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Background: Previous studies have revealed that WTAP is related to multiple types of cancer. Recently, 
WTAP has been reported as an independent prognostic factor in patients with neuroblastoma.
Methods: To explore the association between three WTAP polymorphisms (rs9457712 G>A, rs1853259 
A>G and rs7766006 G>T) and neuroblastoma susceptibility in Chinese populations, we performed this 
case-control study including 898 neuroblastoma cases and 1,734 controls. We genotyped these potentially 
functional single nucleotide polymorphisms (SNPs) by TaqMan assays. The odds ratios (ORs) and 95% 
confidence intervals (CIs) by logistic regression models were used to assess the relationship between WTAP 
SNPs and the risk of neuroblastoma.
Results: No significant associations were observed in the overall analysis between any of the three WTAP 
polymorphisms and the risk of neuroblastoma. However, in the age ≤18 months subgroup, we found that the 
rs1853259 AG/GG genotype exerted protective effects against neuroblastoma (adjusted OR =0.77, 95% CI: 
0.59–0.998, P=0.048), whereas the presence of 1–2 combined risk genotypes significantly increased the risk 
of neuroblastoma (adjusted OR =1.32, 95% CI: 1.02–1.71, P=0.036).
Conclusions: WTAP gene polymorphisms only have a weak impact on the risk of neuroblastoma in the 
Chinese children. Further case-control studies, preferable on larger sample sizes, are needed to validate our 
results.
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Introduction

Neuroblastoma is a extracranial solid tumor derived from 
neural crest tissues, accounting for about 15% of pediatric 
tumor-related mortality (1). As one of the most common 
solid malignancies in children, neuroblastoma exhibits 
diverse clinical behaviors. The survival rate for patients with 
high-risk tumors is lower than 50% even after receiving 
multimodality treatment, while some patients undergo 
spontaneous regression after mild or no treatment (1,2). 
The pathogenesis of neuroblastoma is multifactorial and 
remains far from clear. Emerging evidence shows that 
the transformation from normal cells to tumor cells is 
attributed to a gradual accumulation of genetic alterations 
(2-4). It is imperative to reveal the genetic mechanisms of 
neuroblastoma formation, which has the potential to provide 
novel therapeutic approaches for refractory neuroblastoma. 
Advances in genome-wide association studies (GWASs) 
allow the detection of genetic variations in tumor samples 
and result in significant progress in the understanding of 
the heritability of neuroblastoma (4,5). At present, many 
genetic and epigenetic variations that not only contribute 
to tumorigenesis but also promote the malignant potential 
of neuroblastoma have been demonstrated by GWASs 
(6-8). Single nucleotide polymorphisms (SNPs) within 
HSD17B12, DDX4, and DUSP12 are enriched in patients 
with low-risk neuroblastoma (4,5,9). SNPs in LMO1, 
CASC15, and LIN28B are significantly correlated with 
high-risk neuroblastoma and are involved in promoting 
proliferation and invasion (8,10,11).

Wilms’ tumor 1-associating protein (WTAP), located 
at chromosome region 6q25-27, is involved in regulating 
embryonic development, cell proliferation and apoptosis 
(12,13). WTAP has also been identified as an oncogenic 
protein in diffuse large B-cell lymphoma and acute myeloid 
leukemia (14,15). Moreover, accumulating evidence 
indicates that WTAP plays an important role in the 
initiation and development of various human malignancies, 
including glioma, ovarian cancer, renal cell carcinoma 
and pancreatic ductal adenocarcinoma (16-18). The role 
of WTAP SNPs on the cancer susceptibility also has been 
investigated. Our research group have identified a significant 
relationship between rs7766006 and hepatoblastoma risk in 
the Chinese population (19). However, no study has been 
reported to evaluate the associations between WTAP SNPs 
and neuroblastoma susceptibility.

To assess the associations between the SNPs in WTAP 
and neuroblastoma risk, we carried out this case-control 

study of 898 neuroblastoma patients and 1,734 control 
subjects using a Chinese population of children. We present 
the following article/case in accordance with the MDAR 
reporting checklist (available at http://dx.doi.org/10.21037/
tp-20-168).

Methods

Study subjects

Here, we totally enrolled 898 neuroblastoma patients 
and 1,734 controls from eight hospitals from eight cities 
(Guangzhou, Zhengzhou, Wenzhou, Xi’an, Taiyuan, 
Kunming, Changsha, Shenyang) in China (Table S1). All 
the enrolled subjects were genetically unrelated and of 
Chinese descents. Age, sex, and ethnicity were well matched 
in the patients and controls. Neuroblastoma patients were 
diagnosed by biopsy and staged based on the International 
Neuroblastoma Staging System (INSS) (20). Each 
participant’s parents or guardians provided written informed 
consent. This study was approved by the Institutional 
Review Board of Guangzhou Women and Children’s 
Medical Center (No: 201929300). The study was conducted 
in accordance with the Declaration of Helsinki (as revised 
in 2013).

Polymorphism selection and genotyping

Potential functional polymorphisms in the WTAP gene 
were searched in the dbSNP database (http://www.ncbi.
nlm.nih.gov/) and SNPinfo (http://snpinfo.niehs.nih.
gov/) according to the selection criteria described in our 
reported publication (21,22). Three SNPs (rs9457712 G>A, 
rs1853259 A>G and rs7766006 G>T) in the WTAP gene 
were eventually selected (23). These SNPs were detected 
by standard TaqMan real-time PCR (24-26). To assure the 
accuracy of genotyping results, 10% of the samples were 
selected randomly to run a second genotype. All repeated 
samples were 100% concordant.

Statistical analysis

Differences in genotype distribution and demographic 
characteristics between patients and controls were compared 
by two-sided χ2 tests. Hardy-Weinberg equilibrium 
(HWE) for the selected SNPs in controls was assessed by a 
goodness-of-fit χ2 test. Associations between neuroblastoma 
susceptibility and WTAP SNPs were evaluated using odds 

https://cdn.amegroups.cn/static/public/TP-20-168-Supplementary.pdf
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ratios (ORs) and 95% confidence intervals (CIs). Stratified 
analysis was conducted regarding age, sex, tumor sites, 
and clinical stages. P<0.05 was considered statistically 
significant. All statistical analyses were carried out using 
SAS software (Version 9.4; SAS Institute, Cary, NC, USA).

Results

WTAP gene polymorphisms and neuroblastoma 
susceptibility

In the current study, 896 cases and 1,732 controls were 
successfully genotyped. The genotype distribution of 
the three WTAP polymorphisms and their associations 
with neuroblastoma susceptibil ity are revealed in  
Table 1. All these SNPs were in accordance with HWE 
among the control subjects (P=0.213 for the rs9457712 
G>A polymorphism, P=0.185 for the rs1853259 A>G 
polymorphism, and P=0.799 for the rs7766006 G>T 
polymorphism). No significant associations were detected 
between the selected WTAP SNPs and neuroblastoma 
susceptibility.

Stratification analysis

We further divided participants into subgroups based on sex, 
age, sites of tumor origin, and clinical stages. The effects of 
the selected SNPs on neuroblastoma risk were determined 
in this stratified analysis (Table 2). Our results indicated that 
children ≤18 months old with rs1853259 AG/GG genotypes 
were less likely to develop neuroblastoma (OR =0.77, 95% 
CI: 0.59–0.998, P=0.048). However, children ≤18 months 
old harboring 1-2 combined risk genotypes had increased 
neuroblastoma susceptibility (OR =1.32, 95% CI: 1.02–1.71, 
P=0.036).

Discussion

We performed this eight-center study to investigate 
the association between WTAP gene polymorphisms 
and neuroblastoma susceptibility. Our data manifested 
that rs1853259 AG/GG genotypes are correlated with a 
decreased neuroblastoma risk in children ≤18 months old. 
However, children ≤18 months old harboring 1–2 combined 
risk genotypes are more likely to develop neuroblastoma. 
To our knowledge, the current study represents the first 
to explore the association between WTAP SNPs and 
neuroblastoma susceptibility.

WTAP was initially identified as a nuclear protein and 
is involved in N6-methyladenosine RNA modification, 
which affects the initiation and progression of several 
human malignancies by modulating the mRNA expression 
of oncogene genes (12,27-29). In addition, WTAP can 
also execute oncogenic effects by inhibiting apoptosis, 
accelerating proliferation and promoting invasion 
of malignant cells (12,14,30). Previous studies have 
demonstrated that overexpression of WTAP is associated 
with poor survival in renal cell carcinoma, gastric cancer 
and pancreatic ductal adenocarcinoma (31-33).

Given the vital role of WTAP in the initiation and 
progression of malignancies, investigation into the 
association between WTAP SNPs and neuroblastoma 
susceptibility is warranted. Therefore, we conducted this 
study to explore the association between WTAP SNPs 
and neuroblastoma risk in Chinese children. In the 
current study, no significant associations were discovered 
in the overall analysis between the selected WTAP SNPs 
and neuroblastoma susceptibility. However, in the age  
≤18 months subgroup, we found that rs1853259 AG/GG 
genotypes exerted protective effects against neuroblastoma, 
whereas the presence of 1–2 combined risk genotypes 
significantly increased the risk of neuroblastoma.

There are several limitations present in our current 
study. First, neuroblastoma is a remarkably heterogeneous 
disease with a complex etiology. However, several 
confounding factors, including dietary intake and living 
environment, were not assessed in our current study. The 
results should be explained with caution in the absence of 
other confounding factors. Further comprehensive study 
incorporating the combined analysis of genetic factors and 
confounding factors are warranted. Second, here we only 
analyzed three WTAP SNPs. Further investigation will be 
required to uncover more polymorphisms that predispose 
patients to neuroblastoma, which may provide novel 
insights into the genetic etiology of neuroblastoma. Third, 
ethnic background may affect genetic predisposition. Our 
results based on Chinese populations may not be directly 
extrapolated to other ethnicities. Fourth, the negative 
results might be attributed to the relatively small sample 
size in our current study, which might not be large enough 
to detect an association.

In summary, our study found that none of the WTAP 
polymorphisms (rs9457712 G>A, rs1853259 A>G 
and rs7766006 G>T) were related to neuroblastoma 
susceptibility in the overall analysis. The effect of WTAP 
SNPs on neuroblastoma predisposition must be elucidated 
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Table 1 Association between WTAP gene polymorphisms and neuroblastoma risk

Genotype Cases (N=896) Controls (N=1,732) Pa Crude OR (95% CI) P Adjusted OR (95% CI)b Pb

rs9457712 G>A (HWE =0.213)

GG 601 (67.08) 1,167 (67.38) 1.00 1.00

GA 259 (28.91) 500 (28.87) 1.01 (0.84–1.20) 0.949 1.00 (0.84–1.20) 0.963

AA 36 (4.02) 65 (3.75) 1.08 (0.71–1.64) 0.731 1.10 (0.72–1.67) 0.670

Additive 0.804 1.02 (0.88–1.18) 0.804 1.02 (0.88–1.18) 0.775

Dominant 295 (32.92) 565 (32.62) 0.875 1.01 (0.85–1.20) 0.875 1.02 (0.85–1.21) 0.869

Recessive 860 (95.98) 1,667 (96.25) 0.738 1.07 (0.71–1.63) 0.735 1.09 (0.72–1.66) 0.671

rs1853259 A>G (HWE =0.185)

AA 333 (37.17) 624 (36.03) 1.00 1.00

AG 431 (48.10) 853 (49.25) 0.95 (0.79–1.13) 0.543 0.94 (0.79–1.12) 0.476

GG 132 (14.73) 255 (14.72) 0.97 (0.76–1.24) 0.809 0.96 (0.75–1.23) 0.736

Additive 0.688 0.98 (0.87–1.10) 0.688 0.97 (0.86–1.09) 0.605

Dominant 563 (62.83) 1,108 (63.97) 0.566 0.95 (0.81–1.13) 0.565 0.94 (0.80–1.11) 0.488

Recessive 764 (85.27) 1,477 (85.28) 0.995 1.00 (0.80–1.26) 0.995 0.99 (0.79–1.25) 0.958

rs7766006 G>T (HWE =0.799)

GG 304 (33.93) 584 (33.72) 1.00 1.00

GT 430 (47.99) 839 (48.44) 0.99 (0.82–1.18) 0.866 0.99 (0.82–1.18) 0.870

TT 162 (18.08) 309 (17.84) 1.01 (0.80–1.27) 0.953 1.02 (0.80–1.29) 0.898

Additive 0.992 1.00 (0.89–1.12) 0.992 1.00 (0.90–1.13) 0.943

Dominant 592 (66.07) 1,148 (66.28) 0.914 0.99 (0.84–1.18) 0.914 0.99 (0.84–1.18) 0.938

Recessive 734 (81.92) 1,423 (82.16) 0.879 1.02 (0.82–1.25) 0.879 1.03 (0.83–1.26) 0.821

Combined effect of risk genotypesc

0 429 (47.88) 850 (49.08) 1.00 1.00

1 144 (16.07) 266 (15.36) 1.07 (0.85–1.36) 0.555 1.07 (0.85–1.35) 0.577

2 323 (36.05) 616 (35.57) 1.04 (0.87–1.24) 0.674 1.05 (0.88–1.25) 0.601

1–2 467 (52.12) 882 (50.92) 0.561 1.05 (0.89–1.23) 0.561 1.06 (0.90–1.24) 0.518
a, χ2 test for genotype distributions between neuroblastoma patients and cancer-free controls; b, adjusted for age and gender; c, risk geno-
types were rs9457712 GA/AA, rs1853259 AA and rs7766006 TT. OR, odds ratio; CI, confidence interval; HWE, Hardy-Weinberg equilib-
rium.
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by well-designed studies.
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