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Abstract

Human peripheral blood mononuclear cells (PBMCs) are part of the innate and adaptive

immune system, and form a critical interface between both systems. Studying the metabolic

profile of PBMC could provide valuable information about the response to pathogens, toxins

or cancer, the detection of drug toxicity, in drug discovery and cell replacement therapy. The

primary purpose of this study was to develop an improved processing method for PBMCs

metabolomic profiling with nuclear magnetic resonance (NMR) spectroscopy. To this end,

an experimental design was applied to develop an alternative method to process PBMCs at

low concentrations. The design included the isolation of PBMCs from the whole blood of

four different volunteers, of whom 27 cell samples were processed by two different tech-

niques for quenching and extraction of metabolites: a traditional one using organic solvents

and an alternative one employing a high-intensity ultrasound probe, the latter with a variation

that includes the use of deproteinizing filters. Finally, all the samples were characterized by
1H-NMR and the metabolomic profiles were compared by the method. As a result, two new

methods for PBMCs processing, called Ultrasound Method (UM) and Ultrasound and Ultra-

filtration Method (UUM), are described and compared to the Folch Method (FM), which is

the standard protocol for extracting metabolites from cell samples. We found that UM and

UUM were superior to FM in terms of sensitivity, processing time, spectrum quality, amount

of identifiable, quantifiable metabolites and reproducibility.

Introduction

A peripheral blood mononuclear cell (PBMC) is any blood cell with a round nucleus, such as

lymphocyte, monocyte or macrophage [1]. PBMC are composed of three types of cells:
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lymphocytes, dendritic cells and monocytes. The abundance or frequency of each type has a

characteristic distribution in humans as follows: most PBMC correspond to lymphocytes with

an abundance of between 70% and 90%, while dendritic cells are rare with only between 1%

and 2% of the total population, and monocytes are in the middle with an abundance ranging

from 10% to 20%. There are different types of cells in the lymphocyte family, including CD3+

T cells (70–85%), B-cells (5–10%), and NK cells (5–20%). Specifically, CD3+ lymphocytes are

composed of CD4+ and CD8+ T cells with an approximate 2:1 ratio. Furthermore, the activa-

tion process of CD4+ T-cells causes a conversion phenomenon in various subsets of effector

cells, including Th1, Th2, Th17, Th9, Th22 cells, follicular helpers (Tfh) and different types of

regulatory cells [2–5].

In the immune system, PBMCs stand out as an essential component as they are responsible

for generating a response to the external agents that enter the body [6, 7]. and to the cells that

have transformed into a cancerous cell type [8, 9]. This has led to medical and research interest

being shown in studying PBMC in diverse areas such as immunology [10–13], toxicology [14,

15], infectious disease [16–18], allergic diseases [19, 20], cardiovascular diseases [21, 22],

hematological malignancies [23], transplant therapy [24], vaccine development [25, 26] and

personalized medicine [27]. It is possible to find fundamental information on the function of

different types of cells [28], to identify biomarkers and metabolic pathways associated with dif-

ferent medical conditions [29], and to perform disease modeling [30] through in vitro studies

of PBMCs.

Metabolomic profiling can gain insight into changes in the metabolic state of cells due to

external agents, such as diseases and their treatment with medications, environmental factors,

diet, lifestyles, genetic effects, toxic exposure, etc. [31–35]. For this purpose, nuclear magnetic

resonance (NMR) spectroscopy provides the unbiased detection of metabolites, robustness,

reproducibility, minimal sample preparation, easy interpretation and analysis of spectral data,

and quantitative information about the metabolome of cells [36, 37].

Previous protocols for the metabolomics profiling of PBMCs by NMR were performed,

starting from 20 mL blood and 20 million PBMCs [38]. However, the blood volume available

for extracting PBMCs in clinical studies is limited, and the amount of PBMCs in the blood

depends on the patient’s condition. For instance, immunosuppressive diseases such as HIV-1

infection [39], cancer [40], and primary immunodeficiencies, characterized by low PBMC

counts. Therefore, it would be optimal to work with smaller blood and cell samples by optimiz-

ing different metabolite extraction method steps, including the cell disruption method, the

amount and type of solvents, and the processing time [41–45].

Accordingly, this study aimed to develop an improved method to process PBMCs for meta-

bolomic profiling by NMR spectroscopy. We wished to obtain reproducible and robust high-

quality data from PBMC samples of 12.5 million cells or fewer, with minimal sample handling

and a short processing time. Our approach is based on using high-intensity ultrasound, as pre-

viously described for other types of cells and tissues [46–49], and to compare it to the Folch

method, the international standard for processing these biological samples [50, 51]. The

method developed for analyzing the metabolic profile of PBMCs by 1H-NMR could be a tool

for the biomarker identifications associated with disease diagnosis, evaluations of the effects of

new treatments on patients, among other approaches [34, 35, 52].

Materials and methods

Chemicals and materials

Solvents and reagents were Ficoll-Paque Plus, Phosphate-Buffered Saline (PBS), sodium phos-

phate dibasic dehydrate and sodium azide, methanol, chloroform, deuterated water and
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deuterated trimethylsilyl propanoic acid (TSP-D4) were supplied by Merck (Germany). The

ultrapure water was obtained in a Milli-Q purification system of Merck Millipore. The Vivas-

pin1 500 3,000K MWCO Centrifugal Concentrators were provided by Sartorius.

In order to develop the high-intensity ultrasound process, an LSP-500 ultrasonic liquid pro-

cessor (Sonomechanics, New York, USA), equipped with an ultrasonic generator of 500 W, an

air-cooled piezoelectric transducer (ACT-500), a full-wave Barbell Horn™ (FBH, 21-mm tip

diameter) and a reactor chamber (jacketed beaker refrigerated), was used for all the experi-

mental runs.

Human subjects

This study was approved by the Bioethical Committee, Universidad de Antioquia; and all the

individuals signed informed consent, prepared according to Colombian Legislation, Resolu-

tion 008430/1993. Healthy controls were 59, 34, 25, and 40 year-old male individuals, recruited

through the blood bank from the IPS Universitaria, Universidad de Antioquia. These individu-

als fulfilled the donor eligibility requirements; their hemoglobin levels equaled or exceeded

13g/dL, or the hematocrit value equaled or was over 39 percent; they were negative for several

infectious diseases and the blood samples donation protocol did not require eitherfasting or a

nonfasting status. For whole blood, a donation of 450 mL (60-70ml of Citrate Phosphate Dex-

trose anticoagulant) was obtained from each individual. Four volunteers were analyzed. From

the first volunteer, a total of nine samples were processed, a triplicate for each evaluated

method (FM, UM, UUM). For the three remaining volunteers, a duplicate of each volunteer

was analyzed by each method on two different evaluation days; that is, a total of 27 measure-

ments were made, nine for each evaluated method.

Human peripheral blood mononuclear cells isolation

The isolation of PBMCs leukocytes was carried out by a Ficoll-Paque gradient method [53].

Peripheral blood, freshly extracted from healthy volunteers, was carefully poured into a tube

with Ficoll at the blood/Ficoll 1:4 proportion, and allowed to stand for approximately 20 min,

centrifuged at 591 g for 30 minutes at room temperature with brake off to ensure that decelera-

tion did not disrupt the density gradient. Three phases were obtained. At the bottom of the

tube, red blood cells (RBCs) and granulocytes concentrated. Likewise, a white fraction of the

mononuclear in the middle (PBMCs) and an upper phase corresponding to plasma and plate-

lets formed. The PBMCs phase was carefully transferred to a separate tube and washed with

PBS 1X at the 1:10 PBMCs/PBS 1X proportion. Subsequently, PBMC were centrifuged at 1000

g for 5 min at 4˚C.

The supernatant was discarded, and the pellet containing PBMCs was resuspended in 1 mL

of PBS 1X for cell counting and viability tests. Cells were diluted within a range between

250000 cells/mL and 500000 cells/mL to be counted with the Neubauer chamber. Later an ali-

quot (50 μL) of the cell suspension was diluted 1:1 (v/v) with 0.4% trypan blue dye (Trypan

Blue should be sterile-filtered before using it to do away with the particles in solution that

would disturb the counting process). After carefully the hemocytometer chamber was filled

with 20 μL of cell suspension. Then it was incubated for 1–2 min at room temperature (incuba-

tions exceeding 30 min may cause decreased cell viability due to Trypan toxicity). Nonviable

cells are blue and viable cells are unstained. Next, viable cells were counted under the micro-

scope in four 1 x 1 mm squares of the Neubauer chamber and the average number of cells per

square was determined (Neubauer hemocytometer consists of two chambers, each divided

into 9 mm2 squares) [54–57]. Finally, cells were diluted in PBS 1X to obtain individual por-

tions of 12.5 million viable cells in 100 μL. PBMC were frozen at -80˚C until processed.
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Extraction of metabolites for the 1H-NMR experiments

Frozen samples were placed on ice for 5 min, and then subjected to the first extraction proce-

dures, the Folch Method (FM) [58, 59]. Briefly, 160 μL of methanol and 80 μL of chloroform at

4˚C were added per tube (12.5 million cells). Samples were then homogenized by vortexing

and left to stand for 15 min. For uniform cell breakage, samples were submitted to three

freeze-thaw cycles with liquid nitrogen. Then 125 μL of distilled water and 125 μL of chloro-

form were added to each sample, which were later vortexed. Samples were then centrifuged

at 15000 g for 30 min at 4˚C to separate phases. The solution was separated into an upper

water/methanol phase (with polar metabolites, aqueous phase), an interphase containing

mainly proteins, DNA/RNA, cell membranes, and a lower chloroform/methanol phase (with

lipophilic compounds, organic phase). The aqueous phase was lyophilized overnight to obtain

dry extracts. Extracts were stored at -80˚C until sample preparation for the 1H-NMR

experiments.

The second procedure was the Ultrasound Method (UM), in which 650 μL of phosphate

buffer (50 mM Na2HPO4 pH 7.4, in D2O with 0.1 mM of deuterated trimethylsilyl propanoic

acid (TSP-D4)) were added per sample with 12.5 million cells. Cells were resuspended with a

micropipette and homogenized with a vortex. Then for cell breakage, samples were submitted

to a cycle described as follows: First cells were frozen with liquid nitrogen (1 min). Then the

sample was immersed in a refrigerated bath (4˚C) equipped with a high-intensity ultrasound

probe set at a frequency of 20050 Hz and a 100% amplitude for 5 min. This cycle was run six

times. Samples were then centrifuged at 12000 g for 120 min at 4˚C to separate phases. The

solution was separated into an upper phase (with metabolites) and a lower phase (containing

mainly proteins, DNA/RNA, and cell membranes). The supernatant was stored at -80˚C until

the sample analysis for the 1H-NMR experiments.

The third procedure was called the Ultrasound and Ultrafiltration Method (UUM). It

involves taking the supernatant obtained from the second method and filtered with a ultrafilter

previously washed with phosphate buffer (10X with phosphate buffer, pH 7.4). Samples were

then centrifuged at 12000 g for 120 min at 4˚C and the filtered solution was stored at -80˚C

until the sample analysis for the 1H-NMR experiments.

1H-NMR experiments

The freeze-dried powder from FM was solubilized in 650 μL of phosphate buffer (50 mM

Na2HPO4, pH 7.4, in D2O) containing 0.1 mM of deuterated trimethylsilyl propanoic acid

(TSP-D4) as a reference standard and 550 μL were transferred to a 5 mm NMR tube. Likewise,

550 μL of supernatant, or filtered from UM and UUM, were transferred to independent 5 mm

NMR tubes. All the samples (FM, UM, or UUM method) were stored at 4˚C, equilibrated at

room temperature for 15 min before analyzing, which took place on the same day. The
1H-NMR spectra of extracts were recorded at 300K by a Bruker AVANCE III 600.13 MHz

spectrometer, equipped with 5 mm triple-resonance z-gradient cryoprobe (Prodigy1 TCI,

1H-13C/15N-2H). TopSpin, version 3.6.2 (Bruker GmbH, Karlsruhe, Germany), was used for

spectrometer control purposes. 1H 1D Nuclear Overhauser Effect Spectroscopy (NOESY)

NMR spectra, with water presaturation and spoil gradients (noesygppr1d pulse sequence), were

acquired with 256 free induction decays (FIDs), 64k data points, a spectral width of 30 ppm,

and a relaxation delay of 60 s. Total Correlation Spectroscopy (TOCSY) and multiplicity Het-

eronuclear Single Quantum Correlation (HSQC) were performed on representative samples

with 256–512 t1 increments, 32–96 transients and a relaxation delay of 1.5 s. The TOCSY spec-

tra were recorded by a standard MLEV-17 pulse sequence with mixing times (spin-lock) of 65

ms.
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Data analysis and statistics

NMR spectra processing. 1H-NMR spectra were transformed with a 0.5 line-broadening,

and manually baseline- and phase-corrected with Topspin 4.0.9. NMR signals of TSP-D4 were

referenced to 0 ppm. For metabolite identification purposes, the 1H and chemical shift values

and multiplicity of signals were compared with the reference data from the Chenomx software

(Chenomx NMR Suite 8.4, Chenomx Inc., Edmonton, Canada) in combination with spectral

databases Human Metabolome Database and the Biological Magnetic Resonance Bank and

several literature reports [33, 60]. Optimal integration regions were defined for each metabolite

in an attempt to select signals without overlapping. Integration was performed with Mestre-

Nova 14 (Mestrelab Research, SL, Santiago de Compostela, Spain) by performing a manual

integration of the previously identified signals. With these regions, an integration matrix (Inte-

gral Regions) was built, which was later applied to the 27 acquired spectra and a matrix of inte-

grals was built for all the spectra (Integral series). This matrix of integrals was normalized by

the sum of the total signals of the spectrum using Excel1 (Microsoft, USA).

Quantification and comparison of metabolic profiles. An analysis of the areas of every

variable (metabolite) was carried out for each method (FM, UM and UUM) in the 27 spectra

analyzed as follows: measures of central tendency (mean or median) were determined with

Excel1, and statistical assumptions of normality (Shapiro-Wilk Normality Test) and homo-

skedasticity (Levene test) were evaluated with RStudio. To determine the difference in the

measures of central tendency between the methods, a comparison of the gold standard for the

processing of biological samples (FM) with the developed methods (UM and UUM) was

made. Resulting in two comparisons, FM versus UM and FM versus UUM. The difference in

measures of central tendency was determined as appropriate; mean difference using t-Test for

paired samples (if the variable in both methods had normal distribution and homoskedasti-

city) or median difference using Wilcoxon Test for k paired samples (if the variable in one of

the methods had non normal distribution and/or heteroskedasticity). For tests with a p value

less than 0.05 (p<0.05), a statistically significant difference between the means (mean or

median as appropriate) is assumed for the variable evaluated. This last statistical test was per-

formed with the RStudio software.

Analysis of repeatability and reproducibility. The Six Sigma Gage R&RMeasure (Part of

the Six Sigma package of the R software) was applied to evaluate repeatability and reproduc-

ibility of three methods. The analysis was performed with the three patient samples analyzed

on different days and by different analysts. A total of 18 samples were analyzed, 1 sample per

patient, per day and per method, in 2 evaluation days. The input data were the variables that

presented statistically significant changes (p<0.05) in the central (measures of central ten-

dency) difference test (t-Test or Wilcoxon Test as applicable). The coefficient of variation

(CV) per variable of each method was compared. The repeatability of the methods was ana-

lyzed by determining the CV between replicates of the same patient, analyzed by NMR on the

same day and processed by the same analyst. On the other hand, for the reproducibility analy-

sis, the CV was determined between samples from the same patient, analyzed by NMR but

processed in two days and by different analysts. Results were represented graphically.

Determination of limit of detection and limit of quantitation. Three regions were

selected in the NMR spectrum (0.5 ppm, 6.5 ppm, 9.5 ppm) and had the lowest possible noise

or interference level. The integration process of these regions was carried out (in the same way

as with the other metabolites in the samples) in the 27 spectra analyzed, and the limit of detec-

tion (LOD) and the limit of quantification (LOQ) of all three methods (FM, UM and UUM)

were determined. All the statistical analyses were performed with the RStudio and Excel

software.
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Results

Optimization of the pretreatment of samples and metabolite extraction

Equal amounts of isolated PBMCs were processed by the new protocols (Fig 1) and the results

were compared to the Folch method (FM) [50, 51], which is widely used in mammalian cell

metabolomics and has been previously applied to PBMCs [38]. In the new methods, cells were

mixed with an aqueous buffer, and not with toxic solvents, such as methanol and chloroform

in FM. Then cycles of freezing and cell disruption with a high-intensity sonicator were applied

to the cell suspension, and the resulting supernatant was transferred directly to an NMR tube

to be analyzed (in the UM method).

The cell freezing and disruption processes were optimized as follows: starting with a simple

cycle to immerse the sample into liquid nitrogen (1 min), combined with high-intensity ultra-

sound at 20,050 Hz, and 50% amplitude for 5 min (in a cold bath at 4˚C). However, under

these conditions, the necessary cell disruption was not achieved as verified by visual inspection

and a microscope. Therefore, the parameters of the ultrasound equipment were increased

from 50% to 100% of the amplitude for the same period time. The number of cycles (freezing

+ cell disruption by ultrasound) was increased one by one until six cycles, which was the

amount required to achieve a successful quenching and extracting process with the sample.

For the UM centrifugation process, we based our work on previous cell disruption and metab-

olite isolation protocols [46, 47]. However, we had to apply more time and more power during

centrifugation to eliminate membranes and cell debris as the volume of PBMC cells is much

smaller than most other cells (e.g., HeLa cells have an average volume of 3000 μm3, while the

volume of PBMCs is only 130 μm3). We determined that a cycle of 12000 g for 120 min at 4˚C

would be required to separate the pellet from the solution. An increase in centrifugation force

or time did not improve the subsequent NMR results, and shorter centrifugation times did not

achieve optimal cell pellet separation. When analyzing the UM 1H-NMR spectra results, we

Fig 1. Step by step UUM method. Schematic explanation of PBMC processing by the UUM method (Ultrasound and Ultrafiltration Method). Using these

methods, it is possible to obtain the metabolomic profile in 6 h starting from whole blood. The PBMC samples were isolated from the peripheral blood of

healthy human individuals. Samples were split into an aliquot (12.5 million cells) for characterization. Finally, PBMC were extracted and the 1H-NMR

metabolic profiles were determined.

https://doi.org/10.1371/journal.pone.0247668.g001
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detected the presence of proteins in the spectrum, which is a generally undesirable characteris-

tic for metabolomic profiling. Therefore, as a second option, the suspension was first trans-

ferred to a centrifugal filter to eliminate proteins, re-centrifuged and then moved to an NMR

tube (for the UUM method). In both cases (methods UM and UUM), an NMR spectrum was

obtained for PBMCs in less than 6 h, while FM required several hours for solvent elimination

by freeze-drying and evaporation.

Metabolic profile of PBMCs

The representative 1H-NMR spectra resulting from the three tested methods are shown in Fig

2. An assignment of the different signals in the spectra was performed with the help of

2D-NMR spectra, and with information available from public databases, the software Che-

nomx1 8.6 (Alberta, Canada) and existing literature about the metabolic content of PBMCs

[38]. As a result, it was possible to identify more than 40 different metabolites (Fig 3). The pri-

mary metabolites were organic acids, amino acids and nucleotides.

A comparison of the metabolites that could be quantified and identified in the spectra

resulting from each extraction method is found in Table 1. For FM, 37 metabolites, consisting

in 17 organic acids, 18 amino acids and two nucleotides, were identified. For UM and UUM,

43 metabolites consisting in 19 organic acids, 19 amino acids and five nucleotides, were

identified.

It should also be noted that not all the metabolites identified in spectra had an optimal

quantification quality for the later metabolomics analysis. In Table 1, the quality of the signals

from each metabolite in all the methods is classified (present, increased presence, absent,

unquantifiable). The most noteworthy case was FM, for which 37 metabolites were identified,

but only 31 were quantifiable (Table 1).

Fig 2. Comparison of the spectra obtained from the three different PBMC processing methods evaluated for

metabolomic profiling. a) Ultrasound and Ultrafiltration Method, b) Ultrasound Method, c) Folch Method. The

differences in specter regions between methods are seen in red boxes.

https://doi.org/10.1371/journal.pone.0247668.g002
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Quantitative comparison of the PBMCs metabolomic profiles

The normalized concentration values of the all metabolites (S1 and S2 Tables) were compared

by applying a Student’s t-Test (normal distribution and homoscedasticity) or a Wilcoxon Test

(non normal distribution and/or heteroskedasticity). From this analysis, the number of metab-

olites lowered to 20, for which statistically significant differences were found for both compari-

sons. The results presented in Table 2 show the differences obtained between the means of the

two established comparisons FM vs. UM and FM vs. UUM.

For a more detailed analysis, eight representative metabolites with isolated well-defined sig-

nals in all the spectra were selected (Valine, Alanine, Hydroxyacetone, Creatine, Creatinine,

Choline, Taurine, Inosine). A repeatability and reproducibility analysis of each method was

carried out by the Six Sigma Gage R&R Measure command. The results of this analysis are

shown in Fig 4 and S1–S8 Figs.

In Fig 4, the graphs on the left represent the range control chart evaluated per metabolite

with their corresponding control limits adapted for R&R studies. In a method or process with

good repeatability, all the points should lie within the control limits. For the FM method, a

point (Taurine concentration range of patient 3) is observed outside the upper control limit.

In addition, FM has ranges and, therefore, the dispersion of the values between the replicates

for the same patient are wider than those presented in methods UM and UUM. For this rea-

son, we can affirm that UM and UUM are methods with greater repeatability than FM.

The graphs on the right show all the measurement points (Concentration of each metabo-

lite) by method (x-axis). The tracer line represents the mean of each one. These graphs allow

an analysis of the methods’ reproducibility as the dispersion of the data between patients can

be observed on different days for each method. The graphs show how data dispersion

Fig 3. The assigned UUM 1H-NMR spectrum of PBMCs. Metabolite assignments are indicated by the numbers 1.

Valine, 2. Leucine, 3. Isoleucine, 4. Ethanol, 5. Threonine, 6. 3-Hydroxyisovalerate, 7. Lactate, 8. Alanine, 9. Acetate,

10. Glutamate, 11. Methionine, 12. Pyruvate, 13. Succinate, 14. Citrate, 15. Aspartate, 16. Sarcosine, 17. Creatine, 18.

Creatinine, 19. Phenylalanine, 20. Choline, 21. O-Phosphocoline, 22. Carnitine, 23. Betaine, 24. Taurine, 25. Tyrosine,

26. Trimethylamine N-oxide, 27. Methanol, 28. Glycine, 29. Glycerol, 30. Serine, 31. Inosine, 32. GTP, 33.

Xanthurenate, 34. Oxypurinol, 35. Xanthine, 36. AMP, 37. Formate, 38. 2-hydroxybutyrate, 39. Lysine, 40. Glutamine,

41. Hydroxyacetone, 42. Acetoacetate, 43. Methylacetoacetate, 44. Reduced glutathione (GSH), 45. Oxidized

glutathione (GSSG), 46. Malonate, 47. Trimethylamine.

https://doi.org/10.1371/journal.pone.0247668.g003

PLOS ONE An optimized method for processing PBMCs for 1H-NMR-based metabolomic profiling

PLOS ONE | https://doi.org/10.1371/journal.pone.0247668 February 25, 2021 8 / 20

https://doi.org/10.1371/journal.pone.0247668.g003
https://doi.org/10.1371/journal.pone.0247668


Table 1. List and detail of the metabolites assigned in the different methods evaluated.

METABOLITE δ in ppm (Multiplicity) CT GA (Visual) FO (%)

FM UM UUM FM UM UUM

2-hydroxybutyrate 0,89 (t), 1.61 (m), 1.65 (m), OA + + + 100 100 100

3-Hydroxyisovalerate 1.25 (s) OA + + + 100 100 100

Acetate 1.92 (s) OA + + + 100 100 100

Acetoacetate 2.26 (s) OA + + + 100 100 100

Alanine 1.48 (d), 3.80 (q) AA + + + + + 100 100 100

AMP 8.27 (s), 8.61 (s) N + + + 100 100 100

Aspartate 2.67 (m), 2.81 (m) OA + + + 100 100 100

Betaine 3.24 (s), 3.89 (s) AA + + + + + 100 100 100

Carnitine 3.23 (s) AA + + + 100 100 100

Choline 3.20 (s), 4.04 (m) OA + + + 100 100 100

Citrate 2.56 (d), 2.63 (d) OA + + + 100 100 100

Creatine 3.03 (s), 3.92 (s) AA + + + + 100 100 100

Creatinine 3.05 (s), 4.01 (s) AA + + + + + 89 100 100

Formate 8.46 (s) OA - + + 33 100 100

Glutamate 2.05 (m), 2.36 (m), 3.76 (m) OA + + + 100 100 100

Glutamine 2.12 (m), 2.48 (m) AA - + + 44 100 100

Glycine 3.57 (s) AA + + + + + 100 100 100

GSH+GSSG 2.53–2.58 (m), 2.96 (dd) AA + + + 100 100 100

GTP 8.03 (s) N O + + + 33 100 89

Hydroxyacetone 2.14 (s) OA + + + + + 100 100 100

Inosine 6.14 (d), 8.19 (s), 8.22 (s) N + + + 78 100 100

Isoleucine 0.94 (t), 1.01 (d) AA + + + 100 100 100

Lactate 1.33 (d), 4.11 (q), 4.12 (q), 4.13 (q) OA + + + 100 100 100

Leucine 0.96 (t) AA + + + + + 100 100 100

Lysine 1.72 (m), 1.91 (m) AA + + + + + 100 100 100

Malonate 3.13 (s) OA - + + 89 100 100

Methionine 2.17 (m), 2.65 (t), 3.85 (dd) AA + + + 100 100 100

Methylacetoacetate 2.34 (s) OA + + + 100 100 100

O-Phosphocoline 3.21 (s) AA + + + 100 100 100

Oxypurinol 8.38 (s) N O + + 33 100 78

Phenylalanine 3.14 (m), 3.30 (m), 7.34 (d), 7.38 (d), 7.43 (t) AA - + + 44 100 100

Pyruvate 2.38 (s) OA + + + 100 100 100

Sarcosine 2.72 (s) AA - + - 56 100 44

Serine 3.79 (dd), 3.99 (m) AA - + + 100 100 100

Succinate 2.37 (s) OA + + + 100 100 100

Taurine 3.26 (t), 3.43 (t) OA + + + 100 100 100

Treonine 3.59 (d), 4.22 (m) AA + + + 78 100 56

Trimethylamine 2.87 (s) OA O + + + 56 100 100

Trimethylamine N-oxide 3.22 (s) OA + + + 100 100 100

Tyrosine 3.96 (dd), 6.90 (d), 7.20 (d) AA O + + + 22 100 100

Valine 0.99 (d), 1.04 (d), 2.29 (m), 3.62 (d) AA + + + + + 100 100 100

Xanthine 7.83 (s) N O + + + 33 100 100

Xanthurenate 7.08 (dd) OA O + + + 33 100 100

FM: Folch Method, UM: Ultrasound Method, UUM: Ultrasound and Ultrafiltration Method, δ: chemical shift, (s): singlet, (d): duplet, (dd): double doublet, (t): triplet;

(q): quartet, (m): multiplet, CT: Compound Type, OA: Organic Acid, AA: Amino Acid, N: Nucleotide, GA: Graphical Analysis, +: Present, ++: Increased presence O:

Absent, -: Unquantifiable, FO: frequency of occurrence. For FO less than or equal to 33%, the individual integration values were evaluated to define presence or absence.

If the integration mean was less than 0, it was determined as absent in the method samples.

https://doi.org/10.1371/journal.pone.0247668.t001

PLOS ONE An optimized method for processing PBMCs for 1H-NMR-based metabolomic profiling

PLOS ONE | https://doi.org/10.1371/journal.pone.0247668 February 25, 2021 9 / 20

https://doi.org/10.1371/journal.pone.0247668.t001
https://doi.org/10.1371/journal.pone.0247668


(scattered points on the y-axis of each inflection point of the tracer line) for FM is generally

wider compared to UM and UUM. This was confirmed by comparing the coefficients of varia-

tion (CV) for each method, which are observed at the bottom of each graph per evaluated

metabolite. Once again, FM has higher CVs for most of the metabolites evaluated against UM

and UUM, with an average CV of 45%, compared to 16% and 18% for UM and UUM, respec-

tively. To further complete this numerical comparison, we also made a graphical comparison

by overlapping the zoomed signals of the selected metabolites, as depicted in Figs 5 and 6.

Finally, we also calculated the LOD and LOQ of the three methods, as presented in Fig 7.

Once again, we obtained better results for UUM and UM than for FM, and slightly better

results for UUM than for UM. This result was expected as we were able to identify and quan-

tify more metabolites with methods UUM and UM.

Discussion

In this work, we present two new methods for determining the metabolic profile of PBMCs by

NMR, which were compared with the FM method by evaluating processing and quality param-

eters. As a quantitative comparison proved (Table 2), significant differences in the normalized

metabolite concentration between the new methods (UM and UUM) and the FM method

existed. It is worth mentioning that these analyzes were performed with a small sample size,

Table 2. Metabolites significant for the comparisons between FM vs. UM and FM vs. UUM.

Metabolite FM UM UUM FM UM UUM LT FM vs UM FM vs UUM Variation

Mean Med Mean Med Mean Med S-W

p-

Value

S-W

p-

Value

S-W

p-

Value

p-

Value

Mean

Comparison

Mean

Comparison

FM vs

UM

FM vs

UUM

2-hydroxybutyrate 5.50 4.76 13.88 14.85 16.15 17.87 0.615 0.105 0.113 0.066 1.75.E-04 7.39.E-04 # #

Alanine 18.87 16.30 43.88 38.92 35.39 29.71 0.141 0.070 0.106 0.260 4.64.E-06 6.85.E-04 # #

AMP 4.87 4.86 1.60 1.44 2.03 1.89 0.483 0.545 0.748 0.171 1.53.E-05 5.73.E-05 " "

Carnitine 15.18 15.88 8.44 8.39 10.98 11.15 0.085 0.848 0.120 0.099 4.06.E-06 6.97.E-04 " "

Choline 7.12 6.01 4.67 4.96 5.83 5.14 0.225 0.207 0.283 0.161 2.32.E-02 4.90.E-02 " "

Citrate 12.43 12.45 9.25 9.10 4.58 4.71 0.839 0.600 0.319 0.038 1.95.E-02 3.91.E-03 " "

Creatine 2.20 1.79 9.97 10.09 6.02 7.06 0.047 0.032 0.281 0.197 3.91.E-03 3.91.E-03 # #

Creatinine 1.80 1.43 6.21 6.38 4.19 4.53 0.057 0.166 0.133 0.083 2.85.E-06 3.25.E-05 # #

Glutamate 36.55 33.61 64.27 63.90 18.37 17.75 0.119 0.065 0.804 0.318 1.38.E-06 9.07.E-07 # "

GSH+GSSG 6.11 6.09 10.22 10.44 1.91 2.30 0.983 0.467 0.473 0.542 2.50.E-03 5.40.E-04 # "

Hydroxyacetone 5.16 5.09 8.18 8.12 6.87 6.83 0.444 0.445 0.583 0.069 4.13.E-08 1.33.E-04 # #

Inosine 1.07 0.94 3.10 3.17 3.42 3.33 0.590 0.120 0.481 0.029 3.91.E-03 3.91.E-03 # #

Isoleucine 2.88 2.52 9.10 8.44 7.07 4.52 0.282 0.014 0.006 0.145 3.91.E-03 3.91.E-03 # #

Leucine 14.67 12.12 42.93 40.20 28.11 22.97 0.007 0.131 0.039 0.686 3.91.E-03 3.91.E-03 # #

Lysine 32.74 27.16 94.86 90.05 60.29 55.44 0.010 0.090 0.445 0.589 3.91.E-03 3.91.E-03 # #

Methionine 13.39 12.55 11.04 10.56 7.70 7.61 0.745 0.006 0.183 0.198 7.81.E-03 1.28.E-05 " "

Methylacetoacetate 1.19 1.00 2.61 2.67 0.73 0.66 0.050 0.328 0.149 0.445 7.81.E-03 2.73.E-02 # "

Taurine 51.04 50.39 21.06 19.64 40.21 38.88 0.570 0.018 0.179 0.154 3.91.E-03 1.10.E-03 " "

Trimethylamine N-

oxide

13.04 13.57 7.26 6.56 8.27 8.51 0.061 0.029 0.533 0.000 3.91.E-03 3.91.E-03 " "

Valine 3.69 3.08 12.08 10.46 11.16 7.35 0.027 0.182 0.004 0.155 3.91.E-03 3.91.E-03 # #

FM: Folch Method, UM: Ultrasound Method, UUM: Ultrasound and Ultrafiltration, Med: Median, S-W p-Value: Shapiro-Wilk (Normality Test) p-Value, LT: Levene

test (Homoskedasticity test), Mean comparison: using t-test or Wilcoxon test, Variation: # (Smaller area or relative concentration in the reference method) " (Bigger

area or relative concentration in the reference method).

https://doi.org/10.1371/journal.pone.0247668.t002
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which may affect the power of the statistical tests performed. For example, the normality test

(Shapiro-Wilk test) was used as a means to select whether to take a parametric or non-

parametric approach to testing the hypothesis and contrast the methods and its metabolites. In

Fig 4. Six Sigma Gage R&R Measure. A comparative repeatability and reproducibility analysis (FM vs. UM vs. UUM)

for metabolites Valine, Alanine, Taurine and Inosine was carried out using the Six Sigma tool from RStudio. FM: Folch

Method, UM: Ultrasound Method, UUM: Ultrasound and Ultrafiltration Method, R Chart by Method: Range chart by

method (Numbers 1, 2, and 3 on the x-axis: Patients evaluated; Differences in normalized concentration values on the

y-axis), Metabolite by Method: Metabolite concentration of samples by method (Methods evaluated on the x-axis;

Normalized concentration values on the y-axis), CV: coefficient of variation as a percent.

https://doi.org/10.1371/journal.pone.0247668.g004

Fig 5. Comparative repeatability graphical analysis (FM vs. UM vs. UUM) for metabolites Valine, Alanine,

Taurine and Inosine. a) Three overlapping methods, b) Folch method, c) Ultrasound and ultrafiltration method, d)

Ultrasound method. A duplicate spectrum, acquired for the same patient and on the same day, is shown for each

method.

https://doi.org/10.1371/journal.pone.0247668.g005
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Fig 6. Comparative reproducibility graphical analysis (FM vs. UM vs. UUM) for metabolites Valine, Alanine,

Taurine and Inosine. a) Three overlapping methods, b) Folch method, c) Ultrasound and ultrafiltration method, d)

Ultrasound method. For each method a duplicate spectrum is shown for the same patient but processed on different

days.

https://doi.org/10.1371/journal.pone.0247668.g006

Fig 7. Sensitivity comparison of the FM, UM and UUM methods with the limit of detection and limit of quantification. Calculated by the standard

deviation (LOD = 3xSD and LOQ = 10xSD) of the integrals of the three selected noise regions of the spectrum (0.5 ppm, 6.5 ppm and 9.5 ppm) for all the

spectra of each method. Normalized concentration values on the y-axis.

https://doi.org/10.1371/journal.pone.0247668.g007
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these case, normality and t test have little power to reject the null hypothesis because small

samples most often pass normality tests. But, both tests are designed to achieve reliable results

with small sample sizes. (n<30) [61].

In Table 3, we present a comparison of the main parameters of the three methods (FM,

UM, UUM). Our results suggest that the best method to analyze PBMCs for NMR metabolo-

mic profiling was UUM for sensitivity, repeatability and reproducibility, but also processing

time and robustness (related to the number of steps to be performed).

Of the advantages that the new method offers, it is worth highlighting the fewer PBMCs

required to obtain quantifiable results. A previous work has employed 20 million cells [38],

which is twice the number of cells herein used, but with similar spectral quality. When working

with 12.5 million of PBMCs, we obtained a better LOQ and LOD with the new methods UM

and UUM versus FM, which identified more metabolites (43, 43 and 37, respectively), and,

most importantly, many more quantifiable metabolites (43, 42 and 31, respectively). This

increase in the number of metabolites means more variables to be analyzed in a metabolomic

study and, therefore, an increased probability of identifying a biomarker and metabolic path-

way associated with a biological process or medical condition, which summarizes the goal of

metabolomics. However, it should be noted that the use of centrifugal filters caused two

unwanted signals to appear in the spectrum that resulted from the filter’s own composition

(Glycerol at 3.56 ppm) or the washing solution (Ethanol at 3.67 ppm), as seen in the UUM

spectrum in Fig 2. Fortunately, these signals did not overlap the signals of the other metabolites

detected in the spectrum from UUM.

Furthermore, FM is very efficient in removing metabolites that could interfere with the

analysis and are present in the biological matrix (proteins, lipids, and other interferences).

Therefore, it has an advantage over the UM method, where it was still possible to observe wide

bands of protein and lipoprotein signals (see the red boxes in the spectrum, panels b, and c of

Table 3. General comparison of the three methods tested for the metabolomics profiling of PBMCs by NMR.

FEATURE Method

FM UM UUM

Number of cells 12.5 million cells 12.5 million cells 12.5 million cells

Processing time 16 hours 4 hours 6 hours

Processing steps 7 4 5

Lyophilization Yes No No

Presence of Protein No Yes No

Solvents Methanol, H2O, CHCl3 H2O H2O

Amount of metabolites (detected–quantifiable) 37–31 43–43 43–42

R&R test1 36% 15% 23%

Repeatability2 10% 3% 3%

Reproducibility3 30% 5% 10%

Limit of detection4 2.00 0.87 0.53

Limit of quantification4 6.66 2.89 1.77

FM: Folch Method, UM: Ultrasound Method, UUM: Ultrasound and Ultrafiltration Method, +: Acceptable, ++: Good, +++: Very good.
1Overall Coefficient of Variation for the R&R test for the eight evaluated metabolites.
2Coefficient of variation between replicates of the same patient (processed on the same day) for the concentration of the eight evaluated metabolites (as an average of

individual CVs)
3Coefficient of variation between replicates of the same patient (processed on two different days) for the concentration of eight evaluated metabolites (as an average of

individual CVs), Calculated with the standard deviation (LOD = 3xSD and LOQ = 10xSD) of the integrals of the three selected noise regions of the spectrum (0.5 ppm,

6.5 ppm, 9.5 ppm) for all the spectra from each method.

https://doi.org/10.1371/journal.pone.0247668.t003
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Fig 2) that markedly overlap the metabolite signals in the 1H-NMR spectrum. This overlapping

could hinder a correct integration of the signals of the individual metabolites, requiring a

deconvolution process for a correct quantification. However, this advantage was not present

compared to the UUM method, where the additional filtration process in the centrifugal filters

eliminated all interferences with a superior quality spectrum and better line base (see the red

boxes in the spectrum, panels a and c of Fig 2). Moreover, the increased additional signal-to-

noise ratio of the spectra obtained with the UUM method compared with FM, enhances a cor-

rect integration and quantification of the signals.

It is also interesting to focus on the extraction and lysis processes required to obtain samples

for NMR-based metabolomic profiling. These workups are often the most laborious and rate-

limiting steps in metabolomics because they require accuracy, repeatability and reproducibil-

ity, as well as robustness. To date, several rigorous studies recommend the use of the metha-

nol–chloroform–water mixture (FM) to extract the largest number of metabolites with

repeatability [62, 63]. However, following FM is associated with many sequential manipula-

tions (i.e., quenching, multiple lysis, centrifugation, solvent elimination, sample drying, etc.)

that significantly increase the risk of experimental errors or the introduction of variability.

Instead, the methods herein developed (UM and UUM) involve fewer steps (i.e., simultaneous

quenching-lysis-extracting cycles, centrifugation and ultrafiltration), which take place in the

same container and minimize the risk of sample loss. Both UM and UUM provided higher

reproducibility and repeatability of the results compared to FM, as represented in Figs 4–6.

Moreover, the processing time is another crucial variable. Table 3 denotes how FM takes 2-

5-fold longer than UUM and takes 4-fold longer than UM; this is translated into higher sample

handling costs and fewer samples analyzed per day. The latter is perhaps the most critical vari-

able in clinics where many samples have to be evaluated, and the results need to be obtained in

the shortest possible time. In addition, the need to use toxic solvents (methanol and chloro-

form) and disposable materials increases the cost of FM. While processing a sample by FM,

water, methanol, chloroform, buffer, and at least three centrifuge tubes, are required. With

UM, only buffer and one centrifugal tube are needed. UUM requires an additional centrifugal

filter, which slightly increases the price of this process compared to UM. FM involves using a

freeze dryer, an instrument with a relatively high cost compared to the ultrasound probe

required for UM and UUM. The metabolites detected from PBMCs can provide valuable

information to diagnose and manage diseases given their nature and function in the human

body. The immune system involves two fundamental types of responses in which PBMCs per-

form functions: the humoral response (Humoral Immunity) and the cell-mediated one (Cellu-

lar immunity). These responses are related to the activation of T- and B-lymphocytes.

Likewise, in immune defense lines (the innate and adaptive immune systems), PBMCs also

play a role. In the innate system, in which cells perform an effector function without requiring

specific antigen recognition, NK cells perform related functions, whereas dendritic cells (a

type of PBMCs) form a critical interface between both innate and adaptive systems. It should

be noted that the medical and therapeutic interest in PBMCs, which has led to state-of-the-art

developments in the field of stem cells using a fraction of PBMCs from a single donor, lies in

the generation of induced pluripotent stem cells (iPSC), which is extremely relevant in person-

alized medicine. Moreover, there have been more recent developments, which aim to treat

human cancers without a compatible donor by using genome editing technology, such as

CRISPR / Cas9, to transform T-cells into CAR-T cells [64]. When the aim is to acquire infor-

mation about changes in the metabolic state of cells, as is the case of PBMCs, metabolomic

profiling by NMR is an analysis method that allows the non-targeted characterization of a

large number of different metabolites in a single analysis. This metabolomic technique pro-

vides data that can be used in combination with other omics data, such as those obtained by
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genomics and proteomics. Taken together, these data have been applied to a wide range of in
vitro models and have helped to better understand the metabolism of a healthy and a diseased

individual [65]. Although we know that some studies exist on the metabolomic profiling of

blood cells, most of them have been carried out on red blood cells (RBC) and polymorphonu-

clear cells (PMNs) [66–74], and very limited data about analyzing PBMCs by NMR spectros-

copy from patients are available [38, 75].

In future works, this method can be directly applied to perform high-throughput metabolo-

mics analyses in clinical studies, especially for studying diseases in which the immune system

plays an important role. In particular, we intend to apply it to research about the human

immunodeficiency virus (HIV), to identify biomarkers and metabolic pathways associated

with AIDS development.

Conclusions

This work presents a new processing method of PBMCs for metabolomic profiling by NMR

spectroscopy. High quality, robust and reproducible data can be obtained from PBMC samples

of 12.5 million cells (half the amount previously reported) by combining high-intensity ultra-

sound and centrifugal filtration. The resulting ultrasound and ultrafiltration method (UUM) is

characterized by minimum sample handling (the whole process can be done in the same vial)

and a short processing time (6 h vs. 16 h that the traditional method lasts). In combination

with the easy availability of PBMC samples from patients, methods open up new avenues for

the application of 1H-NMR-based PBMC metabolomics profiling for disease diagnosis and

management.
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Writing – original draft: León Gabriel Gómez-Archila, Martina Palomino-Schätzlein, Wilde-

man Zapata-Builes, Elkin Galeano.

Writing – review & editing: León Gabriel Gómez-Archila, Martina Palomino-Schätzlein,
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