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of Inflammasome Signaling:
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Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada

Inflammasomes are cytoplasmic inflammatory signaling protein complexes that detect
microbial materials, sterile inflammatory insults, and certain host-derived elements.
Inflammasomes, once activated, promote caspase-1–mediated maturation and
secretion of pro-inflammatory cytokines, interleukin (IL)-1b and IL-18, leading to
pyroptosis. Current advances in inflammasome research support their involvement in
the development of chronic inflammatory disorders in contrast to their role in regulating
innate immunity. Cannabis (marijuana) is a natural product obtained from the Cannabis
sativa plant, and pharmacologically active ingredients of the plant are referred to as
cannabinoids. Cannabinoids and cannabis extracts have recently emerged as promising
novel drugs for chronic medical conditions. Growing evidence indicates the potent anti-
inflammatory potential of cannabinoids, especially D9-tetrahydrocannabinol (D9-THC),
cannabidiol (CBD), and synthetic cannabinoids; however, the mechanisms remain
unclear. Several attempts have been made to decipher the role of cannabinoids in
modulating inflammasome signaling in the etiology of chronic inflammatory diseases. In
this review, we discuss recently published evidence on the effect of cannabinoids on
inflammasome signaling. We also discuss the contribution of various cannabinoids in
human diseases concerning inflammasome regulation. Lastly, in the milieu of coronavirus
disease-2019 (COVID-19) pandemic, we confer available evidence linking inflammasome
activation to the pathophysiology of COVID-19 suggesting overall, the importance of
cannabinoids as possible drugs to target inflammasome activation in or to support the
treatment of a variety of human disorders including COVID-19.

Keywords: inflammasome, pro-inflammatory cytokines, inflammasome signaling, cannabidiol, Delta-9
tetrahydrocannabinol, cannabinoids
INTRODUCTION

Animals, from lower vertebrates, such as hagfish, to higher ones, such as mammals, use innate,
adaptive immune responses to protect themselves from external pathogens and injuries (1, 2). An
innate immune response is the first event upon any hazard where external microbes are sensed by a
group of diverse germline-encoded receptors. These receptors-pattern recognition receptors
org January 2021 | Volume 11 | Article 6136131
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(PRRs)-recognize conserved microbial structures called
pathogen-associated molecular patterns (PAMPs) (3). Innate
immune cells can also mount an infection-independent
immune response by sensing endogenous substances released
from host tissue damage: damage (or danger)-associated
molecular patterns (DAMPs) (4). This type of DAMP-
mediated inflammatory response is often called “sterile
inflammation” due to no pathogen involvement (5). Overall,
both PAMPs and DAMPs can stimulate an initial immune
response by activating different types of PRRs, including toll-
like receptors (TLRs), nucleotide-binding domain (NBD) and
leucine-rich-repeat-(LRR)-containing or simply nucleotide-
binding and oligomerization domain (NOD)-like receptors
(NLRs), retinoic acid-inducible gene I (RIG-I)-like receptors
(RLRs), C-type lectin receptors (CLRs), and several cytosolic
DNA sensor-like receptors absent in melanoma 2 (AIM2)-like
receptors (ALRs) (4, 6). These PRRs are expressed by immune
cells (macrophages, dendritic cells, etc.) and non-immune cells
(endothelial cells, fibroblasts, etc.) and are present in various
subcellular compartments (3, 4). Among all PRRs, the NLR
family is the most extensively described in the literature due to
numerous known sterile and pathogenic activators (7). NLRs and
ALRs form a multimeric complex known as the “inflammasome”
following the detection of respective PAMPs and/or DAMPs.

TLR-induced priming is often required to activate and
assemble the inflammasome (8). Once formed and activated at
the cellular level, canonical inflammasomes activate caspase-1 by
autoproteolysis, resulting in proteolytic maturation of IL-1b and
IL-18, which in turn leads to respective cell death by pyroptosis.
Non-canonical inflammasome activation by bacterial pathogens
leads to caspase-11 activation and the subsequent hyper-
activation of innate immunity in mice (9). Nevertheless, IL-1b
and IL-18 are crucial pro-inflammatory cytokines implicated in a
variety of human disorders, such as aging, lung cancer,
cardiovascular diseases, gout, etc (10, 11). Besides pyroptosis,
inflammasomes may be involved in eicosanoid synthesis,
phagosome maturation, glycolysis, lipid metabolism, and
autophagy in a cytokine- and pyroptosis-independent
manner (12).

Cannabis sativa (C. sativa) has been cultivated for centuries
around the world for many purposes, and it is the most
frequently used illegal plant. “Marijuana” is the term used to
describe cannabis varieties that contain more than 0.3% D9-THC
by dry weight, while “hemp” is used for varieties with lower than
0.3% D9-THC. C. sativa is a versatile plant that provides food,
feed, shelter, and medicine. Since ancient times, various cannabis
preparations have been used in both traditional and professional
medicine. Although cannabis can be beneficial in treating various
human diseases (13), evidence-based medical conditions for
which cannabis can be usefully prescribed are chronic pain,
nausea and vomiting after chemotherapy, seizures in Lennox-
Gastaut and Dravet syndrome, and spasticity (14, 15). On the
other hand, a recent study suggests that newly prescribed
cannabinoid use (either nabilone or dronabinol) among older
adults with the chronic obstructive pulmonary disorder (COPD)
was associated with higher rates of adverse events. Although
Frontiers in Immunology | www.frontiersin.org 2
further research is needed to confirm the same, the physicians
should weigh benefits against risks while prescribing new
cannabinoids to older COPD patients (16). At least 554
compounds, including 113 phytocannabinoids and 120
terpenes, have been identified in C. sativa (13). Terpenes in
cannabis give the plant a characteristic odor based on
percentages of various volatile aromatic compounds. Terpenes
are believed to be partially responsible for the “entourage effect,”
with minor cannabinoids and other molecules such as phenolic
compounds having additional effects. To date, no clear evidence
has emerged for the role of any molecule or their combination in
the entourage effect. In fact, recent experiments have
demonstrated that terpenes do not add to the activation of
cannabinoid receptors triggered by cannabinoids (17, 18). It
remains to be shown, however, whether they can contribute to
the entourage effect through interaction with other receptors.

Several publications have demonstrated the potent anti-
inflammatory effect of cannabinoids (19). Their mechanisms of
action include activating cannabinoid and other receptors,
inhibiting cytokines and cell proliferation, inducing apoptosis, and
so on (19–21). Inflammation occurs when innate immune cells
detect pathogens, injury, or danger signals via PRRs on cell
membranes and in cytosols. Activated PRRs then form
inflammasomes, triggering signaling cascades leading to the
recruitment of leukocytes to the injury site (22). Under normal
conditions, acute inflammatory events characterized by the influx of
neutrophils at the injured tissue are crucial parts of innate
immunity. However, dysregulated acute inflammation, sterile
inflammation, and recurrent acute inflammatory insults result in
chronic inflammation. Chronic inflammation has been implicated
in the pathophysiology of a variety of diseases. Inflammasomes are
activated during microbial invasion, tissue injury, and sterile
inflammation, which all lead to cell death. Cell death can also
result in the secretion of another round of inflammasome activators,
such as uric acid and ATP, which both activate inflammasomes in a
paracrine manner. These signaling cascades eventually give rise to
chronic inflammatory disorders, such as cardiovascular disease,
cancer, metabolic disorders, autoimmune disorders, and
neurodegenerative disorders (23). Besides, recent developments in
inflammasome research suggest that the anti-inflammatory action
of cannabinoids is mediated in part by modulating inflammasome
assembly and function. Hence, our goals in this review are to cover
all published research on the action of cannabinoids on the
inflammasome to propose the future therapeutic potential of
cannabis in chronic inflammatory disorders.
CANNABINOIDS SIGNALING

The first documented evidence of the medicinal use of C. sativa
showed that its extracts were already in use around 5,000 years
ago in ancient China to alleviate pain (24). Three types of
cannabinoids exist: endocannabinoids produced by the human
body; phytocannabinoids produced naturally by C. sativa; and
synthetic cannabinoids synthesized under laboratory conditions.
After the discovery of D9-THC (25), extensive research efforts
January 2021 | Volume 11 | Article 613613
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were carried out to understand the pharmacological effects of
cannabis. Eventually, two members of the G-protein coupled
receptor (GPCR) family, the cannabinoid receptors CB1R and
CB2R, were successfully cloned from rat cerebral cortex and rat
spleen, respectively (26, 27). Many cannabinoids were
demonstrated to bind these receptors, albeit with different
efficiencies. Cannabinoids were also shown to bind to receptors
other than CB1R and CB2R, as reviewed by our group elsewhere
(28). All three types of cannabinoids exert their biological actions
by binding to these receptors, and each cannabinoid may bind
different combinations of receptors at a given time.

The endocannabinoid system (ECS) comprises of two
endocannabinoids (anandamide and 2-arachidonoylglycerol),
cannabinoid receptors (CB1 and CB2), and enzymes that
metabolize endocannabinoids (29). Anandamide (AEA) (30)
and 2-arachidonylglycerol (2-AG) (31) are the two most
important endocannabinoids, although other arachidonic acid
derivatives may produce similar effects (28). Both AEA and 2-
AG are produced from postsynaptic terminals owing to
increased intracellular Ca2+ influx (24, 32). Once produced,
AEA and majorly 2-AG travel in a retrograde fashion due to
their high lipophilicity to activate CB1 receptors in presynaptic
terminals. The activation of CB1R inhibits neurotransmitter
release via the reduction of Ca2+ inflow and inhibition of cyclic
adenosine monophosphate (cAMP). However, AEA activates the
intracellular transient receptor potential cation channel
subfamily V member 1 (TRPV1) receptor, inhibits L-type Ca2+

channels, and inhibits 2-AG biosynthesis (24). The major role of
ECS in the body is to maintain homeostasis, and it is involved in
the regulation of a variety of processes, including immune,
digestive, neurological, metabolic, and reproductive functions
(29, 33). Variations in the ECS are pathophysiological and
depend on cell and tissue type, age, and sex, and fluctuations
in the function of ECS components are associated with the onset
of many disorders, such as neurodegenerative, gastrointestinal,
chronic inflammatory, cardiovascular, reproductive, circulatory,
and metabolic disorders, including cancers (24, 34, 35).

The human CB1R and CB2R crystal structures reveal that
both the intramembrane and the extracellular surface of the
receptor play significant role in the ligand binding, depending on
the type of ligand, unlike other lipid-stimulated GPCRs (36, 37).
The extracellular-facing lid over intracellular binding pocket
with its acidic residues facing outside disfavors interactions
with lipophilic ligands in the extracellular space, which gain
entrance to the binding pocket via an intramembrane “tunnel”
(37). CB1 and CB2 receptors share only 44% of the homology of
the protein sequence in humans, and CB1 receptors are highly
conserved among mammals in contrast to CB2 (38). Overall,
CB1R is the most extensively expressed GPCR in the central
nervous system (CNS) and the peripheral nervous system (PNS),
whereas CB2R is highly expressed in peripheral immune cells.
However, the functional CB1Rs are also expressed in several
non-neuronal peripheral tissues including heart, intestines, and
liver (39). Additionally, the functional CB2 receptors are also
expressed in microglia and resident macrophages in the CNS
under neuroinflammatory conditions (40, 41). CB2R expression
Frontiers in Immunology | www.frontiersin.org 3
was confirmed in the neurons, as well, governing synaptic
plasticity (42). Both receptors are coupled to the Gi/o family of
G-proteins to inhibit cAMP production by reducing adenylyl
cyclase activity, leading to lower protein kinase A (PKA) activity
and the phosphorylation of mitogen-activated protein kinase
(MAPK) activity (p38, c-Jun N-terminal kinase (JNK), and p42/
44). They also can activate phosphatidylinositol-3-kinase-protein
kinase B (PI3K-AKT), ceramide production, and the expression
of various genes (24, 41, 43, 44). Interestingly, CB1 and CB2
receptors interact with Gs proteins as well to induce cAMP
production under specific circumstances (45, 46). CB1 receptor
activation specifically stimulates G-protein-gated inwardly
rectifying potassium (GIRK) channels and inhibits voltage-
gated (N-type) Ca2+ channels. Both receptors exhibit
constitutive activity suggestive of G-protein activation in the
absence of agonists (42). Lastly, CB1 and CB2 receptors also
signal via b-arrestin and a few other biased, cell-, and ligand-
specific cannabinoid receptor–mediated signal transduction
mechanisms (47).

AEA is a highly specific partial agonist of CB1R with
negligible or weak partial agonist activity at CB2R, whereas 2-
AG is a full agonist at both CB1 and CB2 receptors. D9-THC has
the highest affinity toward CB1R and CB2R among all
phytocannabinoids (48). CBD is a weak antagonist at CB1 and
an inverse agonist at CB2 receptors (49), although a meta-
analysis study revealed that CBD mostly acts indirectly
through other signaling pathways (50). CBD acts as an agonist
at adenosine receptors and 5-HT1A receptors, and it increases
AEA levels to elicit TRPV1 channel activation (50). Other minor
cannabinoids also bind to cannabinoid and other receptors, as
reviewed by our group elsewhere (28). By modulating
intracellular cAMP levels and thereby PKA activity,
cannabinoids regulate the phosphorylation of a plethora of
downstream proteins, resulting in major changes in cellular
activities. MAPK activation is an important pathway by which
cannabinoids regulate the expression of various genes. Changes
in the extracellular and intracellular ions and activation of ion
channels contribute to crucial downstream cellular effects (44).
Due to the possibility of binding to different receptors at a given
time, including CB1R and CB2R, along with different respective
agonist/antagonist/inverse agonist potentials at those receptors,
cannabinoids exhibit complexity in their mechanisms of action
and downstream signaling transduction pathways.
CANNABINOIDS IN INFLAMMATION

Cannabinoids and cannabinoid-like compounds have proven
potent anti-inflammatory and immunomodulatory properties
(19, 21, 35, 51, 52). In general, cannabinoids work by inducing
apoptosis, preventing cell proliferation, reducing cytokine
production, and enhancing T-regulatory cells (Tregs) to
produce anti-inflammatory effects (19). Interestingly,
cannabinoids may change the balance between the response
involving T-helper 1 (Th-1) and Th-2 cells, inhibiting the
expression of Th-1–induced cytokines and stimulating the
January 2021 | Volume 11 | Article 613613
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expression of Th-2–induced cytokines (53). More than 350
patents have been filed on cannabinoids in the treatment of
inflammation (54). Ajulemic acid (anabasum), a novel selective
CB2R agonist, is currently undergoing phase II and phase III
clinical trials owing to its potent anti-inflammatory effect on
neutrophil migration in response to ultraviolet (UV)‐killed E.
coli‐triggered dermal inflammation in humans. Notably,
ajulemic acid removed the pathogenic bacteria that caused the
inflammation and promoted the biosynthesis of special pro‐
resolution lipid mediators to boost the body’s innate immunity
(55, 56). The data from recently concluded RESOLVE-1 phase III
trial of anabasum for the treatment of systemic sclerosis failed to
provide any efficacy in the primary or secondary end points
(Corbus Pharmaceuticals Press Release Sept 8, 2020). However,
the additional post-hoc analyses released by Corbus recently
showed that anabasum treatment was associated with a benefit in
the lung function (forced vital capacity) in subjects on
established background of immunosuppressant therapies
(Corbus Pharmaceuticals Press Release Nov 9, 2020). Overall,
anabasum was able to improve the lung function in patients with
systemic sclerosis although was not effective in improving the
actual end points of the clinical trial (NCT03398837).

CBD is the most abundant non-psychoactive cannabinoid of
C. sativa and hence has been extensively studied for its anti-
inflammatory properties. CBD is currently undergoing clinical
trials for its effectiveness in schizophrenia (57), refractory
epileptic encephalopathy (58), and tuberous sclerosis (59, 60).
In addition to CB1, CB2, TRPV1, and adenosine receptors, the
activation of GPR55, inhibition of fatty acid amide hydrolase
(FAAH), stimulation of peroxisome proliferator-activated
receptor-gamma (PPAR-g), and heterodimerization of CB2/
5HT1A are also involved in mediating the anti-inflammatory
effects of CBD (20, 61, 62). Subsequently, CBD was also found to
extensively inhibit the production of pro-inflammatory
cytokines, such as IL-1a, IL-1b, IL-6, and tissue necrosis factor
a (TNF-a), etc., in pre-clinical in vitro and in vivo models of
inflammation and cancer (20). The anti-inflammatory activity of
CBD was paralleled by the modulation of downstream gene
expression, reduction in lipid peroxidation, Ca2+ homeostasis,
and reduction of oxidative stress (61, 63, 64). However, D9-THC
mediates its anti-inflammatory actions mainly via CB2 receptor
activation, decreased production of cytokines, inhibition of Th-1,
promotion of Th-2 cells, induction of apoptosis, and
downregulation of cell proliferation (35, 52). Cannabichromene
(CBC) has been reported to inhibit the expression and activity of
TRPV1-4 channels (65). Cannabigerol (CBG) has exhibited
protective properties in a murine model of inflammatory bowel
disease (IBD) by regulating cytokine (IL-1b, IL-10, and
interferon-g) levels and inhibiting inducible nitric oxide
synthase (iNOS) expression (66). Cannabinol (CBN), like CBD
and THC, is shown to inhibit pro-inflammatory cytokine
production (67). Cannabidiolic acid (CBDA) has been
demonstrated to be a selective inhibitor of cyclooxygenase-2
(COX-2), and it likely plays an essential role in the reduction of
inflammation (68). Data on other minor cannabinoids are
limited at this point.
Frontiers in Immunology | www.frontiersin.org 4
INFLAMMASOME SIGNALING

The “inflammasome” is the name given to the high molecular
weight scaffold formed by an assembly of different proteins. This
scaffold mostly consists of three parts (1): a sensor protein, (2)
typically the adaptor protein ASC (an apoptosis-associated,
speck-like protein containing a C-terminal caspase recruitment
domain [CARD]), and (3) the effector protein caspase-1
(cysteine protease) (12, 69). Sensor proteins are six NLRs
(NLRP1, NLRP3, NLRP6, NLRP7, NLRP12, and NLRC4) or
two ALRs (AIM2 and interferon-gamma inducible protein 16
(IFI-16) or pyrin (PYD). The NLR family contains the central
nucleotide-binding and oligomerization (NACHT) domain
flanked by C-terminal leucine-rich repeats (LRRs) and N-
terminal CARD or PYD domains. LRRs specifically govern the
ligand sensing for each NLR and autoregulation, whereas CARD
or PYD domains regulate the protein-protein interactions
required for downstream signaling cascades. The NACHT
domain is shared by all NLRs and regulates NLR activation via
adenosine 5′-triphosphate (ATP)-induced oligomerization (69).
ASC is required for certain PRRs, NLRP3, AIM2, and PYD to
recruit caspase-1, and NLRs such as NLRP1 and NLRC4 contain
CARD and hence directly recruit caspase-1. Although other
PRRs might not need ASC for caspase-1 recruitment,
downstream cytokine processing depends on ASC in the
complex (70) (Figure 1).

Inflammasome amplification is regulated by ASC via three
mechanisms: first, sensors nucleate ASC, forming oligomers and
ASC nucleates caspase-1 such that the sensor, adaptor, and enzyme
are always present at cumulative concentrations; second, cytokines
formed by caspase-1 infiltrate immune cells, lowering their
activation; third, “ASC specks” released after pyroptosis can be
engulfed by neighboring cells, forming an inflammasome in
recipient cells (70, 71). These ASC specks are formed by
phosphorylated-ASC and are crucial to inflammasome activity
(72) (Figure 2). After the oligomerization of sensor proteins,
inactive zymogen caspase-1 attaches itself to the scaffold and is
activated by self-proteolysis into an active enzyme. Mouse caspase-
1, -11, and -12 and human caspase-1, -4, and -5 are pro-
inflammatory (73). Once activated, caspase-1 cleaves pro-IL-1b
and pro-IL-18 and initiates their secretion, leading to an
inflammatory form of cell death, pyroptosis. Pyroptosis consists of
a formation of cell-membrane pores followed by cell swelling,
osmotic lysis, and the release of intracellular debris (70, 74).
Inflammatory caspase–dependent pyroptosis is carried out by the
protein gasdermin D (GSDMD). Caspase-1, -4, -5, and -11
recognize and cleave to the same site in GSDMD, releasing its N-
terminus, which signifies the autoinhibitory function of the C-
terminus (75, 76). The N-terminus is the active form of GSDMD
that forms pores, causing pyroptosis. Inflammasomes with caspase-
1 as an effector are termed “canonical inflammasomes,” and
caspase-11-mediated inflammasome activation is termed “non-
canonical” (77). Nonetheless, activating the inflammasome works
on an all-or-nothing principle (78), and multiple inflammasome
sensors can orchestrate an inflammation response against a single
pathogen inside a single host cell (79). In this review, we briefly
January 2021 | Volume 11 | Article 613613
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discuss the most widely described inflammasomes in the literature
(Figure 1).

The NLRP1
It is the first PRR to be discovered that forms an inflammasome
scaffold to mediate caspase-1–induced pyroptosis (80). Mice have
three orthologs of NLRP1 (NLRP1a–c), whereas humans have a
single gene coding for NLRP1. Murine orthologs have the CARD
domain and lack the PYD domain, thus recruiting caspase-1
without ASC. In contrast, human NLRP1 has the N-terminal
PYD domain, and NLRP1 is vital during host defense against
anthrax (81). Mice lacking NLRP1 activation were more prone to
the toxin due to aberrant host defense (82). In humans,
macrophages induce apoptosis, not pyroptosis, in response to
anthrax due to the absence of the Nlrp1b gene. Hence, NLRP1 is
activated via binding to muramyl dipeptide (MDP) in the presence
of the MDP sensor in humans (83). Single-nucleotide
polymorphisms in the Nlrp1 gene in humans are also associated
with congenital toxoplasmosis, proving their importance in
Toxoplasma infection as well (70).

The NLRP3
The most widely studied inflammasome with respect to several
human disorders is formed by NLRP3. It contains three domains—
Frontiers in Immunology | www.frontiersin.org 5
LRR, NACHT, and PYD—to bind ASC. The formation of the
NLRP3 inflammasome is extensively studied in macrophages,
where it is a two-step process: priming and activation (23, 84).
PAMPs/DAMPs and cytokines induce non-transcriptional
priming via post-translational changes (e.g., deubiquitination)
and nuclear factor kappa B (NF-kB) activation via TLR4-
induced transcriptional priming, leading to higher NLRP3
expression. The phosphorylation of ASC is also mandatory for
NLRP3 scaffold formation. Non-transcriptional priming lasts a
short (10–30 min) to intermediate time (30 min–1 h), while
transcriptional priming lasts longer (>3 h) (23). TLR-mediated
MyD88/IL-1 receptor-associated kinase 1 (IRAK1) regulates
non-transcriptional NLRP3 priming, where NLRP3 expression
does not change but priming is enough to secrete cleaved
caspase-1 (85). A second signal is required for the activation
step of NLRP3 and the formation of the NLRP3 signaling
complex. A variety of “second signals” activate NLRP3,
including potassium (K+) efflux, cathepsin release from
lysosomal rupture, mitochondrial ROS and DNA, cardiolipin,
calcium signaling, Na+, and Cl- efflux, among others (23, 84). A
newly identified NLRP3 binding partner, NEK7 (NIMA-related
kinase 7), forms a NLRP3 inflammasome after K+ efflux
(86). Many particulate substances, such as amyloid b (Ab)
(87), silica, alum, monosodium urate, etc., can cause lysosomal
FIGURE 1 | Inflammasome assembly and activation pathways. An inflammasome consists of three proteins: sensor, adaptor, and effector. Please note that NLRP3
and NLRC4 require NIMA (Never in Mitosis Gene A)-related Kinase 7 (NEK7) and NLR family apoptosis inhibitory protein (NAIP), respectively, for activation. Canonical
inflammasome activation results in the formation of active caspase-1 (activation) by removing caspase activation and recruitment domain (CARD; processing). Active
caspase-1 cleaves gasdermin D (GSDMD) and pro-interleukins into the N-terminal of GSDMD and mature interleukins, respectively. The N-terminal of GSDMD forms
pores within the cell membrane, allowing mature IL-1b and IL-18 release along with changes in ion fluxes. Such caspase-1-dependent formation of plasma
membrane pores releasing inflammatory intracellular materials resulting in cell lysis is termed pyroptosis. Alternatively, in non-canonical inflammasome activation,
gram-negative bacteria release lipopolysaccharides (LPS) that activate caspase-4 and -5 in humans and caspase-11 in mice, which results in pyroptosis via several
mechanisms. Firstly, GSDMD-mediated pyroptosis occurs as explained above and, secondly, activation of caspases leads to the release of IL-1a and high-mobility
group box protein 1 (HMGB1) via unknown mechanisms, which results in pyroptosis. Caspase-4, -5, and -11 activation by LPS also indirectly activates the NLRP3
inflammasome, culminating in the maturation of IL-1b and IL-18 via activating caspase-1. Abbreviations: Nucleotide-binding domain (NBD) and leucine-rich-repeat-
(LRR)-containing receptors (NLRs); Absent in melanoma 2 (AIM2)-like receptors (ALRs); pyrin domain (PYD); Caspase activation and recruitment domain (CARD);
Nucleotide-binding and oligomerization or NAIP, CIITA, HET-E and TP1 (NACHT) domain; Apoptosis-associated speck-like protein containing CARD (ASC);
Interferon-gamma inducible protein 16 (IFI-16); Function-to-find domain (FIIND); Coiled-coil (CC); Bacterial type III secretion system (T3SS); Hematopoietic interferon-
inducible nuclear protein with 200 amino acids (HIN-200).
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destabilization to activate NLRP3 inflammasome (88).
Autophagy and related proteins inhibit the mitochondrial
DNA release into cytosol, regulating NLRP3 activation (89).
The dysregulation of the NLRP3 inflammasome is involved in
the pathogenesis of a variety of human disorders, and a better
understanding of NLRP3 activation would help identify drug
targets for NLRP3-related diseases.

The NLRC4
NLRC4 [also called ice protease-activating factor (IPAF)] contains
the CARD domain to directly recruit caspase-1 to the
inflammasome. The ASC is not needed for NLRC4-mediated
pyroptosis but essential for amplifying the response and IL-1b
release (10, 90). NLRC4 requires NLR-family apoptosis inhibitory
proteins (NAIPs) to interact with bacterial pathogens upstream for
its activation. NAIPs and their binding to NLRC4 have been
reviewed in-depth elsewhere (91). After NAIPs bind to bacteria,
NLRC4-NAIP-complexes are formed, leading to their activation.
Besides pyroptosis, NLRC4 causes an actin polymerization response
against Salmonella, highlighting the non-conventional role of
NLRC4 inflammasome activation (92).

The AIM2
It is a cytosolic DNA sensor from the ALR family characterized by a
hematopoietic interferon-inducible nuclear protein with a 200-
Frontiers in Immunology | www.frontiersin.org 6
amino-acid (HIN-200) domain. AIM2 is activated by binding to
double-stranded DNA (dsDNA) of a minimum 250–300 bp in a
non-sequence-specific manner via the HIN200 domain (93). In the
absence of cytosolic dsDNA, HIN200 binds to AIM2 PYD as an
autoinhibition. The AIM2 PYD domain is displaced after dsDNA
binding, forming the PYD-PYD interaction of ASC (84). The AIM2
inflammasome plays an incomparable role in host defense against
bacteria, Listeria, and DNA viruses, as the impaired secretion of
cytokines has been observed in macrophages lacking AIM2 (94).
Interestingly, a recent report documented the requirement of AIM2
inflammasome surveillance of DNA damage for normal brain
maturation and function. AIM2 contributes to the cell death of
genetically compromised CNS cells and shapes overall behavior in
mice (95). The dysfunction of AIM2 is linked to various
human conditions.

The Non-Canonical Inflammasome
Recent advances have identified a complex innate immune response
phenomenon in which inflammasomes cleave caspase-11 in mice,
termed “non-canonical inflammasome activation” (9). However,
caspase-11 activation itself may stimulate the caspase-1–mediated
release of canonical interleukins, as shown by the inhibition of the
secretion of IL-1b and IL-18 under lipopolysaccharide (LPS)
treatment in caspase-11-knockout mice (9). Additionally, caspase-
11 is required for host defense against gram-negative bacterial
FIGURE 2 | ASC specks and inflammasome activation amplification. 1. Initial signal (bacterial toxins, PAMPs, DAMPs, ds-DNA, etc.) leads to the assembly of the
inflammasome. 2. ASC specks (oligomers) are formed such that the sensor, the adaptor, and the caspase-1 are always present at increasing concentrations. 3. The
cell undergoes pyroptosis, resulting in cell lysis and the release of inflammatory cytokines and ASC specks. 4. The released ASC specks can be engulfed by adjacent
immune cells, leading to the transduction of the upstream signal from one cell to the other. 5. The process of inflammasome assembly, activation, and pyroptosis
repeats in the recipient immune cells, leading to amplification of inflammasome activation.
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infections since it detects specific acylated lipid A present in the LPS
of this bacterial population (96). Caspase-11 is not activated in
gram-positive bacterial infections, and caspase-11 activation results
in the secretion of IL-1a and specific high-mobility group box-1
(HMGB1), triggering direct pyroptosis (77). TLR4 activation by LPS
as a priming step is also dispensable in non-canonical signaling
transduction, as HMGB1 promotes TLR4 signaling (97). It has been
predicted that a caspase-11-bound pannexin-1–dependent decrease
of intracellular K+ might activate the NLRP3 inflammasome (70),
but further research is needed to understand whether the drop in
intracellular K+ is sufficient to activate inflammasomes and/or
whether other possible mechanisms are involved.
INFLAMMASOMES IN CHRONIC
INFLAMMATORY DISORDERS

Inflammasomes are critical regulators of theoretically all chronic
inflammatory disorders. Irregular signaling by inflammasomes
inflicts perturbations on innate immune cells, eventually affecting
adaptive immunity and being involved in the pathogenesis of acute
and chronic inflammatory disorders. We discuss a few
representative data that link various inflammasomes and the
development of inflammatory diseases (Table 1).

Role of NLRP1
Genomic studies of NLRP1 have identified mutations associated
with autoinflammatory diseases in humans, including systemic
sclerosis, Crohn’s disease, Addison’s disease, rheumatoid arthritis,
type-1 diabetes, and vitiligo (70, 98). NLRP1 is the most highly
expressed inflammasome in human skin, and gain-of-function
NLRP1 mutations cause chronic skin inflammation and skin
cancer. These mutations result in the higher self-oligomerization
of NLRP1, disrupting the PYD-LRR interaction crucial in keeping
NLRP1 dormant under physiological situations (100). Genetic
variations in NLRP1 are also positively associated with a higher
susceptibility to psoriasis (101). Interestingly, higher NLRP1
expression is correlated to dry skin–induced chronic itch in a sex-
and age-dependent manner in mice (168). NLRP1 has recently been
implicated in the pathophysiology of IBD by restricting the
beneficial butyrate-producing Clostridiales in the gut of the
dextran sulphate sodium (DSS)-induced colitis murine model of
IBD (107). Single-nucleotide polymorphisms in NLRP1 are
associated with an increased risk of developing type-1 diabetes
and systemic lupus erythematosus (SLE) in Brazilian population
cohorts (113). Patients with aortic occlusive disease (AOD) have
exhibited higher mRNA expression of NLRP1 than healthy
individuals (153).

Role of NLRP3
NLRP3 has been considered the gold standard of inflammasome
signaling, as many NLRP3 inhibitors are under investigation in
clinical trials for coronary artery disease (169) and gout (170);
more than 50 clinical studies are currently underway to elucidate
the role of NLRP3 in various diseases. Cryopyrin‐associated
periodic syndrome (CAPS) is a well-documented autosomal‐
Frontiers in Immunology | www.frontiersin.org 7
dominant autoinflammatory disorder caused by gain-of-function
mutations in NLRP3 in pediatric patients that lead to increased
plasma IL-1b levels (171, 172). An enormous amount of data
shows that NLRP3 is involved in the pathophysiology of
Alzheimer’s, stroke and cardiovascular diseases, asthma, gout,
IBD, non-alcoholic fatty liver disease, non-alcoholic
steatohepatitis, multiple sclerosis, rheumatoid arthritis,
myelodysplastic syndrome, obesity-induced inflammation or
insulin resistance, type-1 diabetes, oxalate-induced
nephropathy, graft-versus-host disease, and silicosis (109).
Inflammaging is a condition marked by higher-than-normal
levels of inflammatory markers in the blood, indicating a high
risk of frailty. A major mechanism of inflammaging is abnormal
NLRP3 inflammasome activation (173). In type-2 diabetes
patients, NLRP3 inflammasome activation is higher in myeloid
cells, and NLRP3 inflammasome inhibitors might be clinically
useful in treating ischemic stroke concomitant with diabetes
(126, 174). The activation of NLRP3 is involved in renal
disorders, such as chronic kidney disease (CKD), diabetic
nephropathy (DN), and acute kidney injury (AKI), by both
canonical and non-canonical pathways (175). The NLR family
(NLRP1, NLRP3, NLRC4, NLRP6, and NLRP12) and their
binding partners have mixed roles in the pathogenesis of a
variety of cancers (162). The serum levels of alpha-synuclein
(a-synuclein) and caspase-1 are lower in Parkinson’s disease
(PD) patients than in healthy individuals. Cleaved a-synuclein
from caspase-1 enzymatic activity can form aggregates (176).
Lower levels of caspase-1 and a-synuclein in PD patients’ serum
are indicative of cell aggregate formation by both. Additionally,
a-synuclein itself can activate the NLRP3 inflammasome, raising
cytokine levels in PD patients (177). The field of targeting
NLRP3 is continuously evolving and holds immense potential
for the future of anti-inflammatory drug therapy.

Role of NLRC4
Mutations in NLRC4 are associated with various autoimmune
disorders. Three gain-of-function mutations (V341A, T337S,
and H443P) in humans are linked to constitutive NLRC4
activation with recurrent macrophage activation syndrome
(178, 179). NLRC4 activation primarily in neutrophils is
enough to induce severe systemic autoinflammatory disease
(180). Significant upregulation in mRNA and the protein levels
of NLRC4 and NLRP3 has been found in urinary tract–infected
female patients (181). Lastly, aberrant activation of NLRC4 is
evident in non-alcoholic fatty liver disease (182), memory
impairment in Alzheimer-like disease (146), myocardial
infarction (159), and coronary stenosis (154). A genome-wide
association study discovered that genetic variations in NLRC4
play vital roles in determining IL-18 levels in acute coronary
syndrome patients (161).

Role of AIM2
Circulating cell-free mitochondrial DNA (ccf-mtDNA) has been
detected in the serum and plasma samples of type-2 diabetes
patients. Research has shown that ccf-mtDNA-mediated AIM2
inflammation activation might be one of the contributing
mechanisms of chronic inflammation in diabetic patients
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TABLE 1 | Role of major Inflammasomes in the representative chronic inflammatory disorders along with known cannabinoid effect.

Disorder Inflammasomes Pathophysiology Genetic
variations involved?

Possible reported effect of cannabis

Addison’s
disease

NLRP1 Increased risk of autoimmunity Yes (98) A case report of Cannabis use disorder contributing to
Addison’s (99)

Skin
inflammation
and cancer

NLRP1 Highly expressed in the skin; mutations in
NLRP1 cause its self-oligomerization and
atypical activation leading to various skin
inflammatory conditions (100, 101)

Yes (100) Anti-inflammatory, antipruritic, anti-aging, and anti-
cancerous properties of cannabinoids along with
mechanisms reviewed in details (102)

NLRP3 NLRP3-dependent production of IL-1b may
promote skin cancers

Yes (103, 104)

AIM2 AIM2 upregulation in acute and chronic skin
inflammatory conditions and cancer (105,
106)

No

Inflammatory
bowel disease
(IBD)

NLRP1 NLRP1 decreases the growth of beneficial
gut bacteria promoting IBD (107)

No Antioxidant and anti-inflammatory effects of cannabinoids
on IBD reviewed in details (108)

NLRP3 NLRP3 activation promotes IBD and not
crucial for intestinal barrier maintenance
(109)

Yes (110)

AIM2 AIM2 is an crucial regulator of intestinal
inflammation via the IL-18/IL-22/STAT3
pathway (111)

No

Systemic lupus
erythematosus
(SLE)

NLRP1 Upregulation of NLRP1 gene leading to
higher IL-1b levels in SLE patients (112)

Yes (113) Cannabidiol is not beneficial in the murine model of SLE
(114), however, ajulemic acid (selective CB2 agonist) is
highly beneficial; undergoing clinical trials (115).NLRP3 NLRP3 activation is involved in the

differentiation of Th17 cells SLE mice (116)
Yes (112)

AIM2 AIM2 acts as na apoptotic DNA sensor in
SLE causing macrophage activation (117)

No

Type-1
diabetes (T1D)

NLRP1 Protective and detrimental role of NLRP1
variants depending on different ethnic
population (118, 119)

Yes (113) Increased risk of diabetic ketoacidosis (DKA) in type-1
diabetics who are moderate cannabis users (120) but
cannabidiol treatment improves depression- and anxiety-
like behavior in experimental type-1 diabetes in mice (121)NLRP3 NLRP3 is crucial for the expression of the

chemokine receptors in T-cells regulating
chemotaxis of immune cells in T1D mice
(122)

Yes (123)

AIM2 AIM2 protects against T1D by reducing
pancreatic pro-inflammatory response via
IL-18 (124)

No

Type-2
diabetes (T2D)

NLRP3 NLRP3-mediated IL-1b and IL-18 release
and pyroptosis worsen insulin resistance
and the progression of T2D, reviewed here
(125). The activation of NLRP3 is
upregulated in T2D patients (126)

Yes (127) Chronic cannabis use was associated with visceral
adiposity and insulin resistance in the adipose tissue (128),
however, lifetime marijuana use showed lower insulin
resistance in obese but not in non-obese adults (129).

AIM2 Cell-free mitochondrial DNA activates AIM2
leading to Il-1b and IL-18-mediated
inflammation in T2D patients (130) and
AIM2 inhibition improved cardiac function in
a diabetic rat model by blocking caspase-1
activity (131)

No

NLRC4 NLRC4 is a major contributor of IL-1b
release in renal tissues contributing to the
diabetic nephropathy (132)

Yes (133)

Rheumatoid
Arthritis (RA)

NLRP1 Inhibition of NLRP1 in arthritis model of mice
significantly inhibited synovial inflammation
(134)

Yes (98) Cannabinoids are helpful in reducing pain and
inflammation with RA via different mechanisms of action,
reviewed here (135).

NLRP3 Inhibition of NLRP3 in murine model of
arthritis reduced the production of
interleukin IL-1b and reduced inflammation
of joints (136) and human patients with
active RA showed higher expression and
activation of NLRP3 (137)

Yes (137)

AIM2 Self-DNA sensed by AIM2 drives
autoinflammation in mice with chronic
polyarthritis mimicking RA in humans (138)

No

(Continued)
Frontiers in Immu
nology | www.fron
tiersin.org
 8
 January 2021 | Volume 11 | Article 61361
3

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Suryavanshi et al. Cannabinoids and Inflammasome Signaling

Frontiers in Immunology | www.frontiersin.org January 2021 | Volume 11 | Article 6136139
TABLE 1 | Continued

Disorder Inflammasomes Pathophysiology Genetic
variations involved?

Possible reported effect of cannabis

Alzheimer’s
disease (AD)

NLRP1 NLRP1 is involved in the neuroinflammation
via IL-1b and IL-18-dependent neuronal
pyroptosis along with NLRP1–caspase1–
caspase6-mediated axonal degeneration
and neuroinflammation leading to neuronal
death (139). AD patients showed higher
NLRP1 activation as well (140).

Yes (141) Various studies, reviewed here (142), found limited
evidence of the effectiveness of medical cannabis in
neuropsychiatric symptoms associated with dementia. A
well-structured randomized controlled trial (RCT) is needed
to prove the clinical efficacy of medical cannabis in AD.
However, cannabidiol, via multiple cannabinoid receptor
independent mechanisms showed a positive impact on
the progression of AD (143).NLRP3 NLRP3 is upregulated in an animal model

of AD causing IFN1b production by
microglia and inhibition of NLRP3 reduced
the deposition of amyloid-b (140). AD
patients exhibited NLRP3 inflammasome
assembly and activation with high amounts
of IL-1b and IL-18 (140).

Yes (144)

AIM2 Increased cytosolic DNA in traumatic brain
injury detected by immune cells to activate
AIM2 inflammasome and IL-1b and IL-18-
dependent neuronal pyroptosis contributing
to neurodegeneration in the pathogenesis
of AD (145).

No

NLRC4 NLRC4 inflammasome, via IL-1b and IL-18,
contributes to memory impairment and
neuroinflammation in a rat model of
Alzheimer-like disease (146).

No

Parkinson’s
disease (PD)

NLRP1 NLRP1 has been indirectly linked to PD by
contributing to neuroinflammation and
axonal degeneration via the caspase-1-
caspase-6-mediated IL-1b pathway (147).

No A systematic review found insufficient evidence to
recommend the use of medical cannabinoids for motor
symptoms in PD (148). A well-designed RCT is needed,
however, cannabidiol has shown great potential as a
prototype for drug development for PD (143).NLRP3 Several studies implicate a pathogenic role

of NLRP3 in PD via IL-1b and IL-18-
dependent pyroptosis. a-Synuclein
activates TLR2 and TLR4-mediated NLRP3
inflammasome assembly and caspase-1
maturation both (149).

Rare NLRP3
polymorphism
decreased the risk of
PD (150)

AIM2 AIM2 inflammasome activity was
augmented by inhibition of Parkinson’s
disease-associated mitochondrial serine
protease (151).

No

NLRC4 NLRC4 is crucial in regulating inflammation
in aging (Inflammaging) which contributes to
the development of neurodegenerative
diseases like PD (152).

No

Cardiovascular
disorders
(CVDs)

NLRP1 NLRP1 gene expression was found to be
significantly higher in the patients with aortic
occlusive disease (AOD) (153) and coronary
stenosis (154) suggesting its importance in
the development of atherosclerosis.

Yes (155) Although marijuana use has been positively correlated with
the increased risk of CVDs (156), several studies
suggested the cardioprotective role of cannabidiol (157);
suggesting a need for further research.

NLRP3 NLRP3 has been implicated in multiple
CVDs and inhibition of NLRP3 holds great
potential for treating such disorders (109).

Yes, coronary artery
disease (158)

AIM2 AIM2 hyper-activation is reported in a
variety of CVDs including myocardial
infarction (159) and atherosclerosis (160)

No

NLRC4 NLRC4 is involved in the pathophysiology
of atherosclerosis (154) and myocardial
infarction (159).

Yes (161)

Cancers NLR family NLRP1, NLRP3, NLRC4, NLRP6, NLRP7,
and NLRP12 have mixed roles in the
pathogenesis of a variety of cancers as
reviewed here in details (162, 163).

Yes (163) Medical cannabis could be prescribed for nausea and
vomiting after chemotherapy (14) but there is a weak
evidence for their clinical efficacy in the management of
cancer pain and other symptoms (164). RCTs are needed,
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(130). AIM2 inflammasome is hyper-activated in type-2 diabetic
mice with myocardial infarction (159). Blocking AIM2
expression improves cardiac function in a streptozotocin-
induced diabetic rat model by preventing caspase-1–mediated
cell signaling (131). Interestingly, AIM2 expression is higher in
the kidney sections of patients with DN or hypertensive sclerosis
than in healthy volunteers (183). The kidneys of mice with CKD
have exhibited a higher expression of AIM2 mRNA, whereas
AIM2-knockout mice kidneys have shown decreased maturation
of IL-1b and IL-18 (184). AIM2 expression is positively
associated with the severity of SLE in human patients and
mice. Inhibition of the apoptotic DNA-induced macrophagic
AIM2 activation is a key in AIM2 gene silencing–ameliorated
SLE symptoms in mice (117). Furthermore, AIM2 expression is
upregulated in oral, cervical, and lung cancer and downregulated
in colorectal and small bowel cancer (166). AIM2 expression is
protective in rheumatoid arthritis patients, leading to higher IL-
1b release in the absence of AIM2 (185).
CANNABINOIDS, INFLAMMASOMES, AND
HUMAN DISEASES

So far, we have discussed the anti-inflammatory potential of
various cannabinoids and the close associat ion of
inflammasomes with chronic inflammatory disorders. Several
studies in the last few decades have suggested the potential of
cannabinoids to modulate the inflammasome pathway. Below,
we discuss research publications that established a mechanistic
link between cannabinoids and inflammasome-related human
diseases (Tables 2 and 3).

Tetrahydrocannabinol (THC) and Analogs
The first reports on the effect of D9 THC on IL-1b (186) and
caspase-1 (187) were published in the 1990s. D9 THC has been
found to reduce the levels of pro-IL-1b and inflammasome-
induced caspase-1 activation in human astrocyte-monocyte co-
culture in vitro (188). In these cells, D9 THC inhibited caspase-1
activity, as shown by a reduction in IL-1b levels at a
concentration as low as 0.5 mM. The authors confirmed that
the CB2R activation-mediated induction of autophagy was the
best possible mechanism by which D9 THC was inhibiting
inflammasome activation, as both D9 THC and JWH-015
(selective CB2 agonists) showed similar results (188). D8 THC,
an isomer of D9 THC, was reported to induce cell death via a
caspase-1–dependent pathway in mouse macrophages, activating
CB2R followed by the activation of p38 MAPK (192). The effect
of D9 THC on reducing IL-1b mRNA and protein levels was
comparable to ajulemic acid, a novel CB2 agonist, in monocytes
Frontiers in Immunology | www.frontiersin.org 10
isolated from patients with inflammatory arthritis (189). In
another study, D9 THC was able to reduce IL-1b and NF-kB
levels via CB2R activation in a human osteosarcoma cell line
after LPS stimulation (190). D9-tetrahydrocannabivarin (THCV)
was also shown to inhibit IL-1b levels in LPS-challenged murine
macrophages (193). Feeding D9 THC mixed with sesame oil
orally to rats with chemically induced rheumatoid arthritis (RA)
for 21 days significantly reduced IL-1b concentration to baseline,
suggesting the possible inhibition of inflammasomes as a
promising target in RA (191). Although D9 THC displayed a
significant effect on the inflammasome pathway, direct action on
inflammasome sensor proteins has not yet been reported. It has
been pointed out that a Ca2+ channel, TRPV2, is activated by D9

THC in myeloid cells and that TRPV2 stimulation leads to
NLRP3 inflammasome activation, but no studies have
confirmed this (210).

Cannabidiol (CBD)
The first report on the direct effect of CBD on the inflammasome
came in 2016 from a group of Italian researchers (194). They
treated human gingival mesenchymal stem cells (hGMSCs) for
24 h with CBD (5 mM) and performed gene expression analysis
and immunocytochemistry. They discovered that CBD-treated
hGMSCs suppressed NLRP3, caspase-1, and IL-18 at the gene
and protein levels and inhibited NF-kB. As NF-kB is involved in
the priming of the NLRP3 inflammasome, the CBD treatment–
induced inactive state of the NLRP3 inflammasome in hGMSCs
(194) suggested that CBD-treated gingival stem cells were more
immunocompetent, avoiding the risk of inflammatory reactions
and promoting survival. Mice fed with a high-fat, high-
cholesterol diet (HFC) for 8 weeks showed significantly higher
expressions of NLRP3 inflammasome pathway proteins (NLRP3,
ASC, IL-1b, and caspase-1) in the liver; these proteins were
significantly attenuated by simultaneous treatment with CBD (5
mg/kg/day for 8 weeks). Similarly, the phosphorylation of NF-kB
was significantly reduced in the liver of CBD-treated HFC mice
compared to the non-treated group, corroborating the role of
NF-kB in priming the NLRP3 inflammasome. To further
confirm the role of the inflammasome in liver inflammation,
the authors studied the effect of CBD on an LPS + ATP treated
mouse macrophage cell line, confirming with in vivo data that
the expressions of NLRP3, ASC, IL-1b, NF-kB, and caspase-1
were lower in CBD-treated cells (195). Mouse microglial cells
treated with LPS to simulate neuroinflammatory conditions
exhibited a robust activation of pro-inflammatory cytokine
repertoire, and CBD (1–10 mM) was able to suppress the
secretion of IL-1b and inhibit the NF-kB signaling pathway
(196). A similar reduction in the secretion of IL-1b by CBD (10
mM) was also reported by another independent report (197).
TABLE 1 | Continued

Disorder Inflammasomes Pathophysiology Genetic
variations involved?

Possible reported effect of cannabis

however, non-THC cannabinoids show promising anti-
cancerous actions (165).

AIM2 Upregulation of AIM2 in oral, cervical, and
lung cancer and downregulation in
colorectal and small bowel cancer (166)

Yes (167)
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In the in vitro skin inflammation model, human keratinocytes
were treated with ultraviolet (UV) rays A and B (UVA and UVB)
and treated with CBD (1 mM) for 24 h. CBD inhibited protein-
protein interaction between nuclear factor erythroid 2-related
factor 2 (Nrf2) and NF-kB in UVA- and UVB-treated skin cells.
CBD increased NRF2 expression, leading to decreased ROS,
which in turn may have partially suppressed NLRP3
inflammasome activation by reducing NF-kB levels (208). Ab-
induced neurotoxicity (198) and the severity of inflammatory
colitis (199) were significantly suppressed by CBD treatment in
mice partly due to inhibiting the expression and release of IL-1b.
Frontiers in Immunology | www.frontiersin.org 11
A significant reduction of IL-1b by CBD treatment in a murine
viral model of multiple sclerosis was also shown, suggesting its
role in combating inflammation in multiple sclerosis (200).
Recently, CBD was shown to inhibit NLRP3 inflammasome by
reducing K+ efflux by binding to the P2X7 receptor in human
monocytes (209). Remarkably, the fact that only CBD (non-
psychoactive), not THC (psychoactive), was found to inhibit NF-
kB signaling (197), coupled with the direct proven inhibitory
action of CBD on inflammasomes (195) and downstream
proteins, indicates the incomparable potential of CBD as an
inflammasome-inhibitory drug target.
TABLE 2 | Effects of cannabinoids on inflammasome proteins.

Cannabinoids Inflammasome
signaling

Effect observed In vitro and/or in vivo model Possible mechanism of action Ref

D9-THC IL-1b Potentiation of D9-THC-induced catalepsy by IL-
1b

Female BALB/c mice Unknown/not established (186)

Caspase-1 Induction of apoptosis Cultured murine immune cells Modulation of caspase activity (187)
pro-IL-1b and
caspase-1

Inhibition of monocyte/astrocyte interactions Human astrocyte/monocyte co-
culture

CB2 activation induced autophagy (188)

IL-1b Reduction of inflammatory cytokine IL-1b Monocytes from patients with
inflammatory arthritis

Not studied (189)

IL-1b Inhibition of IL-1b and NF-kB after LPS
stimulation

Human osteosarcoma cells MG-63 CB2 activation (190)

IL-1b Reduction of IL-1b and anti-inflammatory activity Adjuvant-induced arthritis in rats Not established (191)
D8-THC Caspase-1 Cytotoxicity Mouse macrophage J774-1 cells CB2 receptor and p38 MAPK

dependent
(192)

D9-THCV IL-1b Inhibition of LPS-induced IL-1b release Murine peritoneal macrophages CB2 activation and not CB1 (193)
CBD Caspase-1, and

IL-18
Reduction of mRNA and protein levels of
caspase-1 and IL-18

Human gingival mesenchymal stem
cells

Inhibition of NF-kB and NLRP3 (194)

Caspase-1,
ASC, and IL-1b

Protection of liver from non-alcoholic
steatohepatitis

High-fat, high-cholesterol (HFC) diet
C57BL/6J mice and RAW264.7
murine macrophages

Inhibition of NF-kB and NLRP3
pathway

(195)

IL-1b Inhibition of neuroinflammation via reducing IL-
1b

LPS-stimulated murine microglia Independent of CB1 and CB2 (196,
197)

IL-1b Anti-inflammatory action in Abeta evoked neuro-
inflammation

Mice injected with human Abeta (1–
42) peptide

Not studied (198)

IL-1b Anti-inflammatory action via reducing IL-1b
levels

Murine model of colitis Unknown (199)

IL-1b Anti-inflammatory role by the inhibition of IL-1b Viral model of multiple sclerosis in
female SJL/J mice

Not established (200)

Ajulemic acid IL-1b Inhibition of inflammation by reducing IL-1b
levels

Monocytes from patients with
inflammatory arthritis

Selective CB2 receptor agonism (189)

JD5037 IL-1b, IL-18,
caspase-1

Inhibition of IL-1b, IL-18 release and caspase-1
activity promoting normoglycemia

Zucker diabetic fatty (ZDF) rats Peripheral CB1 receptor inverse
agonism leading to NLRP3
inflammasome deactivation

(201)

HU‐308 IL-1b, caspase-1 Anti-inflammatory effect by decreasing IL-1b
production and caspase-1 activity

Mouse model of experimental
autoimmune encephalomyelitis

Selective CB2 blockade leading to
autophagy-mediated inhibition of
NLRP3

(202)

AJ5012 IL-1b, caspase-1 Suppression of adipose tissue inflammation by
inhibition of IL-1b levels and caspase-1 activity

Diet-induced obese (DIO) and leptin
receptor–deficient C57BL/6J mice

Peripheral CB1 receptor
antagonism-mediated inhibition of
NLRP3 pathway

(203)

Rimonabant IL-1b Reduction of inflammation in atherosclerosis by
decreasing IL-1b

LDL receptor–deficient mice Selective CB1 receptor antagonism (204)

JWH-133 and
HU-308

IL-1b and
caspase-1

Decreased serum IL-1b and IL-1b mRNA and
lower caspase-1 activity-anti-inflammatory and
improved cardiac function

Surgically induced myocardial
infarction (MI) mice

Selective CB2 receptor agonism-
stimulated NLRP3 suppression

(205)

AM1241 IL-1b and
caspase-1

Anti-inflammatory potential via reduced IL-1b
and matured caspase-1 protein expressions

Rat macrophagic NR8383 cells
treated with complete Freund’s
adjuvant (CFA)

Selective CB2 agonism-mediated
NLRP3 suppression

(206)

HU-308 IL-1b and
caspase-1

Anti-inflammatory actions via reduced levels of
IL-1b and matured caspase-1

LPS/DSS-induced in vitro colitis
model of freshly isolated murine
macrophages

Selective CB2 blockade leading to
autophagy-mediated inhibition of
NLRP3

(207)
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Synthetic Cannabinoids
Synthetic cannabinoids often act by modulating the action of
endocannabinoids on CB1 and CB2 receptors to exert their anti-
inflammatory effects. Endocannabinoids mediate insulin
resistance by activating peripheral CB1R. Beta-cell failure in
Zucker diabetic fatty (ZDF) rats was not associated with CB1R
in beta cells; but rather, macrophages infiltrating the pancreas
activated the NLRP3 inflammasome machinery. Macrophage-
specific knockdown and/or peripheral blocking of CB1R via the
non-CNS-penetrant CB1R inverse agonist JD5037 improved the
pathology of type-2 diabetes and re-established normoglycemia
by reducing the expression of cardinal NLRP3 inflammasome
proteins (201). However, CB1R has detrimental effects on beta-
cell function, and its activation promotes islet inflammation
under pathological insults. Beta-cell-specific CB1R gene
knockout increased insulin secretion and cAMP levels in islets.
High-fat/high-sugar-induced inflammation was attenuated
significantly by the absence of CB1R in beta cells via the
reduction of ROS and suppression of NLRP3 inflammasome
activation (211). Contrary to the protective role of CB2R in
diabetic inflammation, in a mouse model of experimental
autoimmune encephalomyelitis (EAE) (an experimental model
for human multiple sclerosis), CB2R mRNA and NLRP3 protein
expressions were significantly higher with unchanged CB1R
mRNA expression (212). The authors did not study the
protein expression of CB1R and CB2R in this report, but using
the same multiple sclerosis model, another group of researchers
showed an exacerbated NLRP3 inflammasome response in CB2R
knockout mice and amelioration of the response in wild-type
mice by selective CB2R activation by HU‐308 (202). It was
discovered that CB2R activation by HU‐308 induces autophagy
in mouse microglial cells, inhibiting NLRP3 activation. The
discrepancy in the results may be due to the use of only female
Frontiers in Immunology | www.frontiersin.org 12
mice and not analyzing cannabinoid receptors at the protein
level (212). An antagonist of peripheral CB1R, AJ5012, prevents
adipose tissue inflammation in leptin receptor–deficient and
diet-induced obese (DIO) mice by inhibiting NLRP3
inflammasome signaling. Reductions in the protein expressions
of caspase-1, IL-1b, and NLRP3, along with caspase-1 activity,
were noticed in the presence of AJ5012 in DIO mice. AEA-
induced increases in the expressions of NLRP3, CB1R, and IL-1b
in murine macrophage cells were also significantly attenuated by
AJ5012 (203, 213). These data indicate the critical role of the
NLRP3 inflammasome in adipose tissue inflammation via
peripheral CB1R signaling. Rimonabant, a selective CB1R
antagonist, inhibits the development of atherosclerosis in low-
density lipoprotein (LDL) receptor–deficient mice, partially by
reducing IL-1b–mediated pro-inflammatory gene expression
(204). Myocardial infarction (MI) is a major cardiovascular
event with a high mortality rate in post-MI heart failure. A
selective CB2R agonist, JWH-133, improved heart function in a
surgically induced MI mice model. JWH-133 treatment reduced
serum IL-1b and IL-1b mRNA expressions even at a 1 mg/kg
concentration. The administration of JWH-133 at a 10 mg/kg
dose significantly diminished the priming and activation of the
NLRP3 inflammasome, as shown by levels of inflammasome
protein expression (205). Electroacupuncture (EA) attenuated
inflammatory pain induced by complete Freund’s adjuvant
(CFA) in rats by blocking NLRP3 activation in skin
macrophages. This effect was largely attributed to CB2R, as
CB2R-knockout mice exhibited a loss of EA effects on pain. In
rat macrophagic cell lines, CFA- and LPS+ATP–induced NLRP3
activation was significantly inhibited by the selective CB2R
agonist AM1241 (206). In freshly isolated mice macrophages,
the CB2R selective agonist HU-308 significantly blocked the
expression of NLRP3 inflammasome assembly proteins in an
TABLE 3 | Effects of cannabinoids on inflammasomes.

Cannabinoids Inflammasome Effect observed In vitro and/or in vivo model Possible mechanism of action Ref

CBD NLRP3 Inhibition of NLRP3 mRNA and protein Human gingival mesenchymal stem
cells

Possibly via inhibiting NF-kB-induced
priming (194)

NLRP3 Protection of liver from non-alcoholic
steatohepatitis

High-fat, high-cholesterol (HFC) diet
C57BL/6J mice and RAW264.7 murine
cells

Inhibition of NF-kB- mediated priming
step (195)

NLRP3 Cytoprotection against UV rays via
inhibition of NLRP3

Human keratinocytes treated with UV-A
and UV-B rays

Reduction of NF-kB levels by inhibiting
Nrf-2 and NF-kB interaction (208)

NLRP3 Anti-inflammatory action via impeding
NLRP3

LPS-nigericin-stimulated human THP-1
monocytes

Decreased potassium efflux by
modulating P2X7 receptors (209)

JD5037 NLRP3 Normoglycemia and improved type-2
diabetes profile by NLRP3 inhibition

Zucker diabetic fatty (ZDF) rats Peripheral CB1 receptor inverse agonism
(201)

HU‐308 NLRP3 The anti-inflammatory effect in human
multiple sclerosis model via NLRP3
blockade

Mouse model of experimental
autoimmune encephalomyelitis

Selective CB2 receptor activation
promotes autophagy leading to inhibition
of NLRP3

(202)

AJ5012 NLRP3 Suppression of adipose tissue
inflammation by NLRP3 inhibition

Diet-induced obese (DIO) and leptin
receptor–deficient C57BL/6J mice

Peripheral CB1 receptor antagonism
(203)

JWH-133 NLRP3 Anti-inflammatory action via decreased
priming and activation of NLRP3

Primary murine cardiomyocytes treated
with oxygen-glucose deprivation

Selective CB2 receptor agonism
(205)

AM1241 NLRP3 Anti-inflammatory potential via NLRP3
assembly inhibition

Rat macrophagic NR8383 cells treated
with complete Freund’s adjuvant (CFA)

Selective CB2 agonism
(206)

HU-308 NLRP3 Anti-inflammatory potential via NLRP3
inhibition

LPS/DSS-induced in vitro colitis model
of freshly isolated murine macrophages

Selective CB2 receptor activation
promotes autophagy leading to inhibition
of NLRP3

(207)
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LPS/DSS-induced in vitro colitis model (207). Selective inhibitors
of CB1R and activators of CB2R have shown tremendous
potential in alleviating inflammatory disorders partly by
affecting NLRP3 inflammasome assembly and activation.

Terpenoids and flavonoids are abundantly present in
cannabis extracts, and both molecule groups exhibit anti-
inflammatory activities. Many terpenoids and flavonoids are
inflammasome inhibitors in general and are reviewed
extensively elsewhere (214–217), a subject beyond the scope of
this review.
RELEVANCE TO THE CORONAVIRUS
DISEASE 2019 (COVID-19) PANDEMIC

The ongoing COVID-19 outbreak is a global pandemic caused by
a novel coronavirus named “severe acute respiratory syndrome
coronavirus 2” (SARS-CoV-2). The angiotensin-converting
enzyme 2 (ACE2), a metallopeptidase, is a known functional
receptor for coronaviruses, and their surface spike glycoproteins
(S) bind physically to ACE2 (218–220). A high expression of
ACE2 is correlated to innate and acquired immune response,
cytokine secretion, and enhanced inflammatory response in
COVID-19 patients. A clinical study in Wuhan pointed out
that the levels of IL-1b, IL-10, and IL-8 were significantly higher
in critically ill patients with SARS-CoV-2 infection, indicating a
cytokine-mediated inflammatory response (221). Recently, it was
established that the SARS-CoV open reading frame (ORF)-8b
activates the NLRP3 inflammasome affecting innate immunity
(222) and SARS-CoV viroporin 3a protein independently
activates NLRP3 inflammasome in macrophages isolated from
adult mice (223). Very recently published reviews strongly
suggest that SARS-CoV-2 could directly activate NLRP3
Frontiers in Immunology | www.frontiersin.org 13
inflammasome and NLRP3 activation could be a potential drug
target in the treatment of COVID-19 (224, 225). In our
laboratory, we established several novel high-CBD C. sativa
extracts that significantly inhibited the expression of ACE2,
entry point of the SARS-CoV-2 (226). The reason for choosing
high-CBD cannabis extracts was to avoid psychoactive side-
effects of D9-THC and to avoid CB1 agonism-mediated
pathologic changes observed in the pulmonary tissues (227).
Therefore, with the established evidence suggesting the role of
cannabinoids as key regulators of inflammasome signaling, the
vital cannabinoid moieties (CBD and THC) might be beneficial
in alleviating the inflammatory aspects of COVID-19 by blocking
inflammasome signaling.
CONCLUSIONS AND CLINICAL
RELEVANCE

Inflammation is a crucial phenomenon in understanding the
pathophysiology of a variety of inflammatory disorders, and
many anti-inflammatory antibodies are important treatment
options for moderate-severe inflammatory diseases. The
contribution of inflammasomes in the regulation of human
disorders has been emphasized in research within the last few
decades. However, no inflammasome-targeted therapy is
currently approved for human use.

Cannabis has been shown to possess anti-inflammatory
effects owing to its constituents, cannabinoids and terpenoids.
New evidence is accumulating on the potential inhibitory action
of cannabinoids on NLRP3 and other inflammasomes leading to
their potent anti-inflammatory effects. On the other hand,
cannabinoids with CB1 receptor agonist activity exhibit pro-
inflammatory effects by inflammasome activation via CB1
FIGURE 3 | The known molecular pathways of inhibition of Caspase-1, IL-1b, and NLRP3 by cannabinoids. Along with NLRP3 activation, cannabidiol (CBD),
synthetic cannabinoids, and D9-tetrahydrocannabinol (THC) and its analogs inhibit caspase-1, IL-1b, and IL-18 via different mechanisms independent of
inflammasome activation. Notably, only CBD and synthetic cannabinoids, not THC and its analogs, have been reported to have a direct inhibitory action on NLRP3
activation.
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agonism. The summarized reports here showed in vitro and in
vivo data on cannabinoids modulating inflammasome activity
and proving beneficial in reducing the pathogenicity of chronic
inflammatory diseases. Cannabinoids also target crucial proteins
involved in the inflammasome signaling, including NF-kB, IL-
1b, etc.

The exact molecular mechanisms by which cannabinoids
modulate inflammasome signaling have not been investigated
completely, nevertheless, the current evidence supports their
importance as promising therapeutic targets to regulate
inflammasome signaling (Figure 3). Targeted inhibition of
inflammasome by cannabinoids may prove beneficial over the
global inhibition of cytokines, which increases the chances of
infection as a side effect. Overall, cannabinoids hold a great
promise as additional therapeutics to support the current
treatment of chronic inflammatory diseases, along with COVID-
19, however it should be weighed against pro-inflammatory actions
Frontiers in Immunology | www.frontiersin.org 14
mediated by CB1-agonism. Hence, cannabinoids with CB1 receptor
antagonist and CB2 receptor agonist activity, for instance
cannabidiol, should be considered for future research.
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