immunohistochemical
staining was used to assess tendinopathy in the sagittal sec-
tions of the limb from each group. Limb sections were pre-
pared as described in the histological analysis and then
subjected to antibodies against MMP9 (Abcam, ab76003).

2.14. X-Ray. An X-ray machine was used to evaluate the cal-
cifications of the Achilles tendon. Lateral X-ray images of the
legs of the rats were generated at 60 kV with a radiation
intensity of 500mA (200Ma).

2.15. Statistical Analysis. All data are presented as the
mean ± standard deviation (SD). One-way analysis of vari-
ance with a subsequent post hoc Tukey’s test was used
for multiple comparisons. Statistical significance was set
at p < 0:05.

3. Results

3.1. Isolation and Characterization of TDSCs. To ascertain
the clonogenicity of the isolated cells, a cell surface marker
analysis was performed. Flow cytometry results showed that
these cells were positive for the stem/precursor cell markers
CD29, CD44, and CD90, but not for the leukocyte marker
CD45 [17, 18] (Figure 1(a)). The multidifferentiation poten-
tial of the putative TDSCs toward chondrogenesis, adipogen-
esis, and osteogenesis was then identified. Alizarin Red
staining of 2-week-old osteogenic cultures showed calcium
deposits in the cell culture (Figure 1(b)). Oil Red O staining
of 2-week-old adipogenic cultures showed accumulation of
lipids within the cells (Figure 1(c)). Safranin O staining of
3-week-old chondrogenic cultures determined the chondro-
lineage differentiation of TDSCs (Figure 1(d)). SP had no sig-
nificant effect on osteogenic, adipogenic, and chondrogenic
differentiation of TDSCs (Supplementary Figure 1).

3.2. SP Contributed to the Maintenance of Phenotype in
TDSCs. The molecular structure of SP is shown in
Figure 2(a). To further assess the cytotoxicity of SP on TDSCs,
the CCK-8 assay was performed in a dose-dependent manner
(0.1, 1, 10, 50, and 100μM). As shown in Figure 2(b), SP has
no obvious cytotoxicity in TDSCs until the concentration
reaches 50 and 100μM. Concentrations of 1 and 10μM were
chosen as suitable SP concentrations for subsequent experi-
ments, and 10ng/mL IL-1β was chosen to induce the
in vitro tendinopathic model [12, 19]. Rat TDSCs express
marker genes, such as Scx, Tnmd, and Mkx [17, 20, 21].
qRT-PCR was performed to measure the expression of Scx,
Mkx, and Tnmd in IL-1β-induced TDSCs and demonstrated
that 10ng/mL IL-1β significantly decreased the relative
mRNA expression of these marker genes, while SP at an
appropriate concentration (10μM) reversed this effect
(Figures 2(c)–2(e)).
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3.3. IL-1β-Induced Inflammation in TDSCs Was Attenuated
by SP. To further investigate the effect of SP on IL-1β-
induced TDSC inflammation, WB, qRT-PCR, and immuno-
fluorescence were performed. qRT-PCR (Figures 2(f)–2(i))
and WB (Figures 2(j) and 2(k)) analysis revealed that SP
decreased the expression of universally acknowledged
inflammation-related mediators including iNOS, COX2,
MMP13, and MMP9 at the mRNA and protein levels. ROS
in treated TDSCs were detected using an immunofluores-
cence assay, which demonstrated that SP inhibited the
IL-1β-induced increase in ROS in TDSCs (Figure 2(l)).
In conclusion, SP attenuated IL-1β-induced inflammation
and intracellular ROS levels in TDSCs.

3.4. SP Alleviated IL-1β-Induced Senescence in TDSCs.
TDSCs cultured on 6-well plates were pretreated with SP
(0, 0, and 10μM) for 1 h and then incubated with IL-1β
(10 ng/mL) for 24 h. After treatment, a β-galactosidase
activity assay was conducted (Figure 3(a)). IL-1β stimulation
activated cellular senescence in TDSCs, while SP reversed
this effect. The effect of SP on senescence in TDSCs was fur-
ther confirmed at the protein level. p16(Ink4a) is involved in
cell cycle regulation. Currently, p16(Ink4a) is considered a
tumor suppressor protein and appears to be one of the prin-
cipal factors in senescence [16]. p53 is another crucial protein
in senescence, and its activation modulates cellular senes-
cence and organismal aging [22]. WB analysis revealed that

Table 1: Primer sequences used in this study.

Gene Forward Reverse

Scx AACACGGCCTTCACTGCGCTG CAGTAGCACGTTGCCCAGGTG

Mkx TTTACAAGCACCGTGACAACCC ACAGTGTTCTTCAGCCGTCGTC

Tnmd TGGGGGAGCAAACACTTCTG TCTTCTTCTCGCCATTGCTGT

iNOS CCTACGAGGCGAAGAAGGACAG CAGTTTGAGAGAGGAGGCTCCG

COX2 GAGAGATGTATCCTCCCACAGTCA GACCAGGCACCAGACCAAAG

MMP13 GCAAACCCTGCGTATTTCCAT GATAACCATCCGAGCGACCTTT

MMP9 GCAAACCCTGCGTATTTCCAT GATAACCATCCGAGCGACCTTT

ATG5 ATTCCAACGTGCTTTACTCTCTATC AAACCAAATCTCACTAACATCTTCT

ATG7 GTGTACGATCCCTGTAACCTAACCC CGAAAGCAGAGAACTTCAACAGACT

Beclin-1 CGTGGAGAAAGGCAAGATTGAAGA GTGAGGACACCCAAGCAAGACC

GAPDH GAAGGTCGGTGTGAACGGATTTG CATGTAGACCATGTAGTTGAGGTCA
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Figure 1: Identification of TDSCs. (a) Representative flow cytometric images of TDSCs stained with CD29, CD44, CD45, and CD90 (red:
control; blue: fluorescent antibody). Trilineage differentiation of TDSCs: (b) osteogenesis (Alizarin Red); (c) adipogenesis (Oil Red O); (d)
chondrogenesis (Safranin O).
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Figure 2: SP attenuated IL-1β-induced inflammation in TDSCs. (a)Molecular structural formula of SP. (b) CCK-8 analysis of treated TDSCs. (c–f)
qRT-PCR was performed to analyze the relative mRNA expression of iNOS, COX2, MMP13, and MMP9. (g) Results of western blot analysis and
(h–k) quantitative analysis of corresponding proteins: iNOS, COX2,MMP9, andMMP13. (l) Representative immunofluorescence images of ROS in
treated TDSCs (green: ROS antibody). #p < 0:05 versus the control group. ∗p < 0:05 versus the model group.
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Figure 3: Continued.
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the expression of the prosenescence proteins p16INK4a and
p53 decreased after SP treatment (Figures 3(b)–3(d)).

3.5. SP Enhanced Autophagy in TDSCs. Some studies have
shown that autophagy has a protective effect, promoting the
survival of tenocytes [23]. In this study, the effect of SP on
autophagy of tenocytes was evaluated. qRT-PCR analysis of
autophagy biomarkers ATG5, ATG7, and Beclin-1 is shown
in Figures 3(e)–3(g). IL-1β stimulation resulted in the occur-
rence of autophagic flux, a decrease in the protein expression
of ATG5, ATG7, and Beclin-1, and an increase in the protein
expression of light chin 3A (LC3A), while intervention with
SP reduced the inhibition. Additionally, the same conclusion
was obtained throughWB analysis of LC3B/LC3A and ATG5
at the protein level (Figures 3(h)–3(j)).

3.6. The Mitogen-Activated Protein Kinase (MAPK) Pathway
Was Involved in the Effect of SP on TDSCs. To elucidate the
downstream mechanism of SP function, potential SP targets
were first sought using the web tool PharmMapper [24–26].
The Search Tool for the Retrieval of Interacting Genes/Pro-
teins (STRING) database was used to establish protein-
protein association networks from the potential SP targets
obtained from PharmMapper [27]. An integrated model con-
structed using Cytoscape [28] is shown in Figure 4(a). Hub
genes have been calculated in Cytoscape using the cytoHubba
plug-in, and their ranks are shown in Figure 4(b). MAPK8,
MAPK14, and other MAPK-related proteins were identified
in the top 10 hub genes. The predictive three-dimensional
binding models of SP and MAPK8 (Figure 4(c)) and SP
and MAPK10 (Figure 4(d)) have been drawn using UniProt
[29]. These bioinformatics predictions suggested that SP
exerted its function through the MAPK pathway. To confirm
this speculation, WB analysis was conducted. The ratio of
p-c-Jun N-terminal kinase (Jnk)/Jnk, p-extracellular signal-
regulated kinase (Erk)/Erk, and p-p38/p38 increased after
treatment with SP (Figures 4(e)–4(h)). Thus, IL-1β activated
the MAPK pathway, while SP inhibited this activation, as
expected. In summary, this work demonstrated that SP
functions in IL-1β-induced TDSCs by suppressing MAPK
pathway activation.

3.7. Effect of SP on IL-1β-Induced NF-κB Activation in
TDSCs. Representative images of immunofluorescence stain-
ing showed that SP treatment blocked IL-1β-induced p65
translocation (Figure 5(a)). WB analysis was conducted to
measure the relative protein expression of biomarkers in the
NF-κB pathway: p-IκBα, IκBα, p-p65, and p65 (Figure 5(b)).
The ratio of p-IκBα/IκBα and p-p65/p65 decreased after
treatment with SP (Figures 5(c) and 5(d)). These findings
revealed that SP suppressed IL-1β-induced activation of
NF-κB in TDSCs.

3.8. Activation of the MAPK/NF-κB Pathway Reversed the
Effects of SP on TDSCs. To further investigate the role of
the MAPK/NF-κB pathway in the effects of SP on TDSCs,
the agonist of p38 MAPK, asiatic acid [30], and the agonist
of NF-κB, betulinic acid, were used in vitro [31]. First, it
was confirmed that asiatic acid reactivated the MAPK path-
way, while betulinic acid reactivated the NF-κB pathway in
SP- and IL-1β-treated TDSCs (Figures 6(a) and 6(b)). After
treatment with asiatic acid or betulinic acid, WB analysis
showed that the relative protein expression of iNOS, COX2,
MMP9, and MMP3 increased, while the relative protein
expression of Tnmd decreased compared to that of the
IL-1β+SP group (Figures 6(c) and 6(d)). These results indi-
cated that reactivation of the MAPK/NF-κB pathway reversed
the protective effect of SP in an in vitro tendinopathic model.

3.9. SP Inhibited Calcification and Inflammation In Vivo. To
determine the protective role of SP in vivo, an Achilles tenot-
omy rat model was used to mimic the in vitro tendinopathy
model [6, 7, 32]. The flowchart for the animal procedures is
shown in Figure 7(a). A diagram of Achilles tenotomy is
shown in Figure 7(b). X-ray was performed to detect HO in
the Achilles tendon area (Figure 7(c)) and demonstrated that
the heterotopic bone in the AT group was much larger than
that in the NC or AT+SP groups. In the histological analysis,
both HE (Figure 7(d)) and Masson staining (Figure 7(e))
showed that SP reversed the disordered arrangement of
fibroblasts and collagen fibers in the in vivo tendinopathy
model. The immunohistochemistry results revealed that SP
inhibited inflammation (Figure 7(f)), whereas immunofluo-
rescence images showed that SP ameliorated calcification
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Figure 3: SP ameliorated IL-1β-induced senescence while enhanced autophagy in TDSCs. (a) β-Galactosidase activity assay was performed
in TDSCs treated with or without IL-1β/SP10. (b–d) Western blot was performed to analyze the relative protein expression of p16 and p53 in
treated TDSCs. (e–g) TDSCs cultured on 6-well plates were pretreated with SP (0, 1, and 10μM) for 1 h and then incubated with IL-1β (10
ng/mL) for 24 h. qRT-PCR analysis of the mRNA expression levels of ATG5, ATG7, and Beclin-1 in treated TDSCs. (h–j) The relative protein
expression of LC3 and ATG5 was detected by western blot. #p < 0:05 versus the control group. ∗p < 0:05 versus the model group.
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Figure 6: Activation of the MAPK/NF-κB pathway reverse the effects of SP on TDSCs. (a) Western blot analysis of MAPK/NF-κB-related
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(Figure 7(g)). Histological scores were calculated from the
results of HE staining (Figure 7(h)) [16]. Based on these find-
ings, the protective role of SP was confirmed in an in vivo
tendinopathy model.

4. Discussion

Tendinopathy is a disabling musculoskeletal disorder result-
ing from an imbalance between self-repairing and chronic
disruption, manifesting inflammation, HO, and cellular
senescence [2, 3, 7, 8]. Currently, the treatments for tendino-
pathy are divided into surgical and nonsurgical treatments
[33]. Since most nonsurgical treatments for tendinopathy
lack sufficient evidence to be recommended for clinical use
[34], new nonsurgical approaches are required. In the present
study, SP was identified as a potential nonsurgical treatment
for tendinopathy.

Traditional studies have used tenocytes as a strategy to
investigate tendinopathy [35, 36]. Recent studies have pro-
posed the emerging role of TDSCs in the pathogenesis and
pathological progression of tendinopathy [18, 37]. Similar
to other stem cells, TDSCs possess self-renewal and multipo-
tent differentiation capacities, indicating their role in tissue
repair and regeneration [17]. In this study, Alizarin Red
staining, Oil Red O staining, and Safranin O staining were
used to validate the trilineage differential capacities of iso-
lated cells. Cell surface markers were detected by flow cytom-
etry confirming that the isolated cells were TDSCs; thus,
these cells were used in subsequent experiments.

Chronic inflammation contributes to the initiation and
progression of tendinopathy [3, 38–40]. Recent studies have
reported the anti-inflammatory effect of SP in multiple dis-
eases [4, 14, 15], and this work demonstrated a similar
function in tendinopathy. The IL-1β-induced in vitro tendi-
nopathic model has been widely recognized in various studies
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Figure 7: SP inhibits calcification and inflammation in vivo. (a) The flowchart for animal procedures. (b) The diagram of Achilles tenotomy
surgery. (c) X-ray was performed to detect the heterotopic ossification. The area within the black circle indicated heterotopic ossification. (d)
HE staining of the Achilles tendon in three groups. Bar = 100μm. (e) Masson staining of the Achilles tendon in three groups. Bar = 100μm. (f
) Representative images of immunohistochemistry using MMP9 antibody. Bar = 100 μm. (g) Representative images of immunofluorescence
using RUNX2 antibody. (h) Histological score from HE staining. Blue: DAPI; red: RUNX2. Bar = 100μm.
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[41]. In the present study, SP had no adverse effect on TDSCs
at an appropriate concentration; on the contrary, it contrib-
uted to the maintenance of the Scx, Tnmd, and Mkx TDSC
phenotype. Furthermore, SP ameliorated IL-1β-induced
inflammation in TDSCs by inhibiting the expression of iNOS,
COX2, MMP9, and MMP13, as well as by diminishing ROS.
Taken together, it was demonstrated that SP sustained its
anti-inflammatory effect on tendinopathic TDSCs, which fur-
ther prevented the loss of the TDSC phenotype.

Aging tissue-specific stem cells manifest deficiency in
both number and repair capacity, driving the reduced regen-
erative potential of tissues and contributing to the progress of
tendinopathy [42, 43]. Since aging is a potential detrimental
factor for tendon homeostasis, the effect of senescence on
tendinopathy in TDSCs was investigated [44, 45]. Our previ-
ous study reported that senescence in TDSCs is a character-
istic of HO and chronic inflammation [6, 7]. Similar to
previous studies, more senescent TDSCs were detected under
tendinopathic conditions. Additionally, TDSCs in tendino-
pathy manifest increased expression of senescence-related
proteins, p16INK4a and p53 [46]. While senescence appeared
in the tendinopathy process, these results showed that SP
obtained a fairly good antisenescence function on TDSCs
in vitro IL-1β-induced tendinopathy model.

Recent findings have identified the relevance of autoph-
agy and senescence in multiple diseases [47–49]. Moreover,
the autophagy process may be artificially divided into three
phases: autophagosome induction and nucleation, autopha-
gosome elongation, and autophagosome maturation and
degradation [23]. Hence, autophagy in SP-treated TDSCs
warrants further research. In the present study, it was dem-
onstrated that SP intervention might reactivate autophagy
in IL-1β-treated TDSCs. Collectively, these findings indi-
cated that SP attenuated senescence in TDSCs by modulating
autophagy. However, further studies are needed to confirm
the precise effect of SP on autophagic flux.

To further illustrate the downstream mechanism of the
effect of SP on TDSCs, several emerging bioinformatics tools
were used: PharmMapper, STRING, Cytoscape, and UniProt
[24–29]. The predictive results indicated that the MAPK
pathway was likely involved in the realization of SP function.
The MAPK signaling pathway, first elucidated in 1994, regu-
lates cell functions, including proliferation, differentiation,
and apoptosis [50]. In view of the close relevance of the
MAPK and NF-κB pathways [51, 52] and previous studies
on the NF-κB pathway in tendinopathy [53, 54], the effect
of SP on the NF-κB pathway in TDSCs was further investi-
gated. Both the MAPK and NF-κB pathways were silenced
after SP treatment. Moreover, agonists of the MAPK and
NF-κB pathways rescued the effect of SP on IL-1β-induced
TDSCs, suggesting that SP exerted its function on TDSCs
via both the MAPK and NF-κB pathways.

An Achilles tenotomy model was used to examine the
potential protective effect of SP on tendinopathy in vivo [6,
7]. Histological analysis and in vivo results showed that SP
ameliorated inflammation and HO and reversed disordered
arrangement of fibroblasts and collagen fibers. HO, which
refers to the abnormal formation of mature bone within
extraskeletal soft tissues, was another pathological feature of

tendinopathy [6, 7, 55]. These results identified the positive
role of SP in alleviating tendinopathy in an in vivo tendino-
pathic model.

The present study demonstrated the protective role of SP
in tendinopathy both in vitro and in vivo. The effect of SP on
tendinopathy was comprehensively investigated by modulat-
ing several vital phenotypes, including inhibition of inflam-
mation, calcification, and senescence, while enhancing
autophagy. Meanwhile, bioinformatics techniques combined
with laboratory experiments provided a classical and practi-
cal example to use emerging technical tools. Another high-
light of this work is that since SP has long been safe and
widely used in the clinic, it seems more plausible to realize
the application of SP as a tendinopathy treatment. However,
the specific application of SP in patients with tendinopathy
requires further research and clinical trials.

5. Conclusions

This study showed that SP ameliorated senescence and
calcification by modulating autophagy in rat TDSCs via the
NF-κB/MAPK pathway, indicating it may be a potential
therapeutic strategy for tendinopathy treatment.
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