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Abstract
This study presents an assistive robotic system enhanced with emotion recognition capabilities for children with hearing
disabilities. The system is designed and developed for the audiometry tests and rehabilitation of children in a clinical setting
and includes a social humanoid robot (Pepper), an interactive interface, gamified audiometry tests, sensory setup and a
machine/deep learning based emotion recognition module. Three scenarios involving conventional setup, tablet setup and
setup with the robot+tablet are evaluated with 16 children having cochlear implant or hearing aid. Several machine learning
techniques and deep learning models are used for the classification of the three test setups and for the classification of the
emotions (pleasant, neutral, unpleasant) of children using the recorded physiological signals by E4 wristband. The results
show that the collected signals during the tests can be separated successfully and the positive and negative emotions of children
can be better distinguished when they interact with the robot than in the other two setups. In addition, the children’s objective
and subjective evaluations as well as their impressions about the robot and its emotional behaviors are analyzed and discussed
extensively.

Keywords Social robots · Human-robot interaction · Machine learning · Deep learning · Emotion recognition · Physiological
signals

1 Introduction

Recent studies in socially assistive robotic systems enable
the use of robots in many application areas such as health-
care, education, and elderly care, as a part of our daily lives.
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When people see robots in human-robot interactive social
environments, they expect a level of socially intelligent and
socially aware behavior based on the robot’s capabilities and
human-robot interaction settings. Besides, most of the users
are inexperienced in terms of robots, and might have special
needs such as elderly, children with Autism spectrum disor-
der (ASD) or people with hearing disabilities [1–3]. Socially
assistive robots can be personalized and adapted to these
needs and requirements to increase the user performance and
to improve their interaction with robots. Machine learning
methods are beneficial in this personalization and adaptation
phase to analyse the status of human in interaction, and to
generate appropriate action or feedback accordingly.

Henschel et al. analyzed the gap between the general pub-
lic’s expectations about social robots and experience with
them, they provided a review study to understandwhatmakes
a robot social in the eyes of general public and how they may
contribute to the society [4]. The authors remark that even
though the research domain present many challenges and
there are still real limitations due to the present technology
in social robots’ capabilities, the early findings demonstrate
that social robots have the potential to improve human life,
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especially in educational settings, psychosocial support and
rehabilitation contexts. In their review study, Robinson et
al. investigated and discussed in details the evidence from
randomized controlled trials on psychosocial health inter-
ventions by social robots [5]. In another study, Stower et al.
presented a comprehensive review on the meta-analysis of
the factors influencing children’s trust in social robots [6].

In this sense, Cifuentes et al. [7] explored the implications
of social robots in healthcare scenarios, and they conducted
a review study on the applications of social robots, how they
were perceived and accepted by children and adults. Their
review revealed that adults and childrenwhowere exposed to
an intervention with social robots, showed signs of improve-
ments in social connection and communication and their
current mood, and they displayed less signs of depression,
anxiety and fear. Similarly, Kabacinska et al. [8] conducted
a literature survey on how social robots were used as means
to support mental health in children. The study outcomes
suggested that interventions with social robots had positive
impact on stress relief and improved positive affect level.

Ferrante et al. [9] explored how social robots can be used
to increase therapeutic adherence in pediatric asthma based
on the assumption that the robots increased the motivation of
children and their engagement to treatment. Although they
presented a conceptual study, the authors investigated the
available robotic platforms, the nature of interaction and the
intervention, and they discussed the feasibility, acceptability
and efficacy of socially assistive robots in clinical practice.

Logan et al. [10] proposed to use social robots as engaging
tools to address the emotional needs of hospitalized children.
They introduced an interactive teddy bear robot, Huggable,
into the inpatient setting of a pediatric clinic to improve
engagement of hospitalized children and to reduce their stress
during their intervention. They conducted a pilot study with
54 children (3 to 10 years old), the children were exposed to
an intervention with a teddy bear social robot, a tablet-based
avatar of it and a plush teddy bear accompanied by a human
presence. The pilot study results pointed out that the children
exposed to the social robot intervention showed more posi-
tive affect and they expressed greater levels of joyfulness and
agreeableness than the other conditions.

In another study, Moerman and Jansens [11] used a baby
dinosaur pet robot with children in a hospitalized setting to
distract them and to improve their well-being through their
interactions with the robot. They conducted a preliminary
study with 9 children (aged 4-13 years old) who received
personalized therapeutic sessions with the robot. The results
showed that the children expressed less boredom, anxiety and
stress and displayed more active and playful behavior based
on the behavioral analysis of experts and the interviews with
the parents.

In this paper, we present an assistive robotic system,
RoboRehab, which is designed and developed to support the

auditory tests of children with hearing disabilities in clini-
cal settings. Several tests are applied to diagnose the level of
hearing and to adjust the hearing aids and cochlear implants
of children accordingly. When the children get stressed or
lose motivation, the performance of the tests and the cooper-
ation of the children decrease significantly. In RoboRehab,
we use a socially assistive humanoid robot Pepper, enhanced
with emotion recognition, and a tablet interface, to support
children in these tests. In the current study, we investigate the
quantitative and qualitative effects of the test setups involv-
ing the robot+tablet, tablet and conventional methods. We
employ traditional machine learning techniques and deep
learning approaches to analyse and classify the affective
data of children collected by E4 physiological wristband.
Then this physiological data is used to evaluate the pro-
posed assistive robotic system. We use blood volume pulse
(BVP), skin temperature (ST), and skin conductance (SC)
from the E4 wristband to classify three test setups (conven-
tional, tablet, and robot+tablet). Furthermore, these BVP, ST
and SC data are also used to classify the emotions (pleasant,
neutral, unpleasant) of children under three test setups. We
aim to detect the emotions or stress of children and personal-
ize/adapt the feedback mechanism of the robot accordingly.

2 Emotion Recognition Studies

Emotion recognition is becoming an increasingly active field
in research since it can contribute significantly in different
applications such as video games, animations, psychiatry,
education, and robotics, especially human-robot interaction
(HRI).

One of the key concepts in the emotion recognition stud-
ies, is how to represent the emotions. Spezialetti et al. [12], in
their review on the recent advances in emotion recognition
studies focusing on the HRI context, report that currently
adopted emotional models are the categorical models based
on the discrete emotions [13–15] or the dimensional models
[16], in which the emotions are defined by their charac-
teristic features such as arousal and valence. Therefore,
some of the studies focused on the classification of emo-
tions such as joy, anger, disgust, etc. while others focused
only on the classification of arousal and valence. The valence
parameter is commonly used for the classification of pleas-
ant (amusement, happiness, joy), unpleasant (anxiety, fear,
disgust, anger, sadness) and neutral (neutral, surprise) emo-
tions. Furthermore, some researchers have also classified
three arousal classes: calm (neutral, disgust, calm), medium
arousal (amusement, happiness, joy), and excited (anxiety,
fear, surprise, anger). Six universal emotion classes (happi-
ness, disgust, surprise, fear, sadness, and anger) have been
classified in some studies. In this study, we are interested
in understanding if the children feel positive (pleasant),

123



International Journal of Social Robotics

negative (unpleasant), or neutral, thus we use the valence
dimension property of the two-dimensional emotion model.

On the other hand, several theorists argue that the emo-
tions can not be categorized or discretized because they have
evolved as an adaptation mechanism based on the individ-
ual’s environment. Consequently, they claim that there is an
appraisal system assessing the perceived environmental fac-
tors with respect to the individual’s well-being, its plans and
goals [17,18]. Scherer [19] suggests that this appraisal sys-
tem requires a high level of cognition because people tend
to appraise events with respect to a large variety of factors,
such as novelty, pleasantness and goal significance as well
as their coping mechanism. And, these appraisals evoke a
particular emotional state that needs some sort of adjustment
such as physiological changes, behavioural responses and
expressions.

There are many ways to understand the emotional states
and expressions of people such as facial expressions [20,21],
speech [22], and electroencephalography (EEG) [23–26].
Physiological signals, such as heart rate (HR), heart rate
variability [27,28], BVP [29–31], SC [32,33], and ST have
been used to recognize emotions [34,35]. The physiological
parameters are valuable because it is easy to measure them
using wearable devices. A survey about the physiological
sensors used to recognize emotions, has been presented in
[36]. Although the facial expression, speech, EEG, and phys-
iological signals have been widely employed in studies with
adult subjects for emotion analysis and recognition, similar
studies in children have rarely been addressed. Disgust, fear,
happiness, sadness, and surprise have been recognized for
typically developed children using facial emissivity changes
detected by Infrared Thermal Imaging (IRTI) [37]. A stress
detection framework has been previously proposed for chil-
dren using heart rate data recorded with a wearable device
[38]. A commercial device has also been used to detect
the stress states of children such as iCalm [39]. Electroder-
mal activity signals, which are also known as galvanic skin
response or skin conductance, have been used to classify
emotions in children [40].

Empatica E4 is a compact, lightweight, and wireless
wearablemulti-sensor wristband that is used to collect physi-
ological signals in real-time [41,42]. An emotion recognition
system in the aspect of arousal, valence, and four emotions
using E4 wristband has previously been developed in [43].
E4 wristband has also been used to detect the stress level of
subjects in several studies [44–47]. The features from heart
activity, skin conductance, and physical activity recorded by
E4 wristband have also been used to recognize stress levels
[48]. Electrocardiogram (ECG) signal fromE4wristband has
been used to classify emotions based on Russell’s four-class
circumplex emotion model in a virtual reality environment
[49,50]. However, to our knowledge E4 wristband has not
been used to detect the emotions of children with hearing

disabilities. In this study, skin conductance (SC) or response
of the skin as an electrodermal activity (EDA) via EDA
sensor, blood volume pulse (BVP) with a photoplethysmo-
gram (PPG) sensor, and skin temperature (ST) via infrared
thermopile sensor are collected from the E4wristband to rec-
ognize the emotions of the children with hearing disabilities.

Variousmachine learningmethods such as Support Vector
Machine (SVM), Multi-Layer Percepton Back Propagation
(MLP-BP) have been used to classify the emotions using
physiological signals [36,49,51–56]. Several deep learning
approaches have also been investigated for emotion clas-
sification because of the high-dimensional physiological
features [57–65]. Furthermore, deep learning approaches
have also been used to recognize the emotions of infants
and children from their facial expressions [66,67].

We aim to develop an emotion recognition module using
physiological signals that will be used to assist the reha-
bilitation of children with hearing disabilities via a socially
assistive robot Pepper in this study. In our previous work,
a classical machine learning approach, Gradient Boosting
Machines (GBM) and a deep learning approach, Convo-
lutional Neural Networks (CNN) were used to classify
pleasant, unpleasant and neutral emotions from the recorded
EEG and physiological signals of adults. We illustrated how
an emotion recognition system can be trained on responses
to standardized materials (IAPS images), and discussed how
such a system might work as a feedback mechanism in
human-robot interaction between robots and patients in a
rehabilitation context [68].

In this study, we use machine learning and deep learning
methods to classify the different test setups as well as the
emotions of the children through their consultation. To the
best of our knowledge, this is the first study which aims to
understand the emotions of childrenwith hearing impairment
using machine/deep learning approaches using the physio-
logical data recorded with E4 wristband.

3 RoboRehab: Affective Assistant Robot
System and Auditory Perception Tests

3.1 RoboRehab

Themain aimof theRoboRehab project is to support children
with hearing impairments in audiometry tests and rehabil-
itation. The children take several auditory tests to reveal
their hearing levels, and have their hearing aids or cochlear
implants adjusted. Unfortunately audiologists and psychol-
ogists, who are working with these children, stated that
children can not reveal their true performance during the
conventional tests due to stress or boredom/motivation loss.
Besides these parameters, the audiologist might be inexperi-
enced or unfamiliar with the children in the test, which will
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also effect the motivation and performances of the children.
Thereforewe design and develop a system calledRoboRehab
to overcome these limitations.

RoboRehab includes an affectivemodule processing facial
and physiological data, a tablet interface for the tests, and
a social robot assistant Pepper to run the hearing tests and
give feedback. Gamification is used in the tablet interface,
and the scenarios with robot in order to increase the motiva-
tion and attention time of the children. The affective module
for emotion recognition consists of three parts; facial data
based emotion recognition, physiological data based emotion
recognition, and a multimodal emotion recognition module
which is based on the fusion of the facial and physiological
data.

In this paper, we only focus on the physiological emotion
recognition module, please refer to the study presented by
Baglayici et al. [69] for further information on the facial
emotion recognition and the challenges we faced during the
recognition of children’s emotion in-the-wild.

3.2 Motivation & Research Questions

In this study, our main motivation is to analyse the effect of
test setup/media (conventional test, tablet and the robot+tablet
setups). We want to observe not only the effect on the perfor-
mance of children but also the change on children’s emotions
and attention during each test setup. We also want to recog-
nize the emotions of children especially within the presence
of robot. We plan to use the emotion recognition module to
enhance the interaction skills of the robot in the tests with
children and to increase their attention and lower negative
emotions and stress in the long term. Therefore in this study
we employ machine learning and deep learning approaches
on the physiological data collected and labeled during the
test studies with children with hearing disabilities. Based on
these motivations we want to reveal the following research
questions:

RQ1 can we distinguish between the different setups (con-
ventional/tablet/robot) using the physiological data
with machine/deep learning approaches?

RQ2 can we recognize the emotions of children when
they interact with robot using machine/deep learning
approaches?

RQ3 is there any difference between the test performances
based on the objective evaluation metrics (involving
several parameters logged during the tests) of children
in these three setups? If so, how can we interpret this
difference?

RQ4 can we reveal such difference between the test setups
based on the subjective evaluation metrics (self-report
survey answers and interview with children)?

Based on these research questions, we designed an experi-
mental setting to show if the robot can stimulate children’s
emotions, and cause difference in their physiological signals.
Furthermore, we investigate if machine learning approaches
can be used to understand the emotions of children during
their interaction with a socially assistive robot. Additionally,
we explore if the proposed test setups have any effect on
the performances of children and their impressions about the
perceived character, intelligence and likability of the robot
in the presented interaction context.

4 Experimental Setup

4.1 Auditory Perception Test

The auditory test used is a Turkish-translated version of the
Developmental Test ofAuditory Perception (DTAP). The test
is designed for assessing the auditory perception of children
without invoking higher order verbal reasoning [70]. The test
is composed of different item sets to measure various aspects
of children’s auditory perception. Only the non-language
related item sets are selected for this study:

– Environmental sounds: Non-language related sounds
commonly found in environment such as crying babies,
barking dogs, traffic noises, etc.

– Tonal patterns: Sequences of beeps with varying fre-
quency and length.

The questions in the environmental sounds and tonal patterns
item sets are adapted for the gamification process with the
tablet and robot.

Each item set in the auditory test is composed of 30
questions and each question composed of a pair of auditory
stimuli. The children are asked to indicate if the pairs are the
same or different.

In the conventional test setup, an audiologist accompa-
nies the child who is taking the test. The audiologists play
the pair of auditory stimuli sequentially, and they ask the
child to answer verbally if the pairs are the same or different,
and finally they mark the child’s answers on a paper-based
questionnaire.

The auditory tests are digitized and two gamification-
based setups are designed to motivate the children during
their clinic consultation. In the proposed setups, the audiol-
ogists preserve their place along with the child but the child
answers the test questions using a tablet. Both setups include
a short tutorial session. The children are familiarized with
the type of questions, the concepts “same” and “different”
and their pictorial representations in this tutorial session. If
the pairs of auditory stimuli are the same, then the child is
advised to select the answer with the picture of two identical
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Fig. 1 Test setups for the auditory perception game

muffins, if not, then the answer with the picture of onemuffin
and one ice-cream cone should be selected.

The tablet setup consists of a tablet-based game, where the
child plays the auditory perception game under an audiolo-
gist’s supervision. If the child correctly answers the question,
an audiovisual feedback is triggered, a verbal approval
recording is played and a confetti animation is displayed on
the tablet screen.

In the robotic setup, the same tablet-based game is played
with Pepper robot and the feedback is given by the robot’s
affective behaviours. The robotic setup differs from the tablet
setup mostly with the presence of the robot and the feedback
mechanism. In the robot setup the children interact with the
tablet accompanied by an audiologist, the tablet communi-
cates with the robot via an intermediary device monitored by
a researcher situated out of children’s sight, as schematized
in Fig. 1.

The robot’s verbal andnon-verbal behaviours are triggered
by the correct answers of the children. The verbal and non-
verbal feedback of the robot are designed and implemented
under the guidance of the audiologists and a pedagogue.
For the verbal feedback of the robot, a subset of record-
ings in Turkish with different voice profiles (male, female,
machine-like voices with varying pitch and speed properties)
were prepared using open source text-to-speech software and
Pepper’s embedded text-to-speechmodule. These recordings
were voted by the audiologists and a small set of children,
and the most liked voice was selected to generate the robot’s
verbal feedback. In brief, the robot uses a child-like and gen-
derless voice that has a higher pitch and lower articulation
speed with machine-like notes. The feedback sentences used
to enhance the affective behaviour of the robot were also
provided by the audiologists. The audiologists stated that in
their conventional tests, no negative feedback are given to
the children and they use only positive and neutral feedback.
Therefore the verbal feedback of the robot are generated

accordingly. Thus, a positive utterance is randomly selected
from a set of predefined sentences and voiced by the robot
when a child answers the question correctly, and when the
child’s answer is incorrect, the robot tells the child to listen
the next question carefully.

For the non-verbal feedback of the robot, all the prede-
fined animations were investigated in detail and they were
eliminated with respect to the cognitive developmental age
and the cultural background of the children. In addition, the
animations with brusque and high-poweredmovements were
discarded in order not to intimidate children. The animation
set for the study is composed of affirmative (e.g. head nod),
exclamative (e.g. lean back with open arms) and affective
animations (e.g. happy, excited). When the robot voices a
positive utterance then it is accompanied randomly by a pos-
itive posture and a positive affective animation.

4.2 Interaction Data Collection

The children were equipped with the Empatica E4 smart
wristband during the interaction session. The real-time phys-
iological signals and facial expression data were collected
with E4 wristband and a video camera, respectively for all
the three test setups: conventional, tablet, and robot+tablet
(Fig. 1). In addition, in the setup with the robot, the whole
session was recorded with a supplementary video camera.
The data captured by E4 was annotated by the audiolo-
gists and psychologists taking part in the study. First the
video recordings of children were annotated (pleasant, neu-
tral, unpleasant) and labeled using a video annotation tool
designed and developed for this study. Then the labels were
used to annotate the synchronous E4 data.

Two survey studies were conducted to explore the chil-
dren’s subjective evaluation of the robot when the interaction
session with the robot was completed. The surveys were
designed to measure and to evaluate the emotional responses
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Fig. 2 Test setups for the
experimental studies with
children

(a) Auditory perception game with Pepper (b) Pepper

(c) Tablet setup (d) Conventional setup

of the children toward the robot and their impressions about
its behaviours. Due to the age of children, the well-known
questionnaires to measure attitudes towards robots such as
NARS (Negative Attitude towards Robots Scale, [71]) or
RAS (Robot Anxiety Scale, [72]) cannot be used since both
questionnaires contains questions requiring a higher linguis-
tic and cognitive understanding. Therefore, the first survey
was designed as a simple questionnaire, mostly composed of
yes-no questions.

The second survey was designed as an online survey to
check the validity of the available animations of Pepper and
to explore if the children in the target group could correctly
identify which behaviour or emotion the robot tries to man-
ifest. The online survey is composed of six questions, the
first three questions are given as short narratives with pic-
tures, and the children are shown short videos of the robot
and select the most congruent one with the narrative. The
remaining questions are composed of Pepper’s video clips,
each displaying a basic emotion. The children are asked to
guess how the robot feels in the shown video clip. The struc-
ture of the survey studies, sample questions and narratives
are given in details in [73].

4.3 Test Participants

The inclusion criteria in the study were determined by the
audiologists, the children:

– with typical development based on AGTE [74], Denver
[75], and WISC-R [76] scales for children,

– with typical language and speech development,
– with hearing loss, and who have been using hearing aids
or cochlear implants for at least 1 year,

– who do not have any other known neurological or psy-
chological diagnosis

were included in the study.
The parents of the childrenwere informed about the exper-

imental procedure for the test, data acquisition setup and they
signed a written consent.

The tests for the gamified auditory perception studies with
tablet and robot were conducted at the university laboratory
(Fig. 2(a), (b), (c)). 25 children were invited for the study but
only 19 of them completed the study with the Pepper robot.
3 of the children had multiple handicaps which affected their
physical and cognitive performance in the tests therefore their
data were not included in the results.

The gamified setups of the auditory perception test were
performed with 16 children (10 female, 6 male) aged 5 to 8
years old (M =6.2 and SD =0.9). 10of the children (6 female,
4 male) have cochlear implants, and 6 of them (4 female, 2
male) use hearing aid. 15 of them had no prior experience
with real-world physical robots, except one of them, an 8-
year-old girl who had priorly participated in our pilot study
with a smartphone-powered education robot. All the children
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Fig. 3 Work flow of classification task using physiological signal

taking part in the study were tested in both tablet-based gam-
ification with or without robot setups. They were tested in
alternating order and with different item sets (environmental
sounds or tonal patterns).

The control study with the conventional auditory per-
ception test were conducted at the audiology clinic setup
(Fig. 2(d)). The control study was planned to be performed
with the same number of children but due to COVID-19 out-
break, only 6 of the families consented for their children
to participate the study in an isolated and disinfected room.
Therefore the conventional tests were conducted with 6 chil-
dren (4 female, 2male) aged 6 to 7 years old (M = 6.6 and SD
= 0.5), 4 of them (3 female, 1 male) having cochlear implant
and 2 (1 female, 1 male) of them having hearing aid. In addi-
tion to conventional test setup, the children were also tested
with the gamified tablet setup. The tests were performed in
alternating test order and with different item sets.

5 Classification Using Physiological Signals

5.1 Physiological Data Collection and Processing

Physiological data are collected using the E4wristband. Skin
conductivity (SC) data is acquired with an Electrodermal
activity (EDA) sensor at 4 Hz. Blood volume pulse (BVP)
data is acquired via the PPG sensor with a sampling rate of
64 Hz. Skin temperature (ST) data is acquired with infrared
thermopile with a sampling rate of 4 Hz.

The data collected from the EDA and ST sensors were
upsampled to 64 samples per second so that the number of
samples of all sensors is equal.The data from all sensors were
epoched into 1-second slices. Multisensor data fusion at the
data-level was used to fuse the information from all sensors,
then feature vectors (64x3) were obtained for each 1-second
slice (Fig. 3).

5.2 Classifiers

The classifiers were trained for two classification tasks. The
first one is the classification of test setups based on the
captured physiological signals, and the second one is the
classification of emotions based on the test setups.

We first selected commonly used machine learning meth-
ods for the classification task, which are Support Vector
Machine (SVM), Random Forest (RF), and Artificial Neural
Network (ANN). The implementation of the SVM classi-
fier was based on LIBSVM [77] and used a Radial Basis
Function (RBF) as kernel function. The Random Forest (RF)
classifier used in the study was composed of 1000 estimators
with Gini impurity criterion. The neural network architecture
of the ANN classifier consisted of only 1 hidden layer with
64 units using a sigmoid function. A fully connected dense
layer, which used the softmax function, was added. The loss
functionwas selected as binary cross-entropy for binary clas-
sifications, and categorical cross-entropy was used for the
multi-class classifications.

Later, we used two deep learning-based methods for the
classification task: Long-Short Term Memory (LSTM) and
Convolutional Neural Networks (CNN). We use physiolog-
ical signals as input to our classifiers, which are time-series
data. Thus,we use temporally dependent inputs, and this kind
of dependency requires a memory unit, which provides cap-
turing information from previously seen data. Therefore, we
selected LSTM and adopted a classifier based on a vanilla
LSTM model. The LSTM classifier had one LSTM layer
with a time step of 64, connected to a dense layer for the
classification task.

Besides the good performance of the CNN on image
data, application of it on time-series signals such as phys-
iological signals are also getting attention in the literature
[78]. CNN yields spatially correlated outputs from the input,
which means detecting salient spatial information in terms
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Table 1 Classification Results
of RT, RC,TC, RTC using ANN
and CNN

Item Metric ANN CNN

set RT RC TC RTC RT RC TC RTC

env Accuracy 0.990 0.980 0.747 0.809 0.988 0.976 0.753 0.817

F1-score 0.990 0.980 0.743 0.734 0.988 0.976 0.744 0.740

ton Accuracy 0.994 0.994 0.713 0.796 0.995 0.994 0.765 0.857

F1-score 0.994 0.994 0.712 0.718 0.995 0.994 0.763 0.798

env+ton Accuracy 0.989 0.984 0.645 0.747 0.991 0.985 0.619 0.750

F1-score 0.989 0.984 0.642 0.656 0.991 0.985 0.615 0.655

of physiological signals. These spatially correlated connec-
tions contribute to a thoroughly spatial examination of the
physiological signals. Therefore apart from the LSTM, we
also used a CNN model as a deep learning-based classifier.
The CNN model consisted of one convolutional layer with 8
filters which had kernel sizes of 8-by-2. A maximum pool-
ing layer followed with the pool size of 64-by-1. The same
arrangement as the classical neural network was set at the
last layer because of the binary and multi-class classification
tasks.

5.3 Classification Results

The classification performance of SVM, RF, and ANN were
analyzed and compared based on their overall classification
performance. Based on this analysis, the ANN model with
the highest average accuracy andF1-score in all classification
tasks was selected to be compared with the deep learning-
based classifier with the highest performance metrics, which
is the CNN model.

The selected ANN and CNN classifiers and their per-
formance for the classification of test setups (conventional,
tablet, and robot) and the classification of emotions (pleasant,
unpleasant, and neutral) were given in detail in the following
subsections. The performance of the classifiers (SVM, RF,
and LSTM) with lower performance metrics were displayed
in Appendix.

5.3.1 Classification of Test Setups

The effects of technology on childrenwere evaluated by clas-
sifying the physiological signals captured during the three
different test setup in this study (Fig. 3). The data samples
were labeled considering the tools used in the experimental
setups: the robot+tablet (R), the tablet (T), and no tool (con-
ventional (C)) for different item sets (environmental sounds,
tonal patterns, and both of them) The classifiers were trained
and tested for both binary (robot - tablet (RT), robot - conven-
tional (RC), tablet - conventional (TC)) andmulti-class (robot
- tablet - conventional (RTC)) classification. The training and
test sets were prepared for three-fold cross-validation. Due to

the unbalanced numbers of samples for each class (R, T, C)
of the classification tasks (RT, RC, TC, and RTC), the train-
ing dataset was augmented using the random oversampling
method. The classification accuracies that were obtained for
RT, RC, TC and RTC are presented in Table 1.

The results show that the classification accuracies of
both ANN and CNN models were higher when robot was
involved (Table 1). Both RT (environmental sounds, 99%-
ANN and 98.8%-CNN and tonal patterns, 99.4%-ANN and
99.5%-CNN) andRC (environmental sounds, 98%-ANNand
97.6%-CNN and tonal patterns, 99.4%-ANN and 99.4%-
CNN) were classified accurately. The results comply with
the hypothesis that the robot acted as a stimulating agent and
caused difference in the physiological signals of children.
Since the test technology between two cases (R and T), test
questions and tablet interfacewere identical in both cases; the
interaction with the robot and the feedback from the robot,
as well as the physical embodiment of the robot might cause
such difference in the physiological signals compared to the
other cases T and C (environmental sounds, 74.7%-ANN
and 75.3%-CNNand tonal patterns, 71.3%-ANNand 76.5%-
CNN). The multi-class classification (RTC) also resulted in
high accuracy but with lower F1-scores. Increasing the num-
ber of children might be helpful to improve the performance
of the multi-class classifiers for future studies.

5.3.2 Classification of Emotions

The results of the classification task for the test setups, pre-
sented in Table 1 in the previous subsection, comply with
our assumption that the robot stimulated the children more
than the other two test setups. Based on this, we decided to
analyze the emotions of children during the auditory tests,
especially with the robotic setup.

The emotions of the childrenwhen theywere using a robot,
tablet, or no tool at all (conventional setup) have been clas-
sified in this study (Fig. 3). Data samples were labeled as
pleasant (P), unpleasant (U), and neutral (N) considering the
emotions assigned by the psychologist in the experiment dur-
ing the auditory perception tests. The classifiers were trained
and tested for both binary (pleasant - unpleasant (PU), pleas-
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Table 2 Classification Results
of PU, PN, NU, PNU in Robot
Setup using ANN and CNN

Item Metric ANN CNN

set PU PN NU PNU PU PN NU PNU

Renv Accuracy 0.771 0.562 0.628 0.486 0.792 0.521 0.654 0.445

Precision 0.843 0.565 0.646 0.507 0.809 0.544 0.657 0.476

Recall 0.771 0.562 0.628 0.328 0.792 0.521 0.654 0.285

F1-score 0.757 0.560 0.622 0.373 0.783 0.482 0.652 0.333

Specificity 0.771 0.562 0.628 0.671 0.792 0.521 0.654 0.645

GSP 0.782 0.562 0.630 0.394 0.792 0.506 0.654 0.355

GSS 0.735 0.557 0.614 0.448 0.773 0.438 0.650 0.410

MCC 0.610 0.127 0.273 0.001 0.600 0.062 0.311 -0.071

Rton Accuracy 0.521 0.542 0.682 0.472 0.458 0.604 0.636 0.389

Precision 0.524 0.538 0.686 0.489 0.460 0.612 0.640 0.415

Recall 0.521 0.542 0.682 0.314 0.458 0.604 0.636 0.249

F1-score 0.514 0.523 0.680 0.368 0.455 0.593 0.631 0.287

Specificity 0.521 0.542 0.682 0.650 0.458 0.604 0.636 0.584

GSP 0.518 0.532 0.682 0.384 0.457 0.601 0.634 0.308

GSS 0.507 0.500 0.677 0.440 0.450 0.580 0.624 0.354

MCC 0.045 0.081 0.368 -0.035 -0.082 0.216 0.276 -0.179

Table 3 Classification Results
of Emotions in Tablet and
Conventional Setups using ANN
and CNN

Item Metric NU Item Metric PN

set ANN CNN set ANN CNN

Tenv Accuracy 0.960 0.980 Cenv Accuracy 0.762 0.774

Precision 0.963 0.979 Precision 0.785 0.846

Recall 0.947 0.977 Recall 0.762 0.774

F1-score 0.954 0.977 F1-score 0.758 0.760

Specificity 0.947 0.977 Specificity 0.762 0.774

GSP 0.954 0.978 GSP 0.766 0.784

GSS 0.946 0.977 GSS 0.751 0.738

MCC 0.910 0.956 MCC 0.546 0.614

Tton Accuracy 0.841 0.952 Cton Accuracy 0.795 0.487

Precision 0.904 0.968 Precision 0.692 0.455

Recall 0.762 0.929 Recall 0.690 0.444

F1-score 0.789 0.943 F1-score 0.671 0.441

Specificity 0.762 0.929 Specificity 0.690 0.444

GSP 0.811 0.945 GSP 0.680 0.445

GSS 0.722 0.924 GSS 0.508 0.365

MCC 0.650 0.895 MCC 0.426 -0.100

ant - neutral (PN), neutral - unpleasant (NU)), andmulti-class
(pleasant - neutral - unpleasant (PNU)) classification. The
training and test setswere again prepared for three-fold cross-
validation. Because of the unbalanced numbers of samples
for each class (P,N,U) for the classification tasks, the training
dataset was again augmented using the randomoversampling
method.

The emotion classification accuracies using ANN and
CNN were presented in Table 2 and Table 3. Since there was

few samples in emotion tasks, the number of samples belong-
ing to different classes in the test sets remained unbalanced
when trying to select asmany samples as possible. Therefore,
F1-score, recall, precision, specificity, Matthew’s correlation
coefficient (MCC), the geometric mean of recall and pre-
cision (GSP), the geometric mean of recall and specificity
(GSS) values besides classification accuracies for emotion
classifications are also displayed in Table 2 and Table 3.
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Table 4 The results of ANOVA
for test metrics across test setups

Mean (SD) F(2, 47) p

Conventional Robot Tablet

Test Score (%) 0.74 (0.22) 0.63 (0.18) 0.66 (0.19) 1.101 0.341

Tutorial (s) 150 (237) 190 (69) 258 (226) 1.319 0.277

Total Test (s) 461 (109) 596 (81) 502 (81) 9.169 < 0.001

Response (s) 15 (4) 20 (3) 17 (2) 9.541 < 0.001

The results showed that ANN and CNN classifiers per-
formed best in the classification of PU in the environmental
sounds with the robot (77.1%-ANN and 79.2%-CNN). How-
ever the highest classification accuracy results (68.2%-ANN
and 63.6%-CNN) in the tonal patterns were obtained in NU
classification for the robotic setup. Since the audiologists
define tonal pattern tests as harder than the one with the envi-
ronmental sounds, the children display less emotions during
the tonal pattern test because they are more focused on the
auditory task. Therefore, the highest accuracy in NU clas-
sification might be due to the higher number of samples in
neutral and unpleasant labels than pleasant ones during the
tests with the tonal patterns.

After the annotation task was finished by the experts, we
also noticed that the number of samples in T and C test setups
were very low for classification of emotions. Thus, we only
run the NU classification for T (environmental sounds, 96%-
ANN and 98%-CNN and tonal patterns, 84.1%-ANN and
95.2%-CNN) and PN classification for C setup (environmen-
tal sounds, 76.2%-ANN and 77.4%-CNN and tonal patterns,
79.5%-ANN and 48.7%-CNN) (Table 3). The reason behind
the low number of labeled samples for the other emotional
casesmight be due to the fact that the childrenwere less emo-
tionally stimulated in these tests. When they used tablet, they
showed only neutral or unpleasant emotions, which might be
due to the fact that the children were not motivated. On the
other hand, in C test setup, PN could be classified because of
the high number of positive and neutral labeled samples and
no unpleasant samples. This might be due to the individual
motivation of the audiologist, who know the children for a
long time (familiarity effect).

Note that the audiologist might be inexperienced or unfa-
miliar with the children in the test, which will effect the
motivation and performances of the children in the conven-
tional test setup. Thus, use of socially assistive robots and
tablets may standardise the tests, and the feedback mecha-
nism, and avoid the bias by the aforementioned causes.

6 System Evaluation of RoboRehab

The classification results for the test setup and emotional
expressions of the children showed that the robotic system
has a stimulating presence during the auditory perception
tests. The system was assessed by objective and subjective
evaluation metrics in order to explore if the gamified setups
had any effect on the children performances and impressions.

6.1 Objective Evaluation: Test Metrics and
Behavioral Analysis Study

The following test metrics were extracted from the interac-
tion sessions for each child to explore if the gamified setups
had any significant effect over the conventional setup:

– Test score: the percentage of the correctly answered ques-
tions,

– Tutorial time: the duration in seconds of the familiar-
ization session with the gamified setups and the test
questions,

– Total test time: the duration in seconds of the auditory
perception test composed of 30 questions,

– Response time: the time difference in seconds between
two answers.

A one-way ANOVA test was performed on the collected
test metrics (Table 4), and Tukey and t-tests were computed
to perform pairwise-comparison between the means of the
3 groups (Fig. 4). The results showed that the setup did not
have any significant effect on the test scores of the children
and the tutorial duration but it caused a significant difference
on the total test time and response time of the children. As
displayed in Fig. 4(c) and (d), the group means were signif-
icantly different between the conventional-robot setup and
robot-tablet setup. The significance of the time difference is
expected because the robot interacts with the children using
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Fig. 4 The distributions of the test metrics for all the setups, and t-test significance between setup pairs: (ns) not significant, (**) are significant at
p ≤ 0.01

Table 5 The results of Welch two sample t-test for test setups based on
item set

Setup Item Set N Score (M , SD) t p

C Env 6 0.85, 0.22 1.887 0.090

Ton 6 0.63, 0.17

R Env 10 0.72, 0.16 3.311 0.002

Ton 6 0.48, 0.10

T Env 14 0.75, 0.18 3.417 < 0.001

Ton 8 0.51, 0.10

verbal and non-verbal cues to maintain their attention, there-
fore the interaction session takes longer.

The result of the one-way ANOVA demonstrated that test
scores of the children are not affected by the test setups, in
order to explore if the children’s profile (age, gender, hearing
device) or auditory perception test-related factors (test order
and item set) had any significant effect on the scores, further
analysis were conducted. The results of ANOVA showed that
only the item set (tonal pattern/environmental test) had a
significant effect on the test scores in the gamified setups.
The mean scores and number of test participants for both
setup and item set are summarized in Table 5. One-tailed
paired t-tests showed that the children’s scores in tests with
environmental sounds item set were significantly higher than
the test with tonal patterns for both test setup, as displayed
in Fig. 5.

The audiologists comment that this difference in the scores
is due to the nature of the auditory perception test, the audi-
tory stimuli in the tonal pattern item set is harder to perceive
and identify than the stimuli in the environmental sound set
[79].

In order to eliminate the effect of the test-related factors on
the test setup, a group of 6 children were tested with the same
item set in the same test order for all the setups. They were
first tested with the robotic setup, then the tablet and finally

Fig. 5 The results of Welch two sample t-test for test setups based on
item set

in a conventional setup with a time difference designated by
the audiologists between sessions.

One-way ANOVA test showed that the test setup did not
have a significant effect on the test scores, total test duration
and response timeof the 6 children, it had only an effect on the
tutorial duration (Table 6). The paired t-test computed for the
pairwise comparison between the test setups showed that the
tutorial time differed significantly between the conventional-
robot and conventional-tablet setups (Fig. 6(b)). This differ-
ence is based on the fact that the tutorial of the conventional
setup incorporates only instructions about the test ques-
tions and do not have any extra information about digital
setup/media (i.e. robot and tablet). The t-test results also
showed that, similar to the previous analysis on the all partic-
ipants, the group means of total test duration (Fig. 6(c)) and
response time (Fig. 6(d))were significantly different between
the conventional-robot setup and robot-tablet setup. As men-
tioned before, the significance was issued by the verbal and
non-verbal feedback of the robot during the interaction ses-
sion.

As a summary, the statistical analysis showed no signifi-
cant difference on the test scores for the setups, but the timing
characteristics differed significantly, as expected due to the
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Table 6 The ANOVA results for
test metrics of the group tested
with the same item set in all the
test setups

Mean (SD) F(2, 16) p

Conventional Robot Tablet

Test Score (%) 0.75 (0.23) 0.67 (0.2) 0.72 (0.27) 0.177 0.84

Tutorial (s) 89 (15) 152 (38) 150 (23) 10.53 0.001

Total Test (s) 450 (113) 555 (47) 481 (66) 2.684 0.101

Response (s) 15 (4) 18 (2) 16 (2) 2.591 0.108

Anova, p = 0.84
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Fig. 6 The distributions of the test metrics of the group tested with the same item set in all the setups, and t-test significance between setup pairs:
(ns) not significant, (*) and (**) are significant at p ≤ 0.05 and p ≤ 0.01, respectively

feedback mechanism of the robot. In order to investigate if
the robot had any significant effect on the engagement of
children despite the longer duration of the interaction ses-
sion, a behavioral analysis study was conducted on the video
recordings of the children tested with the same item set on
all the setups. The videos were annotated by the start and
end times of each child’s speech, gaze direction, gestures
(smiling, mimicking the robot) and boredom signs (sighing,
yawning, fidgeting, etc.). Unfortunately, due to the fact that
the conventional study were performed after the COVID-19
outbreak and all the children wear facial mask and protective
clothing, the behavioral analysis resultswere inconclusive for
the comparison of the conventional setup with the gamified
setups. But a previous behavioral annotation study performed
on the tablet and robot setups showed that there was no sig-
nificant difference between both setup in terms of children’s
speech, their gaze direction and boredom signs. On the other
hand, the behavioral coding revealed that children smiled and
talked to the robot and mimicked it whereas there were no
annotated occurrence of these behaviours in the tablet setup.
The children’s interactive engagement with the robot may be
interpreted as a higher involvement with the game due to the
presence of the robot, however the results are not significantly
representative because of the small sample size.

6.2 Subjective Evaluation: Impressions of the
Children About the Robot

Two survey studies were conducted: (1) to evaluate the chil-
dren’s perception of the robot, and, (2) to validate if the
children correctly interpreted the feedback given by the robot
as emotional behaviors during the auditory perception game.
(For further details on both surveys, please refer to [73].)

The first survey about the perceived character, intelligence
and likability of the robot revealed that the children were
excited to see the robot (Q1) and they liked it very much.
The results showed that the children liked playing with the
robot (Q5), would like to play again with it (Q6), and would
like to be friends with the robot (Q7). They also reported that
they thought the robotwas intelligent (Q10) and funny (Q12).
Most of the children remarked that they would like to have
a similar robot at home (Q8) but they were not in agreement
about the presence of the robot in their school (Q9a).

The children were also asked open-ended “why” ques-
tions. When they were asked about what they did like the
most about the robot (Q3), some of them mentioned only the
physical properties of the robot saying “its hands” and “its
face” , on the other hand some of the children answered “I
liked all of it” , “I liked its being a robot” and “I liked themost
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Fig. 7 Correlation among different factors on impressions of children:
Correlations with (*), (**) and (***) are significant at p ≤ 0.05, p ≤
0.01 and p ≤ 0.001 respectively

its saying bravo to me when I answered correctly” . All the
children were in agreement on that there was nothing about it
they did not like (Q4). And lastly, when they are asked what
they would teach the robot if they were the one “teaching it
to do something” , they answered saying: “I would teach it to
move like me” , “the alphabet” , “how to draw hearts” , “how
to help me with my homework and studies” , and“to play my
favorite games” .

The second survey on the interpretability of the robot’s
affective behaviours showed that the children were able to
match a happy, sad or surprised context with a congruent
emotional behaviour and identify accurately the emotions
displayed by the robot.

The answers of the 16 children taking the auditory test in
robotic setup are encoded and quantified for both survey. The
second survey were scored out of 100, the children’s scores
varying from 0.33 to 1 (M = 0.75 and SD = 0.21) were inte-
grated into a correlation analysis to examine the correlations
among different factors influencing children’s impressions
about the robot. The correlated factors are displayed in Fig. 7.

While the negatively correlated items showed that younger
children were more excited to see the robot, the positively
correlated items revealed that the children who described
themselves as “excited to see the robot” would like to be
friends with the robot and play again with it. The children
who liked to play with the robot and would like to continue
to play with it, found the robot intelligent and funny. There
was also a positive correlation with the funny aspect of the
robot and the children’s desire to have a similar robot in their
home. Another positive correlation were found between the

answers of the children who would like to be friends with
the robot and the children desiring to see the robot in their
schools (Q9a). The presence of the robot in the school was
themost disagreed item on the questionnaire, further analysis
on the open-ended questions revealed that the answers of the
children who do not want to see the robot in the school were
dependent on the perceived character of the robot, i.e the
children who perceived the robot as “a teacher” rather than
“a friend” , said that they do not want the robot in their school
[73].

The correlation study results also revealed that children
who correctly interpreted robot’s behaviour in the second
survey (having a higher s_score) found the robotmore funny
than the others.

Another aspect revealed by the correlation analysis was
that the auditory perception test score (t_score) of the chil-
dren did not have any significant correlation with any of the
other factors. It is a promising outcome because it reveals
that even though the children do not perform well during the
auditory test, they do not relate it with their experience with
the robot and their impressions about it.

7 Conclusion & FutureWork

RoboRehab is an assistive robotic system enhanced with an
affective module for children with hearing disabilities. The
system is designed and developed for the audiometry tests
and rehabilitation of children in clinic settings. The system
involves a social robot Pepper, tablet, an interface specially
designed for the verbal and nonverbal interaction of chil-
dren with the robot, gamification of the tests, sensory setup
and a machine learning based emotion recognition module
to achieve this goal.

This paper presents a user study involving 16 children
with hearing disabilities (using cochlear implant or hear-
ing aid). Three scenarios involving conventional setup, setup
with robot+tablet and setup with only tablet conditions are
tested, and the results including detailed analysis of phys-
iological signals captured by E4, performances of children
during the auditory perception tests, and self-report question-
naire are presented.

An affective module based on facial and physiological
data is being developed in the project. This study presents
the results of the physiological data which is collected by E4
smart wristband and labeled by the psychologists involved in
the project using the facial expressions of the children during
the tests. Both traditional machine learning methods (ANN)
and deep learning models (CNN) are used on the E4 data
to classify the three test setups (conventional, tablet, robot).
The results show that the robotic setup is well separated with
high classification accuracy from tablet and conventional test
setups for the auditory tests with both item set. The results
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Table 7 Classification Results of RT, RC,TC, RTC using SVM, RF and LSTM

Item Metric SVM RF LSTM

set RT RC TC RTC RT RC TC RTC RT RC TC RTC

env Accuracy 0.991 0.926 0.792 0.754 0.805 1.000 0.663 0.716 0.991 0.982 0.744 0.791

F1-score 0.990 0.920 0.775 0.759 0.793 1.000 0.614 0.625 0.991 0.982 0.740 0.711

ton Accuracy 0.945 0.999 0.675 0.838 0.717 0.926 0.588 0.599 0.991 0.995 0.719 0.794

F1-score 0.948 0.999 0.536 0.829 0.691 0.926 0.541 0.564 0.991 0.995 0.717 0.714

env+ton Accuracy 0.826 0.796 0.757 0.620 0.692 0.644 0.715 0.373 0.992 0.991 0.616 0.722

F1-score 0.821 0.795 0.748 0.609 0.658 0.593 0.681 0.248 0.992 0.991 0.612 0.620

Table 8 Classification Results of PU, PN, NU, PNU in Robot Setup using SVM, RF and LSTM

Item Metric SVM RF LSTM

set PU PN NU PNU PU PN NU PNU PU PN NU PNU

Renv Accuracy 0.521 0.524 0.397 0.384 0.690 0.963 0.678 0.629 0.750 0.521 0.564 0.319

Precision 0.580 0.543 0.394 0.242 0.691 0.968 0.708 0.733 0.765 0.524 0.564 0.262

Recall 0.521 0.524 0.397 0.287 0.690 0.963 0.678 0.537 0.750 0.521 0.564 0.205

F1-score 0.499 0.477 0.392 0.221 0.688 0.962 0.668 0.516 0.744 0.479 0.564 0.215

Specificity 0.521 0.524 0.397 0.619 0.690 0.963 0.678 0.782 0.750 0.521 0.564 0.504

GSP 0.524 0.503 0.394 0.241 0.689 0.964 0.681 0.561 0.751 0.500 0.564 0.224

GSS 0.440 0.428 0.387 0.149 0.683 0.961 0.655 0.548 0.736 0.435 0.563 0.234

MCC 0.094 0.064 -0.208 -0.155 0.381 0.930 0.385 0.351 0.515 0.045 0.129 -0.338

Rton Accuracy 0.553 0.414 0.461 0.457 0.762 0.545 0.754 0.589 0.625 0.521 0.667 0.403

Precision 0.568 0.407 0.456 0.575 0.772 0.592 0.828 0.619 0.697 0.441 0.702 0.378

Recall 0.553 0.414 0.461 0.312 0.762 0.545 0.754 0.423 0.625 0.521 0.667 0.256

F1-score 0.546 0.403 0.455 0.334 0.750 0.529 0.715 0.465 0.588 0.457 0.657 0.293

Specificity 0.553 0.414 0.461 0.649 0.762 0.545 0.754 0.749 0.625 0.521 0.667 0.581

GSP 0.553 0.407 0.457 0.361 0.758 0.548 0.745 0.492 0.618 0.469 0.670 0.304

GSS 0.536 0.390 0.448 0.391 0.736 0.509 0.674 0.527 0.550 0.338 0.645 0.335

MCC 0.121 -0.178 -0.083 -0.025 0.534 0.132 0.554 0.194 0.298 0.045 0.366 -0.190

also show that the tablet and conventional setup are distin-
guished from each other but the accuracy of the classifiers is
not as high as in the robotic setup. These finding answers the
first research question (RQ1) about the effect of the different
test setups on the physiological signals of children.

To answer the second research question (RQ2), the phys-
iological signals are used with ANN and CNN models to
recognize the emotions of children (positive (pleasant), neg-
ative (unpleasant) or neutral) for the three test setups. The
results reveal that the children’s positive and negative emo-
tions can be distinguishedmore accuratelywhen they interact
with the robot, than the other two cases in the environmental
sounds test. However, negative and neutral emotions of chil-
dren seem to bemore distinguishable in the tonal pattern test.
Since tonal pattern tests were harder than the environmental
sounds tests, the children might feel less positive emotions
during the tonal pattern test. Furthermore, negative and neu-
tral emotions of children seem to be more distinguishable

in both environmental and tonal pattern test for tablet setup,
which may infer that children get bored and are not much
motivated. Pleasant and neutral emotions of children seem
to be more distinguishable in both environmental sounds and
tonal pattern tests for conventional setup. This is expected
since children feel comfortable near audiologist whom they
are familiar with and who are motivating them.

The system evaluation based on objective test metrics
(RQ3) demonstrate that the test scores of children in tablet
and robot setups were as good as the conventional tests with
human audiologist. Moreover, the results show that the time
spent with the robot is significantly higher than the con-
ventional test but it is observed by the audiologists and
experimenters that in the robotic setup, the children were
more involved and showed attention to the test than the other
setups. The subjective evaluation of the audiologist comply
with the findings of previous studies: In robotic studies, even
though the test performances of participants do not differ
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Table 9 Classification Results
of Emotions in Tablet and
Conventional Setups using
SVM, RF and LSTM

Item Metric NU Item Metric PN

set SVM RF LSTM set SVM RF LSTM

Tenv Accuracy 0.983 0.995 0.869 Cenv Accuracy 0.941 1.000 0.726

Precision 0.988 0.996 0.869 Precision 0.947 1.000 0.827

Recall 0.974 0.992 0.894 Recall 0.941 1.000 0.726

F1-score 0.980 0.994 0.864 F1-score 0.940 1.000 0.695

Specificity 0.974 0.992 0.894 Specificity 0.941 1.000 0.726

GSP 0.981 0.994 0.873 GSP 0.942 1.000 0.733

GSS 0.974 0.992 0.887 GSS 0.938 1.000 0.657

MCC 0.962 0.988 0.763 MCC 0.888 1.000 0.537

Tton Accuracy 0.667 0.667 0.714 Cton Accuracy 0.385 0.701 0.769

Precision 0.333 0.333 0.687 Precision 0.206 0.516 0.710

Recall 0.500 0.500 0.738 Recall 0.308 0.514 0.625

F1-score 0.400 0.400 0.679 F1-score 0.242 0.438 0.607

Specificity 0.500 0.500 0.738 Specificity 0.308 0.514 0.625

GSP 0.408 0.408 0.695 GSP 0.249 0.467 0.635

GSS 0.000 0.000 0.585 GSS 0.029 0.098 0.402

MCC 0.000 0.000 0.457 MCC -0.409 0.082 0.358

significantly between the robotic and conventional setups
and the test duration increases when the robot is present,
the results report higher engagement and higher cooperation
times by the participants [80,81]. It has also been reported
in the literature that human - robot interaction increases par-
ticipation in a given task [82,83]. Therefore, we expect that
the proposed method will facilitate the children’s experience
during their auditory tests, increase the interaction and coop-
eration time and improve the interaction quality, especially
for individuals with additional disabilities, who have short
attention and cooperation time.

The self-report surveys conducted after auditory tests with
the robotic setup show that the robot is accepted as an intelli-
gent and funny social entity by the children. Although there
was no significant difference of using a robot in terms of test
scores, the subjective evaluation of the robotic setup reveal
that the children were excited to see the robot and happy to
play with it (RQ4). Additionally, the audiologists reported
that the children were more motivated and engaged in the
digitalized setups than the conventional setup. This is a moti-
vating preliminary step to use these affective robots as a part
of audiometry testing.

The overall results show that the robot can stimulate the
children’s emotions and cause difference in their physiolog-
ical signals and machine learning approaches can be used to
understand the emotions of children during their interaction
with a socially assistive robot. To the best of our knowledge,
this project is the first study towards an affective assistant
robot for children with hearing disabilities as part of their
rehabilitation and audiometry testing process.We expect this
will encourage more research in this field, provide new ways

to address the emotional needs of children through their clinic
interventions and improve their clinic experience. Especially
in times of pandemics such technology assisted approaches
supported by machine learning methods for rehabilitation
will be very helpful for the vulnerable user groups.
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The performance metrics of the classifiers for the classifica-
tion of test setups, and the classification of pleasant, neutral
and unpleasant emotions based on the test setup are displayed
in Table 7, 8, and 9, respectively.
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