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Abstract

Background

To reach WHO End tuberculosis (TB) targets, countries need a quality-assured laboratory

network equipped with rapid diagnostics for tuberculosis diagnosis and drug susceptibility

testing. Diagnostic network analysis aims to inform instrument placement, sample referral,

staffing, geographical prioritization, integration of testing enabling targeted investments and

programming to meet priority needs.

Methods

Supply chain modelling and optimization software was used to map Lesotho’s TB diagnostic

network using available data sources, including laboratory and programme reports and

health and demographic surveys. Various scenarios were analysed, including current net-

work configuration and inclusion of additional GeneXpert and/or point of care instruments.

Different levels of estimated demand for testing services were modelled (current [30,000

tests/year], intermediate [41,000 tests/year] and total demand needed to find all TB cases

[88,000 tests/year]).

Results

Lesotho’s GeneXpert capacity is largely well-located but under-utilized (19/24 sites use

under 50% capacity). The network has sufficient capacity to meet current and near-future

demand and 70% of estimated total demand. Relocation of 13 existing instruments would

deliver equivalent access to services, maintain turnaround time and reduce costs compared

with planned procurement of 7 more instruments. Gaps exist in linking people with positive

symptom screens to testing; closing this gap would require extra 11,000 tests per year and

result in 1000 additional TB patients being treated. Closing the gap in linking diagnosed

patients to treatment would result in a further 629 patients being treated. Scale up of capac-

ity to meet total demand will be best achieved using a point-of-care platform in addition to

the existing GeneXpert footprint.
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Conclusions

Analysis of TB diagnostic networks highlighted key gaps and opportunities to optimize ser-

vices. Network mapping and optimization should be considered an integral part of strategic

planning. By building efficient and patient-centred diagnostic networks, countries will be bet-

ter equipped to meet End TB targets.

Introduction

The World Health Organization (WHO) End tuberculosis (TB) Strategy calls for increased

access to diagnostic tools for rapid and accurate detection of TB, universal access to drug sus-

ceptibility testing (DST), and strengthened quality of laboratory services [1], measures that will

be critical to reaching national and global TB control targets. With an increasing choice of TB

diagnostics endorsed by WHO for use in low and middle income settings [2], countries must

select products that are appropriate for their own contexts and disease burdens, and design

diagnostic algorithms to enable expanded access [3]. Lesotho, a small, land-locked, mountain-

ous country in Southern Africa, is one of the 30 countries with the highest TB burden [4]. In

2017, over 15,000 cases of TB were reported (a rate of 665 per 100,000 population), of which

920 were multidrug resistant (MDR-TB); 73% of TB patients were co-infected with HIV [5].

Lesotho’s population of 2.1 million people is largely rural (72%), and the average per capita

gross national income was only $1380 in 2018 [6]. The Ministry of Health (MOH) in Lesotho

has rolled out the Xpert MTB/RIF test (Cepheid, Sunnyvale, CA, USA), a nucleic acid amplifi-

cation test for the rapid diagnosis of TB and detection of rifampicin resistance. However,

access to Xpert MTB/RIF testing and linkage of diagnosed patients to care remains a challenge

[7].

Network design is the physical configuration and infrastructure of the diagnostic network,

including the number, locations, and capacity of facilities and testing sites, and referral link-

ages. Network optimization, the selection of a best network configuration from a set of avail-

able alternatives based on selected criteria, can be used to inform instrument placement,

sample transportation and referral mechanisms, staffing, geographical prioritization, quality

assurance and integration of testing to meet the priority needs of a disease programme [8].

Network optimization and strategic supply chain management using specialized software and

modelling approaches is common practice in the commercial sector [9]; while examples in the

public health sector are somewhat limited, and mostly restricted to supply chain and procure-

ment applications, modelling approaches have previously been used to inform placement of

TB diagnostics in Tanzania [10], and of CD4 testing facilities in South Africa [11]. The latter

included assessment of testing site workload, coverage areas and turnaround time to optimize

service provision.

The patient pathway analysis (PPA) approach [12, 13] seeks to understand where patients

seek care for TB and to align this with delivery of services. PPA has been conducted in five

high burden TB countries [14–18] and has identified programmatic gaps in care seeking,

screening, diagnosis, treatment and follow up. This study leveraged findings from PPA regard-

ing where patients seek care, overlaid with data on availability and capacity for diagnostic test-

ing, to map and model the existing network structure in Lesotho for TB diagnostic services

using network design and optimization software. The study was intended to inform country-

led decision-making processes around placement of new technologies and network optimiza-

tion strategies aimed at achieving improved access to TB diagnostic services.
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Materials and methods

Study setting

Lesotho comprises 10 administrative districts, and covers a total area of 30 355 km2 [19].

Lesotho’s health services are delivered at three levels, namely primary, secondary and ter-

tiary levels. There were 286 public health facilities in Lesotho in 2016, including 265 primary

health care centers, 20 general district hospitals, and a multi-specialty tertiary hospital (Queen

Mamohato Memorial Hospital) located in Maseru. Patients requiring services beyond what is

offered at the tertiary level are referred to hospitals in South Africa at the government’s

expense. The Christian Health Association of Lesotho (CHAL) owns 8 of the district hospitals

and 71 health centers while the rest are owned by government. Although CHAL is a private

not for profit faith based organization, the CHAL facilities are operated as public facilities

through funding provided by government [20]. In addition, a network of more than 6000 vil-

lage health workers provides basic health services at community level [21].

Basic diagnostic services, including sputum smear microscopy and Xpert MTB/RIF testing,

are largely available at district hospitals and some health centres, with specimens being

referred from lower levels of the health system. Two regional referral laboratories and one

National Tuberculosis Reference Laboratory in the capital, Maseru, provide specialised TB

diagnostic services such as culture and drug susceptibility testing [21].

Modelling process

Fig 1 outlines the steps involved in the Diagnostic Network Optimization process. The Minis-

try of Health and National Tuberculosis Programme (NTP) led the definition of the scope of

the process, which was based on known challenges in delivery of TB services and need for data

to inform planned interventions and investments in the TB diagnostic network. The analysis

evaluated the status of the current diagnostic network, specifically the location and capacity of

existing GeneXpert testing sites and how well this met current demand for services, as well

anticipated increases in future demand as TB screening efforts are scaled up. Gaps in the diag-

nostic cascade for TB diagnosis were investigated as a means to identify opportunities to find

missing cases and initiate patients on treatment, as well as to understand incremental increases

in demand for testing as a result of closing gaps in the pre-testing part of the cascade (screening

and referral of people with TB signs and symptoms for diagnostic testing).

Additionally, the process assessed whether existing plans for procurement of additional

GeneXpert instruments were necessary and if so, which would be the optimal locations for

their placement. Lastly, the impact of placement of new point-of-care (POC) devices that are

expected to be available in the near future, such as the GeneXpert Omni device, on access to

services and cost of the diagnostic network, was evaluated.

Baseline model structure and data inputs

Methodology. The TB diagnostic network structure was modelled using a commercially

available software tool, Supply Chain Guru1 (LLamasoft, Inc, Ann Arbor, MI). This software

tool leverages a Mixed Integer Linear Program (MILP) to analyze and optimize the supply

chain network [22]. Locations for testing demand (patients) and testing supply (diagnostic

devices) are incorporated, along with the sourcing and transportation pathways connecting

patient test demand to diagnostic testing sites, including the costs and lead times associated

with each pathway. In addition, instrument costs and capacity constraints are included to

ensure the results of the model accurately represent the realities of operating the diagnostic

testing services within the network. Scenarios (see Table 2) are then created to test out various
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future state configurations for the network. The resulting ‘optimized’ solution is the lowest

cost solution that meets all constraints imposed upon the network model. The analysis largely

focused on estimating the extent and distribution of diagnostic capacity that would be needed

in the country under various demand scenarios. As such the costing approach focused on cost-

ing different sample transport routes that would be considered in the different scenarios (see

Fig 1. Steps in the diagnostic network optimization process.

https://doi.org/10.1371/journal.pone.0233620.g001

Table 2. Descriptions of diagnostic network scenarios and assumptions used in constructing network models and

running optimization scenarios.

Description Assumptions

Baseline Existing locations and active GeneXpert

capacity as of January 2017

Network

2017

As baseline, with 13 additional GeneXpert

instruments operational at their assigned

locations

13 GeneXpert instruments were procured in 2016.

They were non-operational at the time of the

study due to lack of human resources.

Optimal 13–

20 sites

As baseline, with placement of 13 additional

GeneXpert instruments being optimized. Up to

7 new GeneXpert instruments can be added and

their locations optimized.

Assumes location of 13 GeneXpert instruments

could be reconsidered by MOH. Funding for a

further 7 GeneXpert instruments had been

allocated but orders not yet placed.

Network

2018

As Network 2017. Additional 7 GeneXpert

instrument added to network in optimal

locations.

Assumes location of 13 GeneXpert instruments

can not be reassigned, and that procurement of a

further 7 GeneXpert instruments proceeds in

2017.

Optimal GX

+ Omni

As per Optimal 13–20. Any number of

additional GeneXpert instruments or Omni

instruments can be added to the network at

their optimal locations.

Unconstrained addition of GeneXpert and/or

Omni capacity to existing optimized network

design.

https://doi.org/10.1371/journal.pone.0233620.t002
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below for transportation costing methodology). No detailed route planning or optimization

was conducted in this study. The model output was therefore the network design that gave the

lowest transportation cost at each demand level.

Data sources. Data sources used to populate the model are shown in Table 1. These files

were reviewed for completeness, plausibility and internal consistency of inputs, and were con-

firmed with stakeholders, before being merged and formatted into the software’s model data-

base schema.

Data inputs required for optimization of the model are shown in Fig 2. Due to sub-national

variations, facility or district level data were used where available. Sites included health facili-

ties that order diagnostic tests (referring facilities) and facilities with laboratories and/or test-

ing sites that conduct tests (referral facilities). Some sites included both referring and referral

capacity, e.g. health facilities that conduct smear microscopy but refer specimens to a higher-

level facility for Xpert MTB/RIF or culture testing. The analysis primarily focused on Xpert

MTB/RIF testing sites and therefore data on other tests (smear, culture and other DST) were

excluded from the detailed analysis.

Demand estimation. National demand for testing was estimated at three levels: baseline

(current demand), intermediate demand, and total demand. Current demand for testing was

the number of Xpert MTB/RIF tests conducted in 2015 per referring facility as communicated

by NTP/national TB reference laboratory (NTRL); 30,000 tests/year (Mareka, M, personal

communication. Intermediate demand was estimated from diagnostic cascade data, as the

number of Xpert MTB/RIF tests that would be performed if all people who were screened for

TB and found to have signs and symptoms were tested (41,000 tests/year). The total demand

for testing was defined as the number of Xpert MTB/RIF tests that would be required to find

all TB cases in the country (including intermediate demand [those screened with signs and

symptoms] as well as testing required for additional screening; 88,000 tests/year). To provide

context to the total demand estimate, the overall projected demand of 88,000 tests equates to

all PLHIV (constituting approximately 15% of the country’s population in 2016 [25]) being

screened two to three times a year, and the rest of the general population being screened once

Table 1. Methods and data sources used to estimate each step of the TB diagnostic cascade for patients in Lesotho in 2015.

Stage Number of

persons

% of previous

stage

Data source

Population 2,160,309 - Lesotho Bureau of Statistics, 2015. [23] Health facility catchment

population data, gender disaggregated, Ministry of Health Lesotho

(unpublished data)

Total prevalent TB cases (all forms) 16, 700 WHO Global TB Report, 2016 [24]

Total notified TB cases (all forms) 7, 758 NTP 2016 Report (unpublished data)

Persons screened for TB (verbal symptom screen by VHWs

in community or at health facilities)

1,125,486 52% NTP 2016 Report

Persons screened who were found to have TB signs and

symptoms1
41,189 4% NTP 2016 Report

Persons examined with Xpert MTB/RIF test 29,913 73% National TB Reference Laboratory, 2015

Persons diagnosed with bacteriologically-confirmed

pulmonary tuberculosis (drug susceptible and drug

resistant TB)

3,435 11% NTP 2016 Report

Persons diagnosed with bacteriologically-confirmed

pulmonary tuberculosis who started treatment

2,806 82% NTP 2016 Report

TB–tuberculosis, VHW–village health worker.
1 TB signs and symptoms include cough of two weeks or more, weight loss, fever and night sweats

NTP–National Tuberculosis Programme.

https://doi.org/10.1371/journal.pone.0233620.t001
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a year. The number of TB patients per health facility was estimated based on the age and gen-

der disaggregated catchment population per facility (Ministry of Health Lesotho, unpublished

data) and the 2015 TB incidence data reported by WHO [26]. The unmet demand for TB diag-

nostics was further split into (a) unmet demand among those screened for TB (patients who

have already entered the health system, and (b) unmet demand among those unscreened

(patients who have not entered the health system).

Sample transport and linkages. Different sample referral and transportation systems

were employed at different levels within the network. Riders for Health is a non-governmental

organisation that provides sample transportation services from level 1 (health centres or clin-

ics) to district hospitals (level 2) for diagnostic testing. For referral of samples from district

hospitals to NTRL, a courier company is contracted. Ad hoc transportation is done via hospital

or other transport, e.g. during site supervision visits by regional or national level staff. For esti-

mating distances between all level 0 and any level 1 or 2 facilities, actual distances were used

where available (for existing transportation routes). Where actual distances were not known, a

distance adjustment factor was computed from actual distance divided by the straight-line dis-

tance on the map for the lanes where actual distances exist and applied to unknown transport

lanes based on the source and destination districts. For estimating unknown actual distances,

the straight-line distance was multiplied by the average transport adjustment factor.

Data on linkages between health facilities and testing sites at baseline were provided by Rid-

ers for Health and the MOH. For network optimization scenarios, we evaluated new linkages

among all health facilities and all testing sites in the model to potentially improve network effi-

ciency and find the optimal network configuration and equipment placement. Any proposed

linkages from the model solutions were then subjected to validation and assessment of feasibil-

ity for implementation in consultation with NTP/MOH staff.

Courier costs for shipment of samples from district hospitals to NTRL were flat rates per

trip and not distance-based, and were therefore excluded from the analysis since they do not

Fig 2. Diagrammatic representation of the data inputs required for diagnostic network optimization.

https://doi.org/10.1371/journal.pone.0233620.g002
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impact on the model’s decisions on where to place GeneXpert instruments. For transportation

of samples from health facilities and clinics to district hospitals, an average cost per sample

transported per kilometre was calculated for each district using historical cost data (Riders for

Health, unpublished data), and then applied to transportation routes in the new scenarios. The

actual transport cost per district was provided by Riders for Health, which included fuel,

administrative costs, maintenance and training costs, as well as ad hoc staff that were engaged

in addition to regular motorbike riders. Data on the number of riders per district and their sal-

aries in 2015 were also provided by Riders for Health. The fuel cost was estimated at 0.09 US

Dollars per kilometre. The following assumptions were applied: each rider conducted one trip

per day and travelled at an average of 30km/hour, there were 240 working days per year and

three samples were transported for each presumptive TB patient undergoing investigation

(two samples for smear microscopy and one for Xpert MTB/RIF testing).

Evaluating the baseline and alternative network models

We analysed a range of alternative network scenarios based on the existing network structure

to assess future planned procurements of instruments, alternative possible structures utilizing

the GeneXpert Omni device (under development), as a proxy for point-of-care tests for rapid

TB detection, that would be implemented in conjunction with existing technologies, and sce-

narios that enabled unconstrained placement of instruments at existing or new locations

(Table 2). Outputs of scenarios were validated and assessed for feasibility.

Results

Current TB diagnostic network status

Fig 3 shows the network structure in 2016. Utilization of GeneXpert instruments was found to

be low (19/24 testing sites use less than 50% of instrument capacity), and varied considerably

across sites, with utilization rates varying from 89% to 2% (Fig 4). The capacity and location of

GeneXpert instruments in the network was compared with current, intermediate and total

demand for testing. The current network had sufficient GeneXpert capacity to meet both exist-

ing and intermediate demand, and could manage approximately 70% of the total demand.

The testing capacity within the network was generally well-positioned when comparing the

current location of testing capacity with the optimized network structure generated by the soft-

ware analysis. However, the analysis predicted that relocation of certain instruments could

improve overall network efficiency by moving additional capacity closer to where patients seek

care. Specifically, the modelling suggested that the locations selected for placement of 13 Gen-

eXpert instruments that were procured in 2016 but were not yet operational at the time of the

study are not all optimal. Relocation of 6 out of the 13 instruments would improve network

performance. The extent of network optimization possible through relocation of these instru-

ments produced an equivalent effect to procurement of 7 further GeneXpert instruments.

TB diagnostic cascade

Fig 5 shows the steps in the TB diagnostic cascade and the number of people at each step, both

at a national level and per district. The extent of screening events varied substantially across

districts, with the number of screening events equating to 22% of the population in Mohale’s

Hoek to 97% of the population in Mafeteng. However these figures do not account for repeated

screening of individuals, e.g. PLHIV, and are therefore not reflective of the proportion of the

population who are screened. Similarly the yield of TB symptomatic individuals among those

screened varied from 2.1% in Mafeteng to 8.4% in Maseru. Linking people who were screened
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and found to have TB signs and symptoms to Xpert MTB/RIF testing varied from 41% in

Quthing to 92% in Maseru. Closing this gap would need an additional 11,000 tests overall, and

result in approximately 1000 additional TB patients being treated.

Xpert MTB/RIF test positivity varied from 5% in Mokhotlong to 19% in Leribe. The per-

centage of diagnosed patients who started TB treatment varied from 61% in Leribe to 99% in

Maseru.

Closing this gap would lead to an additional 629 TB patients being treated.

Future demand

The current network can meet about 70% of the estimated total demand needed to find all TB

cases (approximately 60,000 of the 88,000 tests needed per year). Factors that were important

when evaluating overall network performance as demand increases included increasing utili-

zation, percentage of onsite testing turnaround times and transportation costs. As compared

with baseline, the network 2017 scenario (which includes an additional 13 GeneXpert devices)

has a lower utilisation rate, a higher proportion of on-site testing (45% compared with 33%),

slightly reduced turnaround time (3.7 days compared with 4.0 days) and transportation cost

estimate reduced by approximately one third. As testing demand increases, the average utilisa-

tion of instruments increases (to 35% and 76% at intermediate and total demand level), fewer

Fig 3. Map of Lesotho’s TB diagnostic network structure, 2016. Public sector facility; triangle; private sector facility;

circle. Size of facility icons (black) are scaled according to Xpert MTB/RIF testing volume in 2015.

https://doi.org/10.1371/journal.pone.0233620.g003
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samples are tested on-site as demand increases (45% at current demand, 39% at intermediate

demand and 24% at total demand level), turnaround time at intermediate demand is similar to

Fig 4. Utilization of GeneXpert device capacity per testing site and district, 2016. Maximum capacity per GeneXpert four-module device was considered as 12 tests per

day for 240 working days per year (total of 2880 tests per year).

https://doi.org/10.1371/journal.pone.0233620.g004

Fig 5. TB diagnostic and treatment cascade in Lesotho, 2016 (national and by district). TB–tuberculosis, PTB–pulmonary tuberculosis.

https://doi.org/10.1371/journal.pone.0233620.g005
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baseline but increases at the total demand level by approximately 1 day compared to baseline.

Transportation costs at intermediate demand level for the network 2017 design was compara-

ble to baseline, with an increase by a factor of 30% with the total testing demand estimation.

Screening was the main driver of demand; 75% of the unmet demand (additional volume of

tests required to find the missing TB cases) came from people who were never screened.

The model suggested that total demand for testing could be met with no additional GeneX-

pert instruments (assuming locations are optimized) and 33 point of care instruments (such as

the Omni device under development). The cost of 33 point of care instruments was compara-

ble to that of 7 GeneXperts, using the cost assumptions available at the time of the study.

Discussion

The findings of this study resulted in a number of recommendations for the Lesotho TB diag-

nostic network. The pre-study decision to procure an additional seven GeneXpert instruments

was shown to be unnecessary, as comparable benefits could be obtained by relocating existing

devices. This would allow funding allocated for new instruments to be moved to other priority

areas, including sample transportation, supervision and quality assurance, and equipment

maintenance, which are often under-funded and yet are essential components of a quality-

assured diagnostic network. While no major changes in network structure were required,

minor changes in location of instrument capacity to bring GeneXpert instruments closer to

demand for testing could result in improved access, reduced transport costs and improved

turnaround times. Flexibility to relocate instruments should be considered as a mechanism to

improve network efficiency and avoid unnecessary expansion of testing sites, reduce capital

expenditure and recurrent resources (financial and human) that are needed to maintain qual-

ity-assured service delivery. Instrument placement decisions are frequently influenced by geo-

graphical placement or other considerations, but as demonstrated by our model, the focus

should be on placement of technology close to where patients seek care, and near high-risk

populations.

This analysis highlighted two key areas in which demand for testing and impact of testing

could be strengthened. The first relates to linking of people who were screened and found to

have TB signs and symptoms with Xpert MTB/RIF testing, to ensure confirmation of diagno-

sis. Significant variation was observed across districts, warranting an in-depth assessment to

understand the gaps between screening and testing, and to facilitate the development of suc-

cessful strategies to close these gaps. The second area related to linking confirmed TB patients

to treatment. Identification of best practices may help with scale up successful strategies to

address these gaps. Notably, the GeneXpert positivity rate was variable across testing sites,

highlighting a need for understanding of the drivers of GeneXpert test positivity in relation to

the population screened and referred for testing and how this may vary across the country. An

assessment of laboratory quality indicators and systems to determine whether variability is

related to testing practices is recommended.

Analyses of future demand showed that an immediate scale up of laboratory services is not

warranted, as significant increases in demand could be met with current structure and testing

capacity. However, scale up and optimization of the lab network would be needed in order to

find all of the TB cases in Lesotho. This would be highly reliant on parallel and aligned scale up

of screening and treatment services. Since the volume and effectiveness of screening is the

main driver for TB testing demand, alignment of plans for screening scale up with laboratory

capacity is critical. Proactive screening of individuals in “hotspot” areas and referral of those

identified as presumptive TB patients for testing are important interventions, requiring strong

community-based outreach and advocacy measures to mobilise the population.
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Understanding the population’s care seeking behaviour and ensuring availability of services

aligns with where patients seek health care services is critical. Furthermore, as Lesotho

embarks on plans for decentralized viral load/early infant diagnosis testing (VL/EID) for HIV,

which will also be performed using the GeneXpert platform, it will be important to update the

network analysis to account this and ensure sufficient capacity for both scale up of TB testing

and for the HIV programme. Further analyses to take into account more granular input data

relating to costs and updated costing assumptions, human resources and operational consider-

ations associated with implementation of the Omni instrument would also be of value.

In the two years since this study was conducted the Lesotho GeneXpert network has been

expanded with the placement of 24 new instruments in existing sites and the opening of two

new GeneXpert testing sites. TB testing has also been integrated with HIV VL/EID testing in

12/24 new sites and two new sites provide only HIV VL/EID testing. Although none of the

instruments were relocated to improve network efficiency as recommended by the model,

interventions being implemented by the TB programme have resulted in an increase in

demand for TB testing that already exceeds estimated intermediate demand levels. Instrument

utilization rates have also increased and in the period of January to June 2019, a total of 35,435

TB tests were run on the existing network with the rest of the capacity being utilized for HIV

VL/EID testing in the integrated laboratories. In eight laboratories the utilization rate was still

below 50% of capacity indicating areas for potential improvements in efficiencies. In 2019/

2020 Lesotho will be undergoing a further network optimization exercise that looks at optimiz-

ing the diagnostic network to deliver integrated TB/HIV diagnostic services. This expanded

network optimization work builds on the experience gained from the network optimization

exercise and recommendations described herein. Diagnostic network design and optimization

analysis [27] has also subsequently been undertaken in Kenya [28] and the Philippines [29],

with outputs informing development of Kenya’s National Strategic Plan for Tuberculosis Lep-

rosy and Lung Health [30], informing county level sample referral network design and opera-

tional planning, and informing placement of additional GeneXpert testing capacity in the

Philippines.

Limitations of this study included challenges experienced with data quality (lack of internal

completeness and consistency across different data sources), particularly with relation to

screening results. Improving quality of routine data is a priority as countries move towards

data-driven decision-making. Subsequently, after this analysis was performed, NTP intro-

duced a standardized screening tool and engaged data clerks at health facilities to capture and

report data. Challenges in implementing the findings of the diagnostic network optimization

exercise included the critical nature of timing to ensure that the model can be utilized to

inform decision-making around funding and investment decisions. For example, decisions

around instrument placement, particularly where this requires any infrastructure investment,

need to be made well in advance. Multiple partners or donors may be involved in support of

diagnostic networks, and therefore their planning and budgeting processes need to be taken

into account and they must be engaged early on in the network modelling and optimization

process to ensure the outputs fit their needs.

Conclusions

In summary, this analysis demonstrated that the current TB diagnostic network in Lesotho has

sufficient capacity to meet current demands, but highlighted key gaps and opportunities to

improve access to services, which will need to be acted upon in order to meet the total demand

for TB testing in the country. Use of this data-driven approach to network design is recom-

mended to other countries, to understand how best to improve access to rapid TB diagnosis
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and DST, to increase the efficiency of service delivery to meet the needs of patients and to

move towards meeting national and global TB targets.
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