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There was an investigation of the auxiliary role of convolutional neural network- (CNN-) based magnetic resonance imaging
(MRI) image segmentation algorithm in MRI image-guided targeted drug therapy of doxorubicin nanomaterials so that the value
of drug-controlled release in liver cancer patients was evaluated. In this study, 80 patients with liver cancer were selected as the
research objects. It was hoped that the CNN-based MRI image segmentation algorithm could be applied to the guided analysis of
MRI images of the targeted controlled release of doxorubicin nanopreparation to analyze the imaging analysis effect of this
algorithm on the targeted treatment of liver cancer with doxorubicin nanopreparation. The results of this study showed that the
upgraded three-dimensional (3D) CNN-based MRI image segmentation had a better effect compared with the traditional CNN-
based MRI image segmentation, with significant improvement in indicators such as accuracy, precision, sensitivity, and specificity,
and the differences were all statistically marked (p <0.05). In the monitoring of the targeted drug therapy of doxorubicin
nanopreparation for liver cancer patients, it was found that the MRI images of liver cancer patients processed by 3D CNN-based
MRI image segmentation neural algorithm could be observed more intuitively and guided to accurately reach the target of liver
cancer. The accuracy of targeted release determination of nanopreparation reached 80 + 6.25%, which was higher markedly than
that of the control group (66.6 + 5.32%) (p < 0.05). In a word, the MRI image segmentation algorithm based on CNN had good
application potential in guiding patients with liver cancer for targeted therapy with doxorubicin nanopreparation, which was

worth promoting in the adjuvant treatment of targeted drugs for cancer.

1. Introduction

Liver cancer refers to cancer that occurs in the liver and is
one of the most common tumors in China [1, 2]. According
to the data released by the National Cancer Center, it was
estimated that there would be 466,100 new cases and 422,100
deaths in 2018, with a very high proportion of deaths after
onset. Moreover, the incidence of this disease has a trend of
gradual increase with age. As for the disease distribution
data, the incidence of liver cancer in rural areas is higher
than that in urban areas, and the incidence of liver cancer in
males is also higher than that in females [3-5]. Patients with
early liver cancer usually do not have any symptoms. As the
disease progresses, they may experience loss of appetite,
abdominal pain and bloating, unexplained weight loss, and

yellowish skin and sclera [6]. Clinically, diagnostic methods
for liver cancer include imaging examinations (dynamic
contrast-enhanced magnetic resonance imaging (MRI),
dynamic contrast-enhanced computed tomography (CT),
and selective hepatic arteriography), the alpha-fetoprotein
(AFP) indicators in blood-drawn results, and liver lesion
tissue biopsy. Among them, the advantage of MRI imaging
in the diagnosis of liver cancer lies in its high sensitivity,
which can display the tissue structure of liver cancer more
clearly than CT examination. Besides, MRI examination
adds coronal and sagittal examination based on the cross
section, which can reduce the interference of artifacts to a
certain extent [7-9]. There are differences in treatment
methods for different stages and different types of liver
cancer. The currently available treatment methods include
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local treatment (surgery, ablation, embolization, and ra-
diotherapy) and system therapy (targeted therapy, immu-
notherapy, and chemotherapy) [10, 11].

In recent years, the algorithm research of convolutional
neural network (CNN) in the field of MRI image segmen-
tation has achieved remarkable results. It has been verified
by experiments in the clinical diagnosis of nasopharyngeal
cancer, breast cancer, spinal metastatic tumor, brain tumor,
and other diseases, showing good segmentation effect on
MRI images and greatly improving the diagnostic confor-
mance rate of related diseases [12, 13]. Targeted therapy has
become a hot topic in the field of cancer therapy because of
its advantages such as less trauma, low toxicity, and good
selectivity. Clinically, MRI images are mainly applied to
observe and guide the release of targeted drugs at specific
targets in vivo. Among them, MRI is currently a very
valuable method for guiding the release of targeted drugs in
the process of targeted therapy for cancer patients. Unfor-
tunately, the observation effect of routine MRI imaging on
the targeted controlled release of nanoprepared drugs is not
ideal, so it needs to be further analyzed by other methods,
such as image segmentation algorithm based on CNN [14].
Based on this, it was hoped that the MRI image segmentation
algorithm based on CNN could be applied to the guidance
and monitoring of drug release in targeted therapy for liver
cancer patients in this study. As an antitumor antibiotic,
doxorubicin can inhibit the synthesis of ribonucleic acid
(RNA) and deoxyribonucleic acid (DNA) and has the
strongest inhibitory effect on RNA. It has a broad antitumor
spectrum and has an effect on a variety of tumors. It is a cycle
nonspecific drug, which has a killing effect on tumor cells of
various growth cycles [15], and its nanopreparations are
commonly used drugs for targeted therapy of liver cancer
[16]. Therefore, doxorubicin nanopreparation would be
selected as the target drug release research object in this
study.

To sum up, the use of CNN technology to optimize MRI
images to assist physicians in observing and controlling the
release of targeted drugs has become a hot topic for scholars.
Based on this, an end-to-end neural network architecture
was designed in this study based on the fully CNN, which
was applied to MRI image analysis of 40 liver cancer patients.
The receiver operating characteristic (ROC) curve was
employed to comprehensively evaluate the application value
of MRI image analysis based on CNN in guiding the targeted
controlled release of doxorubicin nanopreparation.

2. Materials and Methods

2.1. Research Objects. In this study, 60 liver cancer patients
admitted to the hospital were selected as the research objects,
including 41 males and 39 females. All patients were 39-73
years old, with an average age of 57.5+4.6 years. What is
more, the male patients were 54.3 + 5.2 years old on average
and the average age of the female patients was 59.4 + 4.1
years. Among them, 38 had hepatocellular carcinoma, 13
had intrahepatic cholangiocarcinoma, 4 had intrahepatic
angiosarcoma, and 5 had hepatoblastoma. In this study, all
patients were rolled randomly into two groups and were
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examined with MRI scans. The experimental group received
a CNN-based MRI image segmentation algorithm for MRI
image processing and analysis, while the routine artificial
MRI image analysis method was applied to the control
group. This study was approved by the Ethics Committee of
the hospital, and the patients and their family members
included in the study were all informed and signed informed
consent forms.

The criteria for inclusion were defined to include patients
who did not receive surgery, radiotherapy, and chemo-
therapy before the experiment, had complete basic clinical
data, and had clear MRI image data before surgery. The
criteria for exclusion were defined to include patients who
were combined with distant metastasis, had an intolerance to
doxorubicin preparations, were accompanied with other
malignant tumors, and had many MRI image artifacts in
their images with poor quality.

2.2. Preparation of Doxorubicin Nanopreparation and Tar-
geted Controlled Release Process. The doxorubicin nano-
preparation used in this study was composed of nonionic
surfactant vesicle (niosomes, N) encapsulated doxorubicin
(content: 99.5%, Wuhan Dongkangyuan Technology Co.,
Ltd.). Besides, the used reagents included triethylamine,
span, cholesterol, chloroform, and phosphate buffer saline
(PBS).

The preparation process
preparation was as follows:

of doxorubicin nano-

(i) Hydrochloric acid (HCI) doxorubicin was dissolved
in double-distilled water, which was added with a
quantitative amount of triethylamine in a ratio of 1:
2 for neutralization, and then, there was the freeze-
drying treatment.

(ii) Preparation of nonionic surfactant vesicles: first,
span, cholesterol, and freeze-dried doxorubicin
were dissolved in chloroform, and the mixture was
placed on a rotary evaporator to evaporate the
organic solvents. Then, it was for vacuum overnight.
Next, 10mL of PBS buffer with a pH of 7.2 was
shaken for 15 minutes at 60°C in a water bath to
remove the membrane to form a nonionic surfac-
tant vesicle suspension. Finally, the suspension was
treated by 50 times continuous and intermittent
ultrasound (working time: 2 seconds, interval time:
3 seconds, and power: 200 W) and then separated by
a triple filter membrane (0.8um, 0.4um, and
0.2 ym).

(iii) A laser diftraction particle size analyzer was adopted
to determine the particle size of the doxorubicin
nanopreparation, and the external morphological
characteristics of the doxorubicin nanopreparation
were observed under a projection electron
microscope.

2.3. Establishment of MRI Image Segmentation Algorithm
Based on Fully CNN. The deep learning technology was
employed to automatically segment MRI images, which had
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great application value in clinical tumor diagnosis and could
greatly reduce the degree of dependence on the subjective
judgment of physicians. In the traditional CNN structure, a
convolutional layer, a pooling layer, and a full-connected
layer were mainly included. The neural unit layers of various
functions were stacked on each other to form deep CNN, as
shown in Figure 1.

The calculation equation of any one of the convolutional
layer feature maps can be expressed as follows:

H,=g(M,*y) (1)

where x stands for the x-th neuron of a certain convolutional
layer, H, represents the x-th feature map calculated by
convolution, and y means the input image. The weight of the
x-th neuron can be expressed as M,, * is a 2D convolution
operator, which could be employed to calculate the inner
product of pixels and weights in the filter window, and g
represents a nonlinear activation function.

The maximum pooling equation can be expressed as the
following:

Max ¥, 2)

xab (mn)eD,,

where H,,;, represents the pooling operation related to the
feature map and y,,,, indicates the element at the pooling
area D,,. The last layer of the alternating connection be-
tween the convolution layer and the pooling layer was
connected to the full-connected layer by establishing the
connection between features and labels. The activation
function of the full-connected layer was commonly
expressed by Softmax function, and its definition is as
follows:

R
_ exp(sz)
Yiryexp(sy)

In equation (3), z represents the target classification
number, S8 means the predicted value of the z-th category,
and s, stands for the z-th category. The Softmax function
output the probability that the sample belonged to each
category, and the sum of the probabilities was 1.

To observe and investigate the targeted controlled release
process of nanopreparations, 3D CNN was introduced in
this study to make up for the defect that 2D CNN could not
obtain timing information in video images. The mathe-
matical equation for 3D convolution is shown in the fol-
lowing equation:

Q(s,) (3)

E,~1F,-1

ij (i+m) (j+n)
“;Jb = g(fab + Z Z Z VZZ;”(;T»]M > (4)

t m=0 n=0

where , stands for the eigenvalue of the position (i, j) on
the b-th feature map in the a-th layer neural network, g
represents the activation function, and f ,, indicates the bias
term. What is more, t expresses the feature map index of the
layer connected to the current feature map, v/} represents
the weight value, and E,, F, means the height and width of

the convolution kernel in turn, respectively. Bias and weights
needed to be determined through training, and other values
could be preset in advance.

The maximum pooling operation of 3D convolution can
be expressed as follows:

P =[s],s5,85,...,52] € LOWXEXR (5)

where R represents the number of feature spaces, (Q, W, E)
stands for the size of the feature map, and s¢ means the x-th
feature output map of the a-th convolutional layer. The
purpose of the 3D convolution maximum pooling operation
was to calculate the maximum value in the feature cube.

To reduce the overfitting degree of models and improve
their generalization ability in the calculation process of
CNN, regularization mode was introduced to optimize the
training model. The regularization mode Dropout was
adopted in this study. Besides, Dropout was to randomly
discard the output values of a layer of neurons. The whole
Dropout process was equivalent to taking the average of
many different neural networks, while different networks
produced different overfitting. Some “reverse” fittings
canceled each other out to reduce overfitting as a whole.
During the Dropout process, there were two possibilities
for the output value of a layer of neurons to continue to
propagate downward: one was to retain the original value,
and the other was to be converted to 0. It was assumed that
the probability of being retained was set to x, and the
probability of being converted to 0 was 1 — x, with x = 0.5
as usual. When Dropout was used as a full-connected layer,
the output of this layer can be calculated by equation (6),
and the output value after Dropout can be expressed as
equation (7):

B=[B,,B,,...,B,]", (6)

B =a=xg(vu), (7)

where s represents the element-wise product of the output
g(vu) of the fully connected layer and the binary mask
vector a; g (-) stands for the activation function of the full-
connected layer; u indicates the input value vector of the full-
connected layer; v represents the weight matrix of z x c.
Besides, the length of the binary mask vector a is z, and each
of the elements in a corresponds to a Bernoulli distribution
with a statistic of c.

Due to the shortcomings in the fitting effect of a single
algorithm, this research aimed to integrate the ensemble
learning (EL) algorithm on this basis to systematically re-
duce the generalization error of the model through the
integration of multiple models. The Extreme Gradient
Boosting (XGBoost) algorithm in the EL algorithm was
brought into the model. The classification and regression
trees (CART) were adopted by the XGBoost algorithm as the
weak classification item. In addition, its loss function ex-
pression is shown in equation (8), and the regular term
expression is presented in equation (9):
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F1GURE 1: Diagram of the traditional CNN model.

Q=iﬂ( ki) + Zﬂ(gc (8)

Q(gc):ocD+%Awa, )

where n(k;, k ;) stands for the training error of the sample y;,
kj, k; represent the predicted value and actual value of the
sample y; in sequence, )(g.) means the regular term of the
c-th CART tree, D indicates the number of leaf nodes of the
CART tree, ! stands for the weight of the corresponding leaf
node, and a, A means the penalty coefficients, which are both
constants.

The objective function expression of the model after the
r-th round of iteration can be expressed as follows:

~ A nl:kj,E(r_l) +gr()’])] + glﬂ(gc) +U’ (10)

where g, (y;) represents the added r-th CART tree and U
stands for the complexity of the previous tree r— 1, which is a
constant. Then, equation (10) was expanded into Taylor’s
equation to get the approximate objective function, which is
expressed as

Qr:in[kjj(

=1

1, &
250:(0)] + 2.0(g)+U.
(11)

Besides, f; represents the first derivative o(f n gk i A 1))
and s; stands for the second derivative of k;, k= . The final
objective function could be obtained through simplified
integration, which can be expressed

Q’zin{( Y f]>w += <Zs +A>wj|+aD (12)
i=1 Jj€G;

The optimal weight for the minimum objective function
could be obtained by taking the partial derivative of Q"

i fia(y)+

-

concerning w; and setting it equal to 0. Besides, its ex-
pression is shown as follows:

wi* :ﬁ (13)

Equation (12) was incorporated into equation (13) to
attain the optimal value of the objective function, which is
expressed as

2
(ZjeGifj)

2AZjecs +A)

When the nodes of the subtree were split, the reduction

value of the loss function after each branch node, namely, the
gain, should be defined, which can be expressed as

1 (Siecets)’ . (L)) ~ (e ts)
2[(Zjecesi +1)  (ZjeaysitA)  (Tieasi+A)

Q= +aD. (14)

- a,

(15)

where Gp, Gy represent the set of split nodes on the left and
right sides of the classification regression tree, respectively;
Yjec.fjand Y g, s; stand for the sum of the statistics of the
first-order gradient and the second-order gradient of the left
node on the loss function, respectively. Under the guidance
of the greedy algorithm, there was iteration from one leaflet,
and branches were continuously added to the tree. Equation
(15) was employed to calculate the gain value of each output
feature at its split point, and the best split point corre-
sponded to the highest gain value.

2.4. Evaluation of MRI Image Segmentation Effect Based on
Deep Learning Processing. To measure the advantages and
disadvantages of this algorithm, the evaluation indicators
were adopted, including accuracy, precision, sensitivity,
specificity, receiver operating characteristic curve (ROC),
and area under the curve (AUC). In this study, the release of
diagnostic targeted drugs in MRI images was correctly
defined as A, and the release error was defined as B. The
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actual targeted drug release was correctly defined as C, and
the release error was defined as D. Accuracy referred to the
proportion of correct MRI image determination samples in
the total number of samples, as shown in equation (16).
Precision, also known as the precision ratio, represented the
proportion of actual targeted release correct samples in the
total samples, as shown in equation (17). Sensitivity, also
known as recall rate, represented the proportion of correct
samples determined by MRI images among all correct
samples in actual targeted release, as shown in equation (18).
Specificity meant the proportion of targeted release error
samples judged by MRI in all actual targeted release error
samples, as shown in equation (19):

A+D

aCCuraCy = m X 100%, (16)

A
ision = x 100%, 17
precision . b (17)
e A
sensitivity = x 100%, (18)
A+ B
ificit b x 100% (19)
specificity = .
pecificity c1D b

2.5. MRI Image Tracking for Targeted Controlled Release of
Doxorubicin Nanopreparation. After 6 hours, 12 hours, and
24 hours of taking doxorubicin nanopreparation, all the
patients underwent MRI examinations. The targeted con-
trolled release of doxorubicin nanopreparation was observed
by MRI image characteristics. The patients from the two
groups were treated with different MRI image analysis
methods, and the analysis results were summarized and
compared with the real results to analyze the application
value of the two analysis methods in image tracking of the
targeted release of doxorubicin nanopreparation in patients
with liver cancer.

2.6. Statistical Methods. The test data processing was carried
out using SPSS19.0 statistical software, and the measurement
data were expressed as mean + standard deviation. Besides,
the comparison of the means between each group was
carried out by the t-test, the count data were represented by
percentage (%), and the y* test was used. In addition,
p<0.05 indicated that the difference was statistically
substantial.

3. Results

3.1. Morphology Observation of Doxorubicin Nano-
preparation under a Transmission Electron Microscope.
Figure 2 shows a transmission electron micrograph of
doxorubicin nanopreparation. It was found that the doxo-
rubicin nonionic surfactant vesicles were spherical, smooth-
edged, and uniform in size. Furthermore, the measured
average particle size was 67.89 £ 24.76 nm.

3.2. Analysis of the Macroscopic Features of MRI Images of
Patients with Liver Cancer. Figure 3 is an MRI image of a 60-
year-old male patient, suggesting that the MRI image signal
of liver cancer patients was unevenly distributed and diffuse
compared with the uniform signal of the normal liver. Some
liver cancers had envelopes, some were small nodules, and
some were large masses. It indicated that there were different
manifestations on the enhanced image, the fat pressure
image, the T1 image, and the T2 image. Therefore, the
characteristics of liver cancer could be identified by first
looking at the T2 image, finding the difference between it
and the surrounding liver. Then, the lesion could be iden-
tified by examining the enhanced T2W2 image. Compared
with the traditional CNN segmentation algorithm, the MRI
image segmentation processed by the 3D CNN-based seg-
mentation algorithm was clearer, which could more accu-
rately identify the focal sites of liver cancer patients and
observe the release of nanoagents in the disease target.

3.3. Analysis on Imaging Indicators of MRI Image Segmen-
tation Algorithm Based on CNN. Figures 4-7 mean the
comparison of the accuracy, sensitivity, specificity, and AUC
of MRI image segmentation of traditional CNN MRI image
segmentation algorithm. Compared with the traditional
CNN segmentation algorithm, the 3D CNN-based MRI
image segmentation algorithm had obvious advantages in
accuracy, sensitivity, specificity, and AUC indicators, and
the difference was statistically marked, indicating that the
upgraded algorithm could further accurately segment the
MRI images of liver cancer patients based on traditional
algorithms, thereby enhancing the application value of MRI
images.

3.4. Targeted Release of Doxorubicin Nanopreparation at
Different Periods. Figure 8 shows the targeted release of
doxorubicin observed under MRI images processed by the
3D CNN-based MRI image segmentation algorithm at
different periods. When all patients took the doxorubicin
nanopreparation, the drug was still in free form 6 hours after
it reached the target site of the lesion and started to appear
local dissolution of the doxorubicin-encapsulated nonionic
surfactant vesicles. After 24 hours, the doxorubicin nano-
preparation was released at the target site of the lesion.

3.5. Comparison on Results between Groups of MRI-Guided
Targeted Controlled Release of Doxorubicin Nanopreparation.
Figure 9 shows the judgment of the results of the targeted
release of doxorubicin nanoformulations under the guid-
ance of different MRI image diagnosis methods for the two
groups of patients. It was found that the number of patients
from the experimental group whose diagnosis results were
consistent with the actual situation was 24. The number of
patients from the control group whose diagnosis results were
in line with the actual situation was 19, and the difference
between the two groups was statistically substantial
(p<0.05). The diagnostic coincidence rate of the two
methods was calculated by comparing with the real data
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(a)

(b)

(c)

(d)

FIGURE 2: Transmission electron microscope images of doxorubicin nanopreparation. (a—d) The electron micrographs of the doxorubicin
nanoformulation under the viewing angle of 50 nm, 40 nm, 20 nm, and 10nm in turn.

()

(e)

(®) (B)

F1GURE 3: MRI images of a 55-year-old male patient with liver cancer. (a-d) T1, T2, TIW1, and T2 W2 phase maps processed by traditional
CNN MRI image segmentation algorithm; (e-h) T1, T2, TIW1, and T2W2 phase maps processed by the upgraded 3D CNN-based MRI

image segmentation algorithm.

obtained at the later stage of treatment. Figure 10 shows the
specific information, revealing that compared with the
control group, the accuracy of the determination of the
release of doxorubicin nanopreparation in the experimental
group was significantly improved, as high as 80 +6.25%,
which was higher hugely than that of the control group
(66.6 £ 5.32%), and the difference was statistically obvious
(p<0.05).

4. Discussion

At present, targeted drug therapy is one of the standard
treatments for patients with advanced liver cancer [17]. This
method designs targeted therapeutic drugs for the identified
carcinogenic sites at the cellular and molecular levels. After
the drug enters the body, it can specifically select the car-
cinogenic site to combine with the properties, specifically
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F1GUure 4: Comparison of MRI image segmentation accuracy of the two algorithms. Note. * indicates p < 0.05 compared with the traditional

algorithm.
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F1GURrE 5: Comparison of MRI image segmentation sensitivity of
the two algorithms.
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Ficure 6: Comparison of MRI image segmentation specificity of
the two algorithms.

killing the tumor cells without affecting the normal tissue
cells around the tumor. Therefore, this method has the
advantages of high efliciency and strong specificity [18].
Currently, doxorubicin is often used in targeted drug
therapy for liver cancer patients, and there have been several
reports on the development of nanotargeted drugs for this
drug [18]. However, MRI image-guided analysis of the

=
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[o)} [« —_

S
'S

0.2
0
0 0.2 0.4 0.6 0.8 1 1.2
1 - specificity

Traditional algorithm

Upgrade algorithm

FIGURE 7: Comparison of the AUC of MRI image segmentation
under two algorithms.

targeted controlled release process of doxorubicin nano-
agents in vivo has not been reported. Therefore, this study
hoped to introduce the CNN-based MRI image segmenta-
tion algorithm and apply it to the guided analysis of MRI
images in the targeted controlled release of doxorubicin
nanomaterials to analyze the imaging analysis effect of this
algorithm on the targeted treatment of liver cancer with
doxorubicin nanopreparation. The results of this study
showed that compared with the traditional CNN MRI image
segmentation effect, the upgraded 3D CNN-based MRI
image segmentation effect was better, with significant im-
provement in the accuracy, sensitivity, and specificity in-
dicators, and the differences were all statistically marked
(p <0.05). This was similar to the research results of Fang
et al. [19], indicating that the image segmentation algorithm
based on CNN could improve the quality of MRI images
very well. In the monitoring of the targeted drug therapy of
doxorubicin nanopreparations for liver cancer patients, it
was found that the MRI images of liver cancer patients
processed by a 3D CNN-based MRI image segmentation
algorithm could be more intuitively observed and guided to
accurately arrive at the target of liver cancer to accurately kill
liver cancer cells and optimize the targeted therapy process
of liver cancer.
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(© (d)

F1Gure 8: Comparison of the targeted release degree of doxorubicin nanopreparation at different periods. (a, b) The morphological diagrams
after 6 hours of taking doxorubicin nanopreparation, and (b) partially enlarged diagram of (a); (¢, d) the morphological diagrams of
doxorubicin nanopreparation after taking 12 hours, and (d) the partially enlarged diagram of (c); (e, f) the morphological diagrams of the
doxorubicin nanopreparation after 12 hours of administration, and (f) the partially enlarged diagram of (e).
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F1cure 9: Comparison of the determination of the targeted release
of doxorubicin nanopreparation between the two groups of pa-
tients. Note. A indicates that the targeted release of the nano-
preparation was correct based on MRI images and real conditions;
B means that the targeted release of the nanopreparation was
correct by the MRI image, but the target release of the nano-
preparation was incorrect in the real situation; C shows that the
targeted release of the nanopreparation was determined by the MRI
images, while the targeted release of the nanopreparation was
correct in the real situation; and D reveals that the targeted release
of the nanopreparation was determined by the MRI image and the
real situation.
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100 :
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FiGgure 10: Comparison of the coincidence rate of targeted release
determination between the two groups of patients. Note. * means
that the target release determination accuracy rate of the experi-
mental group was significantly higher than that of the control

group, and the difference was statistically marked (p < 0.05).

5. Conclusion

In this study, an upgraded version of the 3D neural network
MRI image segmentation algorithm was designed based on
the fully CNN, which was applied to the MRI image analysis
of the targeted controlled release of doxorubicin nano-
preparation in the experimental group of 40 liver cancer
patients. The results found that compared with the tradi-
tional CNN MRI image segmentation algorithm, the neural
network upgrade algorithm was hugely optimized in terms
of image segmentation accuracy, sensitivity, specificity, and
AUG; this algorithm was effective in MRI image guidance
and tracking in the targeted therapy of doxorubicin nano-
preparation in clinical liver cancer patients. However, the
selection of patient samples in this study is limited and the

source is single, which make this study not analyze the MRI
image characteristics of targeted therapy of doxorubicin
nanopreparation in patients with different types of liver
cancer. In the future, it is considered to increase the sample
size of liver cancer patients and further adopt the analysis
method of multicenter cooperation for the study. All in all,
the results of this study can provide a good theoretical basis
for the clinical application of the MRI image segmentation
algorithm of CNN in the targeted therapy of doxorubicin
nanopreparation in patients with liver cancer.
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available from the corresponding author upon request.
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