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Host cell death programs are fundamental processes that shape cellular homeostasis,
embryonic development, and tissue regeneration. Death signaling and downstream host
cell responses are not only critical to guide mammalian development, they often act as
terminal responses to invading pathogens. Here, we briefly review and contrast how
invading pathogens and specifically Staphylococcus aureus manipulate apoptotic,
necroptotic, and pyroptotic cell death modes to establish infection. Rather than
invading host cells, S. aureus subverts these cells to produce diffusible molecules that
cause death of neighboring hematopoietic cells and thus shapes an immune environment
conducive to persistence. The exploitation of cell death pathways by S. aureus is yet
another virulence strategy that must be juxtaposed to mechanisms of immune evasion,
autophagy escape, and tolerance to intracellular killing, and brings us closer to the true
portrait of this pathogen for the design of effective therapeutics and intervention strategies.
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INTRODUCTION

Human innate immune defenses substantially contribute to microbial clearance during infection (1,
2). Primary defenses encompass mechanisms that include the biosynthesis of antimicrobial peptides
on the skin or mucosal surfaces, the recruitment of immune cells to infectious foci, and the
activation of the complement system and coagulation cascade (2–4). Programmed cell death
modalities represent additional key mechanisms that affect host-microbe interaction and infection
control (5). Amongst cell death programs, conventional apoptosis, regulated necrosis (necroptosis),
and pyroptosis have thoroughly been described to reveal unique signaling routes for initiation and
execution of cell death (6, 7). Signaling and ensuing death modes are governed by the nature of the
infection and the pathogenic attributes of the invading microbe. For example, apoptosis is often
activated to release intracellular pathogens from infected host cells or tissues (8). In this manner, the
host removes a preferred niche for initial replication, and simultaneously exposes the pathogen to
extracellular immune cell defenses without causing inflammation. On the contrary, necroptosis and
pyroptosis are highly inflammatory and impact immune cell trafficking as well as clinical syndromes
and host-mediated clearance of pathogenic microorganisms (5).
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Many human pathogens have evolved sophisticated strategies
to modulate or subvert host cell death programs during infection
(9). Specifically, microbes that infiltrate host cells and replicate
intracellularly suppress death signaling pathways to escape
extracellular immuno-surveillance (10, 11). In this manner,
intracellular bacterial pathogens such as Mycobacterium
tuberculosis or Legionella pneumophila maintain their
proliferative niche to cause persistent infections (12–14). Yet,
not all pathogens block cell death modalities upon host invasion.
Some infectious agents, such as Staphylococcus aureus, induce or
exploit programmed cell death to establish infection and
disseminate in the host. S. aureus is the most frequently
encountered agent of superficial skin and soft tissue infections
and occasionally causes invasive diseases in humans. Once
disseminated through blood stream infection, S. aureus is able
to establish replication foci in almost any organ (Figure 1) (15,
16). S. aureus deploys an arsenal of virulence factors with potent
immunomodulatory or toxigenic properties that modulate
programmed cell death in professional and non-professional
phagocytes thereby affecting clinical syndromes and various
diseases in human or animal hosts (Figure 1) (17, 18). Overall,
this remarkable microbe has evolved to manipulate all known
principal mechanisms of programmed cell death, including
Frontiers in Immunology | www.frontiersin.org 2
apoptosis and pro-inflammatory necroptotic or pyroptotic
cell death.

Herein, we summarize various cell death modalities and their
impact on the pathogenesis of S. aureus infections. We provide
an overview of S. aureus-derived products that promote or avert
programmed cell death signaling in host cells. Finally, we
highlight staphylococcal tactics for the manipulation of
autophagy, a cell death-associated cytoplasmic degradation
mechanism that sustains cellular homeostasis and survival.
APOPTOSIS AND APOPTOTIC SIGNALING
PATHWAYS

Apoptosis is an essential mechanism attributed to various
physiological events. Apoptosis is considered an important
component of multiple cellular processes and plays a
significant role during normal development, organ shaping,
homeostasis, and aging (19). Apoptosis is also favored by
stress, lack of nutrition, and several other pathological
conditions (19). Earlier work identified key genetic elements
and two major signaling routes that regulate apoptosis in
mammalian cells: the intrinsic (mitochondrial) and extrinsic
FIGURE 1 | Staphylococcal diseases associated with programmed cell death. S. aureus exploits programmed cell death to cause various diseases in human and
animal hosts.
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(death receptor-mediated) pathways of apoptosis (Figure 2)
(19). The extrinsic pathway is triggered by external signals and
transmembrane death receptors (i.e., FasR or TNFR1) for
activation of the death-inducing signaling complex (DISC) and
initiator caspases-8 and -10; the intrinsic pathway is induced by
internal stimuli, subcellular stress, and the release of apoptogenic
proteins from injured mitochondria (Figure 2) (19). Microbial
infections, DNA damage, cytotoxic stimuli, and various other
pro-apoptotic signaling molecules promote permeabilization of
the mitochondrial outer membrane, in a process mainly
controlled by proteins of the Bcl-2 family (i.e., Bcl-2-associated
X protein (Bax)) (20–22). Cellular stress favors oligomerization
of Bax and Bak (Bcl-2-antagonist killer 1) and subsequent
formation of pores in mitochondrial membranes (21, 23).
Perforated mitochondria release cytochrome c and other pro-
apoptotic proteins into the cytosolic space (19, 21, 24). Voltage-
dependent anion-selective channels (VDAC) may enhance the
release of mitochondrial pro-apoptotic factors by interacting
with dedicated Bcl-2 family proteins (25–27). Cytosolic
cytochrome c, together with dATP and the apoptotic protease
activating factor 1 (APAF1), trigger the formation of the ultra-
large apoptosome complex that activates the initiator caspase-9
(28, 29). Once caspase-9 (or caspases-8 or -10 in case of the
extrinsic pathway of apoptosis) is activated, effectors caspases-3,
-6, and -7 are proteolytically processed and converted to mature
proteins that degrade defined target substrates; the ultimate
result culminates with cell death exhibiting typical
morphological features of apoptosis: membrane blebbing, cell
shrinkage, DNA fragmentation, nuclear condensation, and
formation of apoptotic bodies (Figure 2) (19).
Frontiers in Immunology | www.frontiersin.org 3
APOPTOTIC CELL DEATH IN RESPONSE
TO STAPHYLOCOCCUS AUREUS
INFECTIONS
Apoptotic cell death of hematopoietic and non-hematopoietic
cells plays a significant role during S. aureus disease
pathogenesis. During infection, S. aureus provokes apoptosis in
a broad spectrum of target cells as a means to invade tissues, and
to antagonize host immune defenses (18, 30). Depending on the
type of tissue and staphylococcal isolate, apoptosis may occur via
extrinsic-, intrinsic-, or caspase-2-mediated apoptotic signaling
(31–36). S. aureus produces a vast array of pro-apoptotic
virulence factors that predominantly encompass potent toxins
and superantigens (Table 1) (17). Genetic variability amongst S.
aureus isolates increases the repertoire of toxins and
superantigens. All of these factors are secreted into the
extracellular milieu and are endowed with membrane-
damaging or toxigenic properties that interfere with apoptotic
signaling cascades (17, 76). For example, the staphylococcal
pore-forming toxins a-toxin, leukocidin AB (LukAB), or the
Panton-Valentine-leukocidin (PVL), have been shown to prime
apoptotic cell death in professional phagocytes and other cells
(31–33, 36, 48, 49). Pore-forming toxin-mediated apoptosis
involves potassium efflux from damaged cells and caspase-2-
initiated cell death, or breakdown of the mitochondrial
membrane potential, ultimately leading to the release of
apoptogenic factors (e.g., cytochrome c) and activation of
intrinsic death signaling pathway (31–33, 36). Staphylococcal
superantigens (i.e., enterotoxin B) interact with T-cell receptors
via major histocompatibility complex (MHC-II) molecules to
FIGURE 2 | Staphylococcal interference with host cell death machineries. All major cell death modes including apoptosis, pyroptosis, and necroptosis may occur in
response to extra- or intracellular staphylococci and their exoproducts (see Table 1). While apoptotic cell death is immunologically silent, pyroptosis and necroptosis
cause strong inflammatory responses due to the release of pro-inflammatory molecules from injured host cells. Characteristic features and canonical signaling
pathways of cell death modalities are indicated.
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stimulate biosynthesis and release of apoptogenic factors such as
TNF-a, FasL, or IFN-g (35, 44, 55). In this fashion, S. aureus
triggers a pro-apoptotic milieu that induces extrinsic apoptosis in
adjacent host target cells. Overall, toxin-mediated activation of
apoptosis and subsequent killing of phagocytes eliminates
primary host defenses essential for pathogen clearance. Pore-
forming toxins are also thought to be key for the successful
facultative intracellular lifestyle of S. aureus in non-professional
phagocytes. Specifically, internalization of staphylococci by
epithelial cells, endothelial cells, fibroblasts, keratinocytes, or
osteoblasts can stimulate apoptotic cell death signaling (Figure
2) (40, 50, 77–82). In this manner, S. aureus not only escapes
from host immune cell responses but also promotes tissue injury,
and subsequent infiltration into deeper tissues, organs, or
circulating body fluids. Following blood stream dissemination,
S. aureus can successfully invade organ tissues to seed abscess
lesions by initiating apoptotic death of surrounding cells in a
manner independent of pore-forming toxins or superantigens
(Table 1). S. aureus abscess formation involves two secreted
enzymes, staphylococcal nuclease and adenosine synthase A
(AdsA), that together convert neutrophil extracellular traps
(NETs) into deoxadenosine (dAdo), a pro-apoptotic molecule,
which kills phagocytes (37). dAdo-intoxication of macrophages
involves uptake of dAdo by the human equilibrative nucleoside
transporter 1 (hENT1), subsequent targeting of the mammalian
Frontiers in Immunology | www.frontiersin.org 4
purine salvage pathway, and signaling via dATP formation to
activate caspase-3-dependent apoptosis and immune cell death
(37–39). In this manner, macrophages are excluded from abscess
lesions without causing inflammation thereby promoting the
establishment of invasive disease (37, 39). More recently, Stelzner
and colleagues discovered that intracellular S. aureus elaborates
Staphopain A, a secreted cysteine protease, to trigger apoptosis in
epithelial cells after translocation to the host cell cytosol (53).
Staphopain B and the type-VII secretion system effector EsxA
may also interfere with apoptotic cell death of human cells
(Table 1) (47, 51, 52, 54). In summary, S. aureus exploits
apoptosis to incapacitate macrophages and other host cells
without provoking inflammatory responses; this facilitates
infiltration of the bacteria in tissues and the establishment of
persistent lesions filled with replicating staphylococci.
PYROPTOSIS AND THE INFLAMMASOME

Unlike apoptosis, pyroptosis denotes a highly inflammatory state
that largely depends on the activation of interleukin-1b (IL-1b)-
converting enzyme also known as caspase-1 (Figure 2) (6).
Caspase-1 is synthesized as an inactive zymogen in mammalian
cells and was the first cysteine-dependent aspartate-specific
protease (caspase) discovered in scientific history (83).
TABLE 1 | Selected staphylococcal factors interfering with programmed cell death and autophagic signaling pathways.

Pathway Staphylococcal factor Category Affected cells1 References

Apoptosis AdsA-derived dAdo Deoxyribonucleoside Macrophages (37–39)
a-toxin Pore-forming toxin Epithelial cells, endothelial cells, T-cells, monocytes,

eosinophils
(31, 33, 36, 40–42)

Enterotoxin A Superantigen T-cells (43)
Enterotoxin B Superantigen Macrophages, T-cells, epithelial cells (35, 44, 45)
Enterotoxin H Superantigen Epithelial cells (46)
EsxA WXG-like protein Epithelial cells (47)
Leukocidin AB Pore-forming toxin Dendritic cells (48)
Panton-Valentine
leukocidin

Pore-forming toxin Neutrophils, macrophages, keratinocytes (32, 49, 50)

Peptidoglycan Cell wall component Platelets (51)
Protein A Surface protein Osteoblasts (52)
Staphopain A Cysteine protease Epithelial cells (53)
Staphopain B Cysteine protease Neutrophils, monocytes (54)
TSST-1 Superantigen B-cells (55)

Pyroptosis a-toxin Pore-forming toxin Monocytes, macrophages, keratinocytes, microglial cells (56–61)
Extracellular vesicles Membrane vesicles Macrophages (62)
g‐hemolysin Pore-forming toxin Microglial cells, macrophages (61, 63)
Leukocidin AB Pore-forming toxin Monocytes, dendritic cells (48, 64)
Panton-Valentine
leukocidin

Pore-forming toxin Monocytes, macrophages, neutrophils (63, 65)

Peptidoglycan2 Cell wall component Macrophages (66)
Phenol-soluble modulins3 Cytolysin Keratinocytes (67)

Necroptosis a-toxin Pore-forming toxin T-cells, macrophages (68, 69)
FumC Fumarate hydratase Keratinocytes (70)
Panton-Valentine
leukocidin

Pore-forming toxin Neutrophils (32)

Phenol-soluble modulins Cytolysin Neutrophils (71)
Autophagy a-toxin Pore-forming toxin Epithelial and epithelial-like cells (CHO), endothelial cells (72–74)

IsaB Secreted and cell-surface-associated
protein

Epithelial cells, macrophages (75)
January 2021 | Volume
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Processing and subsequent proteolytic cleavage of caspase-1
occurs within the inflammasome, a supramolecular complex
that encompasses a member of NOD-like receptors (NLRs)
(Figure 2) (6, 84). NLRs contain carboxy-terminal leucine rich
repeats (LRR), a structural feature shared with Toll-like receptors
(TLRs), which evolved to sense a large set of pathogen-associated
danger signals, including bacterial or viral nucleic acids (85–88). In
addition, inflammasome-associated NLRs are endowed with a
variable N-terminal region that consists of a caspase activation
and recruitment domain (CARD), or a pyrin (PYD) subunit that
interacts with a CARD-domain containing adaptor protein (ASC)
(CARD domains facilitate binding and proteolytic cleavage of
caspase-1) (88–92). Following processing, catalytically active
caspase-1 cleaves pro-forms of IL-1b, IL-18, and IL-33 into
biologically active and secreted cytokines, ultimately leading to
strong pro-inflammatory responses that dictate the recruitment of
immune cells and pathophysiological outcome of disease (Figure
2) (6). Inflammasome activated caspase-1 also cleaves pro-
Gasdermin D, the actual executor of pyroptosis (93, 94).
Processing of Gasdermin D leads to the release of a plasma
membrane pore-forming subunit (GSDMD-N domain) that
interacts with acidic phospholipids found on the inner leaflet of
mammalian plasmamembranes (Figure 2) (95, 96). Together with
distinct mechanisms such as microvesicle shedding (97),
GSDMD-N-derived plasma membrane pores facilitate the rapid
release of the aforementioned pro-inflammatory cytokines and
intracellular molecules into the extracellular milieu, and ultimately
drive swelling and osmotic lysis of host cells (Figure 2) (95, 96).
Other caspases may also trigger pyroptosis (98–100). For example,
caspases-4, -5, -11, as well as apoptosis executor caspase-3, can
process pro-Gasdermins directly upon stimulation, thus impacting
pyroptotic cell death and its characteristic morphological features
(94, 98–100).

S. aureus-Mediated Activation of Distinct
Host Inflammasomes
S. aureus pathogenesis involves activation of distinct
inflammasomes, a process that primarily depends on the
infection site and staphylococcal stimulus involved. Pioneering
work by Mariathasan et al. uncovered that exposure of NLRP3-
deficient bone marrow-derived macrophages to replicating S.
aureus drastically reduced the detectable amount of mature
caspase-1, and secreted cytokines IL-1b and IL-18 (86).
Subsequently, multiple other studies revealed that S. aureus
pore-forming toxins contribute to this phenomenon, and
trigger the formation of the NLRP3 inflammasome, cytokine
release, pyroptosis, or pyroptotic-like cell death (Table 1).
Purified a-toxin or a-toxin-containing S. aureus culture
supernatants rapidly activate caspase-1 and NLRP3-dependent
signaling in THP-1 cells or mouse macrophages (56, 57).
Similarly, staphylococcal bi-component toxins LukAB or PVL
induce processing of caspase-1 and release of pro-inflammatory
cytokines by human phagocytes (64, 65). However, attempts to
block the cognate host proteins with small molecule inhibitors
only marginally suppresses a-toxin-, PVL-, or LukAB-mediated
cell death (56, 64, 65). Even the genetic ablation of CASP1 cannot
Frontiers in Immunology | www.frontiersin.org 5
prevent bacterial pore-forming toxin-dependent killing of host
cells, demonstrating that distinct mechanisms or cross talk
between different cell death modalities may contribute to
toxin-induced cell death (56, 64). In agreement with this
notion, a drop in intracellular potassium as a result of K+ efflux
caused by pore-forming toxins or activation of the lysosomal
cysteine protease cathepsin B provoke assembly of the NLRP3
machinery and cytokine release (64, 65, 101, 102). More recent
work revealed that pyroptotic cell death is also driven by S. aureus-
derived membrane vesicles (MVs) (Table 1) (62). MVs deliver
lipoproteins and pore-forming toxins along with other pro-
pyroptotic effector molecules to host cells thereby stimulating
TLR2-mediated priming of the NLRP3 inflammasome,
ultimately leading to gasdermin D-dependent release of pro-
inflammatory cytokines and pyroptotic cell death (62).
Combined with the canonical secretory pathway, this dual
strategy of toxin-mediated destruction of innate immune cells
secures S. aureus survival in hosts and establishment of
invasive disease.

S. aureus can also target the NLRP3 inflammasome and
pyroptotic signaling in a subset of non-immune host cells.
Keratinocytes, when exposed to live S. aureus, culture
supernatants, or staphylococcal toxins, produce elevated levels of
IL-1b and IL-18, and exhibit pyroptotic characteristics (58, 67). S.
aureus-induced skin inflammation and severity of dermal disease
has been correlated with stimulation of the inflammasome and
cytokine signaling (57, 58, 67, 103). Neither wild-type mice
infected subcutaneously with a panel of toxin-deficient S. aureus
mutants, nor NLRP3-, ASC-, or CASP1-deficient animals infected
with wild-type S. aureus elicit NLPR3-dependent inflammatory
responses and cytokine signaling (57). As a result, ASC-/- or IL-
1b-/- mice fail to recruit neutrophils and other phagocytes to
infectious foci, and develop significantly enlarged lesions in an
experimental model of S. aureus skin infection (Table 2) (103). In
line with these observations, impaired expression of NLRP3, ASC,
and CASP1 dampens neutrophil attraction in atopic dermatitis
patients thereby increasing the risk of pathogen colonization and
chronic skin inflammation (117). Yet, pyroptosis may also
correlate with enhanced staphylococcal diseases, including
traumatic osteomyelitis, central nervous system infections, and
acute pneumonia (Figure 1) (59, 106, 118). As with skin
infections, staphylococcal pulmonary disease and superinfections
of lungs are associated with altered activity of the NLRP3
inflammasome (60, 107, 110). S. aureus-driven pneumonia
induces additional inflammasome machineries such as NLRP6
(59). Of note, activation of the NLRP6 inflammasome during
acute pneumonia negatively regulates pulmonary defenses, as
NLRP6-/- mice accelerate neutrophil recruitment and display
increased resistance to staphylococcal lung infection (Table 2)
(59). Lastly, the NLRP7 inflammasome senses intracellular
staphylococci and acetylated lipoproteins, restricting bacterial
replication and dissemination of disease (119). However, the
exact role of NLRP7 for S. aureus pathophysiology remains
enigmatic. Collectively, S. aureus hijacks distinct inflammasomes
and pyroptotic cell death modalities during infection, presumably
to promote host invasion and immune evasion. Since S. aureus-
January 2021 | Volume 11 | Article 621733
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induced activation of pyroptotic cell death elicits robust
inflammatory and immune responses, pyroptosis may also
contribute to host-mediated clearance of staphylococci.
NECROPTOTIC CELL DEATH AND ITS
PATHOLOGICAL FEATURES

Necrosis stems from the Greek word “nekros” (dead body) and
represents a passive and uncontrolled form of cell death. While
initially considered to represent an accidental form of cell death
that lacks a defined signaling network, recent work uncovered
the existence of multiple pathways contributing to the control of
necrosis (120). The prototypical form of regulated necrosis,
necroptosis, requires several kinases, including the mixed
lineage kinase domain-like protein (MLKL) and receptor-
interacting protein kinases 1 and 3 (RIPK1, RIPK3); regulated
necrosis also requires dedicated plasma membrane receptors and
their ligands (Figure 2) (121–124). More precisely, necroptotic
signaling largely depends on death receptor mediated signaling
molecules (i.e., Fas or TNF) that interfere with their cognate
plasma membrane receptors, leading to the formation of a stable,
but short-lived RIPK1- and TRADD (TNFR1-associated death
domain)-dependent receptor-bound complex I (122, 125–127).
In addition to RIPK1 and TRADD, this multimeric complex
encompasses cellular inhibitor of apoptosis proteins 1 and 2
(cIAP1/cIAP2), TNF receptor-associated factor 2 (TRAF2) and
TRAF5. Together, TRAF2 and TRAF5 mediate polyubiquitination
of RIPK1 (126, 128–130). Ubiquitination of RIPK1 features the
Frontiers in Immunology | www.frontiersin.org 6
assembly of the inhibitor of nuclear factor-kB (NF-kB) kinase
(IKK) complex, which promotes the upregulation of NF-kB
pathway and several anti-apoptotic genes, including the FLICE-
like inhibitory protein (FLIP) (120). However, deubiquitination of
RIPK1 via cylindromatosis (CYLD) and other deubiquitinases
destabilizes complex I, a crucial step that promotes interaction of
RIPK1 with FADD (FAS-associated death domain), TRADD,
RIPK3, pro-caspase-8, and the long isoform of FLIP (FLIPL) to
form the TRADD-dependent complex II (126, 131–134).
Subsequently, pro-caspase-8 and FLIPL form a heterodimer
complex that cleaves and inactivates RIPK1, RIPK3, and CYLD to
prevent necroptosis (135–139). Pro-caspase-8 homodimerization
induces auto-proteolysis and formation of active caspase-8 that
processes the apoptosis-executing caspases 3 and 7, ultimately
promoting apoptotic cell death (120). Nevertheless, chemical or
pathogen-induced blockade of caspase-8 provokes the
complexation and autophosphorylation of RIPK1 and RIPK3 that
leads to the assembly of an intracellular machinery designated
necrosome (Figure 2) (140). Upon necrosome formation,
downstream signaling leads to the recruitment of MLKL, a
pseudokinase that interacts with the inner leaflet of plasma
membranes in its phosphorylated state (123, 141–143). In this
manner, MLKL disrupts the integrity of the cell thereby
promoting necroptosis (Figure 2). Apart from death-receptor-
mediated necroptosis, regulated necrosis can further be triggered
by TLR-mediated signaling or certain intracellular stimuli that lead
to the formation of non-classical necrosomes (144, 145). Moreover,
DNA damage can activate RIPK3 and biogenesis of another
necroptosis-executing multiprotein complex termed ripoptosome
TABLE 2 | Selected cell death- and autophagy-associated host genetic determinants affecting S. aureus pathogenesis in vivo.

Pathway Host factor1 Role during staphylococcal disease2 References

Apoptosis Bcl-2 affects apoptosis in intestinal epithelial cells following pneumonia (104)
Bid affects apoptosis in intestinal epithelial cells following pneumonia (104)
CASP3 suppresses macrophage infiltration into renal abscesses; affects staphylococcal clearance (39)
CASP3/9 promotes staphylococcal endophthalmitis (105)
Fas-L impacts T-cell apoptosis in response to staphylococcal superantigens (44)
PARP-1 provokes staphylococcal endophthalmitis (105)

Pyroptosis AIM2 affects bacterial clearance in lungs of superinfected animals; protective role during CNS infection (106, 107)
ASC protective role during CNS and skin infection; mediates increased mortality during influenza and bacterial superinfection;

exacerbates outcome of pneumonia; controls of IL-1b and IL-18 production during skin infection
(57, 59, 103,
106, 107)

CASP1 controls of IL-1b and IL-18 production during skin infection (57)
CASP1/4 promotes clearance of S. aureus from infected skin; enhances survival during sepsis (108)
CASP1/11 protective role during CNS infection (106)
CASP11 exacerbates lung infection (109)
IL-1b protective function during skin infection (103)
NLRP3 controls of IL-1b and IL-18 production during skin infection; impairs lung infection; regulates bacterial burden during

surgical wound infection
(57, 60, 107,
110, 111)

NLRP6 exacerbates outcome of pneumonia (59)
Necroptosis JNK detrimental effect during lung infection (112)

MLKL protective role during dermal infection; enhances survival during sepsis; promotes chronic infections of the skin (70, 108)
PPARa detrimental effect during superinfection (113)
RIPK1 protective function during dermal infection

promotes chronic infections of the skin
(70, 108)

RIPK3 provokes skin infection; promotes superinfection (108, 113)
Autophagy ATG16L1 enhances survival during bloodstream infection; protective role during lung infection; contributes to biogenesis of a-toxin-

neutralizing exosomes
(73, 114)

LC3 protective role during bloodstream infection and pneumonia (73)
SQSTM1 protective function during S. aureus infection (zebrafish larvae) (115, 116)
January 2021 | Volume 11 |
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(146). Overall, necroptosis constitutes a caspase-independent form
of programmed cell death that is morphologically characterized by
massive organelle and cellular swelling, and rupture of plasma
membranes (Figure 2). Hence, regulated necrosis causes robust
inflammatory responses and severe tissue injury, thus affecting the
pathophysiology of many infectious and non-infectious diseases.
EXPLOITATION OF NECROPTOTIC
SIGNALING BY STAPHYLOCOCCUS
AUREUS

The discovery of necroptotic signaling cascades enabled the
staphylococcal research community to uncover the significance of
necroptosis-dependent cell death in the pathophysiology of S.
aureus diseases. Initial work aimed to identify microbial and host
determinants that modulate necroptotic cell death during acute and
persistent infections, specifically in the context of staphylococcal
pulmonary disease (Tables 1 and 2). As expected, staphylococcal
pore-forming toxins including a-toxin promote tissue damage and
necroptotic cell death in immune and epithelial cells during lung
infection (68, 147). Moreover, S. aureus phenol-soluble modulins
(PSM peptides) constitute potent catalysts of necroptosis as these
cytolytic peptides activate necroptotic death of host phagocytes via
induction of MLKL phosphorylation, ultimately leading to
exacerbated outcomes of staphylococcal pulmonary infections
(71). Although most of these toxins have distinct receptors, all
variants exhibit potent immunomodulatory properties that together
trigger assembly of the necrosome, and subsequent necroptotic cell
death (68, 148, 149). However, some of these studies revealed that S.
aureus toxin-mediated necroptosis may directly interfere with
pyroptotic signaling pathways. For example, it was found that the
pharmacological inhibition of MLKL dampens caspase-1 activation
and pyroptotic signaling in host cells upon staphylococcal
stimulation (68, 150). Thus, it is not surprising that mice lacking
the NLRP6 inflammasome exhibit both, reduced pyroptotic and
necroptotic signaling following pathogen challenge (59).
Nevertheless, pharmacological and genetic perturbation of key
modulators of necroptosis such as MLKL, RIPK1, or RIPK3 can
clearly protect human and murine macrophages as well as
neutrophils from CA-MRSA strain USA300 and its secreted
toxins (68, 148–151). In line with these findings, RIPK3 knock-
out mice display increased resistance during experimental S.
aureus lung infection, an effect attributed to anti-inflammatory
CD206+ and CD200R+ alveolar macrophages that accumulate in
lungs and may accelerate the clearance of staphylococci (Table 2)
(68). Also, in vivo blockade of c-Jun N-terminal kinases (JNK1 and
JNK2), both of which are known to trigger TNF- and TLR-
induced necroptotic cell death, or genetic ablation of the
peroxisome proliferator-activated receptor a (PPARa), a ligand-
activated transcription factor and suppressor of NF-kB activation,
rescued mice from fatal staphylococcal lung disease, even under
conditions that mimic bacterial superinfections (Table 2) (112,
113). Zhou et al. exploited RNAIII-inhibiting peptide as an anti-
virulence therapeutic approach to prevent PSM- and necroptosis-
dependent lung injury in mice nasally infected with CA-MRSA
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strain USA300 (71). RNAIII is the effector of accessory gene
regulator (Agr) and RNA-III inhibiting peptide blocks S. aureus
quorum sensing and biogenesis of PSMs toxins during acute lung
infection (71). Together, this compelling work underscores the
importance and clinical relevance of necroptosis during S. aureus
pulmonary disease, and suggests that staphylococcal exoproducts
may simultaneously trigger distinct and genetically conserved cell
death programs in mammalian cells to establish infection
(Figure 2).

S. aureus can also trigger necroptosis in the absence of pore-
forming toxins (Table 1). Wild-type S. aureus or its hemB variant
stimulate host cell glycolytic activity and formation of
mitochondrial reactive oxygen species in skin cells in a manner
that promotes necroptotic cell death without the contribution of
bacterial toxigenic molecules (70). Mutations in the hemB gene
and other metabolic genes arise spontaneously during infection
and are identified on laboratory medium as small colony
variants (SCVs). SCVs represent auxotrophic subpopulations,
which while less virulent, are able to persist within host cells and
are associated with chronic infection (152). Intracellular hemB
variants induce the biogenesis of bacterial fumarate hydratase
that degrades cellular fumarate, a known inhibitor of the
glycolytic pathway of mammalian cells (70). In this manner,
SCVs activate necroptosis to promote persistence in skin cells
(70). Induction of necroptosis may also represent a selective
response of host keratinocytes to eradicate the invading
pathogen as mice lacking key elements of the necroptotic
signaling pathway such as MLKL exhibit significantly enlarged
wounds and higher bacterial loads during S. aureus experimental
skin infection (Table 2) (108). Although these animals recruited
more immune cells to the primary skin lesion and produced
elevated levels of pro-inflammatory cytokines due to excessive
activation of caspase-1, they failed to clear replicating
staphylococci (108). Consistent with these findings, MLKL-
proficient animals display enhanced survival rates over time in
a S. aureus murine bacteremia model, further suggesting that
induction of necroptosis may be beneficial for the host (108).
Collectively, these observations suggest that necroptosis may
restrict hyper-inflammatory immune responses during skin or
blood stream infections thereby serving as a protective
mechanism that promotes bacterial eradication from infected
hosts (108). However, S. aureus may also exploit the necroptotic
signaling pathway to combat resident and recruited innate
immune cells during acute or chronic infections.
AUTOPHAGY AND AUTOPHAGIC CELL
DEATH

Autophagy (from Greek, “self-eating”) constitutes a highly
conserved process that controls cellular development,
homeostasis and survival (153). This housekeeping mechanism
represents a protective platform and cellular recycling system
that overcomes several pathological states or harmful conditions
(153, 154). Comprehensive work uncovered mechanistic details
and the existence of at least three forms of autophagy (micro- or
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macroautophagy, and chaperon-mediated autophagy), all of
which rely on lysosome-based degradation of unnecessary or
detrimental molecules (154–156). Herein, we focus on
macroautophagy, which resembles the canonical form of
autophagy and main mechanism known to interfere with
staphylococcal infections (Figure 3).

Macroautophagy (referred to as autophagy) requires a cellular
trigger (i.e., starvation or oxidative stress) that abrogates mTOR-
mediated suppression of autophagic signaling, thus leading to the
assembly of the autophagy initiator complex (Unc-51-like kinase
1 [ULK1] complex) (153, 157) (Figure 3). This multimeric
protein complex consists of ULK1, autophagy-related proteins
(ATG)-13 and ATG101, and FIP200, a focal adhesion kinase
family-interacting protein (153, 158). Following priming, the
ULK1 complex phosphorylates AMBRA (activating molecule in
Beclin-1-regulated autophagy protein 1) as part of the ATG14-,
VPS15-, VPS34-, Beclin-1-, and p115-consisting PI3KC3
complex I (153, 159). Together with the ULK1 complex, this
autophagy-modulating element initiates the biogenesis of
phagophores, and subsequently promotes the generation of
phosphatidylinositol-3-phosphate (PI3P), which serves as a
docking scaffold for WD repeat domain phosphoinositide-
interacting proteins (WIPIs) and other effector molecules (153,
Frontiers in Immunology | www.frontiersin.org 8
154). Phagophore-associated WIPIs in turn recruit an array of
ATG proteins (that is ATG16L1 and the ATG5-ATG12-ATG3
conjugate), which facilitate the ATG3-driven conjugation of
ATG class 8 proteins such as LC3 (microtubule-associated
protein light chain 3) to phosphatidylethanolamine (PE) (153,
160). In this manner, conjugated LC3 is lipidated and readily
incorporated into autophagic membranes (153, 154). Membrane-
associated LC3/ATG8 conjugates capture and recruit labeled
(unwanted) molecules via selective autophagy receptors such as
sequestosome 1 (SQSTM1/p62) (153, 154). Together with ATG9-
positive vesicles and cellular membrane material, ATG8s further
promote phagophore expansion and sealing around selected
cargo, ultimately leading to the formation of the autophagosome
(153, 154) (Figure 3). Once autophagosomes are fully assembled,
ATG family proteins disassociate to enable maturation and fusion
of the autophagosome with acidic hydrolases-containing
lysosomes (153, 154) (Figure 3). In this manner, autolysosomes
recycle cellular trash, intracellular pathogens, or damaged
organelles into elementary building blocks required for
macromolecule biosynthesis or energy supply (154). Thus,
autophagy represents a major cytoprotective mechanism that
sequesters cytoplasmic material in double-membraned vesicles
for subsequent detoxification and degradation. Excessive
FIGURE 3 | Cellular and molecular features of autophagy. Autophagy can be triggered by various stimuli, including starvation, oxidative stress, pathogens, or
pathogen-derived products. The autophagic signaling process can also be initiated in response to intracellular staphylococci and their secreted toxins. Release of
toxins and other virulence determinants presumably prevents maturation of autophagosomes thereby boosting staphylococcal escape from these structures. Key
factors and crucial steps of the autophagy pathway are highlighted.
January 2021 | Volume 11 | Article 621733
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induction of autophagy can also trigger autophagic cell death
(ACD), as autophagy and other cell death signaling pathways are
interconnected and together influence the fate of dying cells (161).
STAPHYLOCOCCAL INTERFERENCE
WITH AUTOPHAGIC SIGNALING

Many intracellular pathogens such as Mycobacterium tuberculosis
have developed refined strategies to antagonize autophagic
signaling pathways during infection (162, 163). Owing to its
ability to replicate in professional- and non-professional
phagocytes, S. aureus is considered to be a facultative intracellular
pathogen. This raises the possibility that S. aureus may suppress
autophagy to cause persistent infection and chronic disease.
Accumulating evidence suggests that S. aureus is indeed able to
subvert autophagic responses (72, 164). Initial studies by Schnaith
et al. demonstrated that S. aureus rapidly transits from
endosophagosomes to LC3-positive autophagosomes upon
invasion of HeLa cells (164). More recent work revealed that
recruitment of S. aureus to phagophores requires SQSTM1/p62
and other autophagy receptor proteins that enable efficient tagging
of staphylococci by neutrophils, fibroblasts, or keratinocytes (115,
116, 165). Although these investigations suggest that host cells may
use autophagosomes to encircle intracellular staphylococci, S.
aureus-containing autophagosomes cannot fuse with lysosomes
and thereby fail to clear intracellular staphylococci (164).
Autophagic vesicles and non-acidified phagosomes rather
constitute a survival containment for host cell-engulfed
staphylococci; S. aureus is able to exit these vesicles by secreting
autophagosome-damaging toxins and other virulence
determinants (116, 165, 166) (Figure 3). Indeed, a-toxin-
proficient S. aureus or purified a-Hemolysin promote the
initiation of an autophagic response but prevent maturation of
autophagosomes (Table 1) (72). Concomitantly, autophagosome-
associated staphylococci block autophagosome maturation by
initiating the phosphorylation of the mitogen-activated protein
kinase MAPK14 (p38a) (MAPK14/p38a) (165). Upon
phosphorylation, activated MAPK14 traffics to autophagosomes
where it inhibits autophagosome maturation and fusion with
acidified lysosomes (167). S. aureus also deploys the immuno-
dominant surface antigen B (IsaB), a secreted and cell surface-
associated protein, to limit the autophagic flux in host cells thereby
enhancing intra-host cell survival (Table 1) (75). Since isaB
expression levels correlate with improved host colonization, IsaB-
mediated subversion of autophagy may also promote host-to-host
transmission of highly transmissible MRSA isolates (75).
Exploitation of autophagic responses has further been observed in
dendritic cells, where staphylococci accumulate in autophagosomes
in an Agr-dependent manner as well as in keratinocytes or bovine
mammary epithelial cells (168–170). S. aureus-mediated
manipulation of the central carbon metabolism of host cells, as
recently described for HeLa cells exposed to CA-MRSA strain
USA300, promotes autophagic signaling and intracellular
proliferation of bacteria (171). Specifically, NMR- and MS-based
profiling of MRSA-infected cells revealed the conspicuous
Frontiers in Immunology | www.frontiersin.org 9
metabolic starvation of infected host cells, a typical trigger of
autophagy sensed by the autophagy master regulator mTOR
(171). Autophagy also contributes to innate immune cell defenses
during staphylococcal disease pathogenesis, particularly in the
context of infection control and tolerance to bacterial toxins
(Table 2). Recent work by Gibson and colleagues suggested that
autophagy governs cytosolic surveillance of replicating
staphylococci in neutrophils (115). Using a zebra fish infection
model, the investigators demonstrated that SQSTM1/p62 along
with LC3 targets neutrophil-engulfed staphylococci for subsequent
degradation in vivo, thus illustrating the protective potential of
autophagy during staphylococcal infections (115). In agreement
with this study,Maurer et al. discovered that autophagy diminishes
host susceptibility to acute S. aureus infections, as autophagy-
deficient mice (here: ATG16L1-hypomorph [ATG16L1HM] or
LC3-/- mice) display hypersensitivity towards S. aureus (73).
Remarkably, increased mortality of ATG16L1HM mice during
both, sepsis or acute pneumonia, correlated with the biogenesis of
staphylococcal a-toxin and its endothelial-damaging properties,
and with elevated protein levels of ADAM10, the a-toxin receptor
(73). Subsequent work by the same group uncovered that TLR9-
sensed bacterial and CpG DNA along with ATG16L1 and other
ATG proteins promote the release of ADAM10-containing
exosomes during infection (114). These secreted exosomes
capture and neutralize a-toxin and other bacterial toxins, a
striking feature that protects the host from toxinosis and severe
clinical syndromes (114). Together, these studies uncovered a
crucial role of autophagy during staphylococcal infections. While
S. aureus is able tohijack autophagosomes to elude fromphagocytic
killing and innate immune cell defenses, autophagy contributes an
important host defense mechanism for the elimination of MRSA
and other bacterial pathogens.
CONCLUDING REMARKS

S. aureus provokes strong host responses during infection but
circumvents the host’s immune system by secreting an
extraordinary repertoire of virulence factors. Together these
factors help subvert the complement system, the activity of
immune cells (phagocytosis, chemotaxis, NETs formation) or
promote their killing (76, 172, 173). The selective exploitation of
host cell death machineries constitutes an additional strategy that
secures invasion, spread, and intra-host survival of this bacterium. S.
aureus-mediated demolition of host tissues and immune cells
involves all key mechanisms by which programmed host cell
death can occur, including immunologically silent apoptosis and
highly inflammatory signaling pathways such as pyroptosis. Several
outstanding questions remain to be examined. Does S. aureus gain
any advantage by provoking both non- and pro-inflammatory cell
death programs? This answer may depend on the environment
where the pathogen proliferates as distinct host defense arsenals
may be triggered in different organ tissues. For example, deep-seated
abscess formation is accompanied by the biosynthesis of
apoptogenic dAdo from NETs, allowing S. aureus to selectively
kill macrophages through apoptosis (37, 39). In this environment,
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S. aureus converts host molecules to both toxigenic and immuno-
suppressive products and the infected organ fails to alert the
immune system of the presence of bacteria (37, 39). On the
contrary, abscess lesions in the skin elicit necroptosis, toxin-
mediated activation of the NLRP3 inflammasome, and a massive
recruitment of neutrophils that release pro-inflammatory cytokines
such as IL-1b (103, 108, 174). Since genetically modified mice with
lesions in the pyroptotic or necroptotic signaling pathway develop
larger skin lesions and exhibit impaired disease outcome during
bacteremia models, it appears reasonable to assume that certain cell
death modes may selectively be activated by the host to limit the
severity of staphylococcal infections (103, 108). In line with this
model, the cell death-driven magnitude of inflammation determines
the outcome of S. aureus disease and local pathology, further
demonstrating that pro-inflammatory death cascades may be in
favor of the mammalian host (108). If so, one wonders why S.
aureus is unable to subvert pro-inflammatory host cell death modes
through anti-pyroptosis or anti-necroptosis mechanisms.
Presumably, the extraordinary life cycle of S. aureus requires a
delicate balance between immunologically silent and inflammatory
death signaling pathways in order to develop disease. Alternatively,
inflammatory death signaling cascades may promote dissemination
during infection or transmission to other hosts. Indeed, excessive
inflammation during skin and systemic diseases is generally believed
to correlate with exacerbated disease outcomes and increased
mortality rates, and may therefore represent a selective infection
strategy by S. aureus to establish infection (66, 108). Concomitantly,
coordinated and precise perturbation of different cell death
programs and cytoprotective autophagic signaling routes may
help the pathogen shift from an invasive to a persistent lifestyle,
thereby contributing to its global success in both healthcare facilities
and the community.
Frontiers in Immunology | www.frontiersin.org 10
Overall, S. aureus-mediated manipulation of major cell death
programs, autophagy, and contributing signaling pathways
substantially affects staphylococcal disease pathogenesis and
clinical manifestations in many aspects. Unravelling all facets
and principle mechanisms by which S. aureus modulates host
cell death, along with the identification of contributing host
genetic determinants, may aid the design of new therapeutic
approaches to combat MRSA and other drug-resistant bacterial
pathogens that exploit host cell death machineries during acute
or chronic infections.
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