

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2*E*)-1-(4-Bromophenyl)-3-[3-(4-methoxyphenyl)-1-phenyl-1*H*-pyrazol-4-yl]prop-2-en-1-one

R. Prasath,^a P. Bhavana,^a \neq Seik Weng Ng^{b,c} and Edward R. T. Tiekink^b*

^aDepartment of Chemistry, BITS, Pilani - K. K. Birla Goa Campus, Goa 403 726, India, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: edward.tiekink@gmail.com

Received 17 June 2013; accepted 17 June 2013

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.043; wR factor = 0.111; data-to-parameter ratio = 17.2.

The pyrazole ring in the title compound, $C_{25}H_{19}BrN_2O_2$, is almost planar (r.m.s. deviation = 0.003 Å) and forms dihedral angles of 7.56 (13) and 56.48 (13)° with the N- and C-bound benzene rings, respectively. The prop-2-en-1-one residue has an *E* conformation about the C=C double bond [1.328 (4) Å] and is almost coplanar with the pyrazole ring [C-C-C-C torsion angle = -174.4 (3)°]. A twist between the prop-2-en-1one unit and the terminal benzene ring is evident [C-C-C-C C torsion angle = -15.4 (4)°]. In the crystal, molecules are consolidated into a three-dimensional architecture by C- $H \cdots O$, C- $H \cdots \pi$ and $\pi - \pi$ [centroid–centroid separation = 3.7597 (16) Å] interactions.

Related literature

For background details and biological applications of pyrazole and chalcones, see: Babasaheb *et al.* (2009); Prasath & Bhavana (2012); Prasath *et al.* (2013). For the structure of the 4-methoxyphenyl pyrazole compound, see: Fun *et al.* (2011).

‡ Additional correspondence author, e-mail: juliebhavana@gmail.com.

 $\gamma = 91.792 \ (3)^{\circ}$

Z = 2

V = 1009.31 (8) Å³

Mo $K\alpha$ radiation

 $0.50 \times 0.40 \times 0.30 \text{ mm}$

8736 measured reflections

4649 independent reflections

3875 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 2.06 \text{ mm}^{-3}$

T = 100 K

 $R_{\rm int} = 0.038$

271 parameters

 $\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^-$

 $\Delta \rho_{\rm min} = -0.55$ e Å⁻³

Experimental

Crystal data

```
C_{25}H_{19}BrN_2O_2
M_r = 459.33
Triclinic, P\overline{1}
a = 7.3643 (3) Å
b = 10.6795 (5) Å
c = 13.1038 (6) Å
\alpha = 91.822 (4)^{\circ}
\beta = 101.311 (4)^{\circ}
```

Data collection

```
Agilent SuperNova Dual
diffractometer with an Atlas
detector
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
T_{\rm min} = 0.921, T_{\rm max} = 1.000
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.111$ S = 1.044649 reflections

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1-C6 ring.

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C11-H11\cdotsO1^{i}$ $C25-H25B\cdots Cg1^{ii}$	0.95	2.25	3.198 (3)	173
	0.98	2.61	3.478 (3)	148

Symmetry codes: (i) -x + 2, -y + 1, -z + 2; (ii) -x + 2, -y + 2, -z + 1.

Data collection: *CrysAlis PRO* (Agilent, 2013); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

PB and RP gratefully acknowledge the Council of Scientific and Industrial Research (CSIR), India, for research grant 02 (0076)/12/EMR-II and Senior Research Fellowship (09/919/ (0014)/2012 EMR-I), respectively. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7095).

References

- Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.
- Babasaheb, P. B., Shrikant, S. G., Ragini, G. B., Nalini, M. G. & Chandrahasya, N. K. (2009). *Bioorg. Med. Chem.* 17, 8168–8173.
- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Fun, H.-K., Quah, C. K., Malladi, S., Hebbar, R. & Isloor, A. M. (2011). Acta Cryst. E67, 03105.

Prasath, R. & Bhavana, P. (2012). *Heteroat. Chem.* 23, 525–530.
 Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2013). *J. Organomet. Chem.* 726, 62–70.

Sheldrick, G. M. (2008). Acta Cryst. A**64**, 112–122. Westrip, S. P. (2010). J. Appl. Cryst. **43**, 920–925.

supplementary materials

Acta Cryst. (2013). E69, o1143-o1144 [doi:10.1107/S1600536813016838]

(2*E*)-1-(4-Bromophenyl)-3-[3-(4-methoxyphenyl)-1-phenyl-1*H*-pyrazol-4-yl]prop-2-en-1-one

R. Prasath, P. Bhavana, Seik Weng Ng and Edward R. T. Tiekink

Comment

In addition to their being valuable intermediates in organic synthesis (Prasath & Bhavana, 2012), nitrogen-containing heterocyclic analogues, such as pyrazole chalcones, exhibit a variety of biological activities, *e.g.* anti-plasmodial, anti-microbial and anti-cancer activities (Prasath *et al.*, 2013; Babasaheb *et al.*, 2009). It was in this context that the title compound, (I), was investigated.

The molecular structure of (I), Fig. 1, comprises a planar (r.m.s. deviation = 0.003 Å) tri-substituted pyrazoyl ring. The N1- and C12-bound benzene rings form dihedral angles of 7.56 (13) and 56.48 (13)°, respectively, with the five-membered ring, and 60.88 (12)° with each other. The prop-2-en-1-one residue has an *E*-configuration about the C8=C9 double bond [1.328 (4) Å], and is also co-planar with the five-membered ring as seen in the value of the C8—C9—C10—C11 torsion angle of -174.4 (3)°. This planarity does not extend to the terminal benzene ring as there is a twist manifested in the C2—C1—C7—C8 torsion angle of -15.4 (4)°. The observed conformation for (I) resembles closely that reported recently for the unsubstituted parent compound (Fun *et al.*, 2011).

In the crystal packing, centrosymmetrically related molecules are connected *via* C—H···O interactions, Table 1, and these are connected into a three-dimensional architecture by $\pi - \pi$ [between centrosymmetrically related bromobenzene rings; 3.7597 (16)° for symmetry operation 1 - *x*, 2 - *y*, 2 - *z*] and methyl-C—H··· π (methoxybenzene ring) interactions, Fig. 2 and Table 1.

Experimental

A mixture of 3-(4-methoxyphenyl)-1-phenyl-1H-pyrazole-4-carbaldehyde (1.4 g, 0.005 *M*), 4-bromo acetophenone (1 g, 0.005 *M*) and KOH (0.5 g) in distilled ethanol (50 ml) was stirred for 12 h at room temperature. The resulting mixture was neutralized with dilute acetic acid. The resultant solid was filtered, dried and purified by column chromatography using 1:2 mixture of ethyl acetate and hexane. Re-crystallization was by slow evaporation of an acetone solution of (I) which yielded yellow needles. *M*.pt. 433–435 K. Yield: 80%.

Refinement

The C-bound H atoms were geometrically placed (C—H = 0.95–0.98 Å) and refined as riding with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$.

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2013); cell refinement: *CrysAlis PRO* (Agilent, 2013); data reduction: *CrysAlis PRO* (Agilent, 2013); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *DIAMOND*

(Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Figure 1

The molecular structure of (I) showing displacement ellipsoids at the 70% probability level.

Figure 2

A view in projection down the *a* axis of the unit-cell contents of (I). The C—H···O, C—H··· π , and π — π interactions are shown as blue, purple and blue dashed lines, respectively.

(2E)-1-(4-Bromophenyl)-3-[3-(4-methoxyphenyl)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one

Crystal data	
$C_{25}H_{19}BrN_{2}O_{2}$ $M_{r} = 459.33$ Triclinic, <i>P</i> 1 Hall symbol: -P 1 a = 7.3643 (3) Å b = 10.6795 (5) Å c = 13.1038 (6) Å a = 91.822 (4)° $\beta = 101.311$ (4)° $\gamma = 91.792$ (3)° V = 1009.31 (8) Å ³	Z = 2 F(000) = 468 $D_x = 1.511 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2849 reflections $\theta = 3.0-27.5^{\circ}$ $\mu = 2.06 \text{ mm}^{-1}$ T = 100 K Prism, yellow $0.50 \times 0.40 \times 0.30 \text{ mm}$
Data collection	
Agilent SuperNova Dual diffractometer with an Atlas detector Radiation source: SuperNova (Mo) X-ray Source Mirror monochromator	Detector resolution: 10.4041 pixels mm ⁻¹ ω scan Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2013) $T_{\min} = 0.921, T_{\max} = 1.000$

8736 measured reflections	$\theta_{\rm max} = 27.6^\circ, \ \theta_{\rm min} = 3.0^\circ$
4649 independent reflections	$h = -9 \longrightarrow 9$
3875 reflections with $I > 2\sigma(I)$	$k = -13 \rightarrow 13$
$R_{\rm int} = 0.038$	$l = -15 \rightarrow 17$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: inferred from
$wR(F^2) = 0.111$	neighbouring sites
S = 1.04	H-atom parameters constrained
4649 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0485P)^2 + 0.731P]$
271 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.47 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.55 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	0.11696 (4)	1.12761 (3)	0.86611 (2)	0.03080 (12)
O1	0.6500 (3)	0.61824 (19)	0.97288 (15)	0.0248 (4)
O2	0.6830 (2)	0.98810 (16)	0.42732 (14)	0.0185 (4)
N1	1.2201 (3)	0.58644 (19)	0.65301 (17)	0.0145 (4)
N2	1.3006 (3)	0.51261 (19)	0.73128 (16)	0.0137 (4)
C1	0.5191 (4)	0.7966 (2)	0.8896 (2)	0.0172 (5)
C2	0.5417 (4)	0.8979 (3)	0.8283 (2)	0.0213 (6)
H2	0.6396	0.8992	0.7906	0.026*
C3	0.4235 (4)	0.9967 (3)	0.8216 (2)	0.0227 (6)
Н3	0.4391	1.0656	0.7796	0.027*
C4	0.2828 (4)	0.9933 (3)	0.8769 (2)	0.0208 (6)
C5	0.2543 (4)	0.8941 (3)	0.9378 (2)	0.0227 (6)
Н5	0.1551	0.8931	0.9745	0.027*
C6	0.3751 (4)	0.7954 (3)	0.9440 (2)	0.0205 (6)
H6	0.3587	0.7266	0.9859	0.025*
C7	0.6504 (4)	0.6906 (2)	0.9023 (2)	0.0173 (5)
C8	0.7763 (4)	0.6782 (2)	0.8287 (2)	0.0176 (5)
H8	0.7483	0.7174	0.7637	0.021*
С9	0.9287 (4)	0.6129 (2)	0.8514 (2)	0.0164 (5)
Н9	0.9515	0.5759	0.9174	0.020*
C10	1.0640 (3)	0.5920 (2)	0.7864 (2)	0.0147 (5)
C11	1.2115 (4)	0.5143 (2)	0.8117 (2)	0.0155 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H11	1.2439	0.4703	0.8742	0.019*
C12	1.0770 (3)	0.6352 (2)	0.68607 (19)	0.0130 (5)
C13	1.4631 (3)	0.4466 (2)	0.7208 (2)	0.0142 (5)
C14	1.5469 (4)	0.4699 (2)	0.6376 (2)	0.0162 (5)
H14	1.4993	0.5305	0.5889	0.019*
C15	1.7022 (4)	0.4038 (2)	0.6258 (2)	0.0172 (5)
H15	1.7594	0.4183	0.5681	0.021*
C16	1.7731 (4)	0.3171 (2)	0.6979 (2)	0.0198 (6)
H16	1.8791	0.2722	0.6899	0.024*
C17	1.6886 (4)	0.2960 (3)	0.7821 (2)	0.0215 (6)
H17	1.7381	0.2370	0.8319	0.026*
C18	1.5322 (4)	0.3604 (2)	0.7942 (2)	0.0186 (5)
H18	1.4741	0.3457	0.8516	0.022*
C19	0.9641 (3)	0.7257 (2)	0.62029 (19)	0.0132 (5)
C20	0.9485 (3)	0.8468 (2)	0.6597 (2)	0.0153 (5)
H20	1.0031	0.8678	0.7303	0.018*
C21	0.8557 (3)	0.9374 (2)	0.5987 (2)	0.0153 (5)
H21	0.8458	1.0191	0.6274	0.018*
C22	0.7771 (3)	0.9074 (2)	0.4951 (2)	0.0141 (5)
C23	0.7907 (4)	0.7859 (2)	0.4545 (2)	0.0164 (5)
H23	0.7359	0.7648	0.3840	0.020*
C24	0.8836 (3)	0.6967 (2)	0.5167 (2)	0.0154 (5)
H24	0.8925	0.6146	0.4884	0.019*
C25	0.6747 (4)	1.1152 (2)	0.4644 (2)	0.0196 (6)
H25A	0.6039	1.1636	0.4089	0.029*
H25B	0.8006	1.1521	0.4851	0.029*
H25C	0.6138	1.1166	0.5245	0.029*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.02570 (17)	0.03300 (19)	0.03209 (19)	0.01428 (13)	0.00041 (12)	-0.00323 (13)
O1	0.0285 (11)	0.0290 (11)	0.0198 (10)	0.0076 (9)	0.0099 (9)	0.0081 (9)
O2	0.0181 (9)	0.0157 (9)	0.0203 (9)	0.0013 (7)	-0.0009 (8)	0.0053 (8)
N1	0.0168 (10)	0.0125 (10)	0.0143 (10)	0.0032 (8)	0.0026 (8)	0.0040 (8)
N2	0.0139 (10)	0.0133 (10)	0.0140 (10)	0.0025 (8)	0.0023 (8)	0.0037 (8)
C1	0.0174 (12)	0.0205 (13)	0.0129 (12)	0.0009 (11)	0.0018 (10)	-0.0020 (10)
C2	0.0200 (13)	0.0246 (14)	0.0206 (14)	0.0025 (11)	0.0065 (11)	0.0015 (12)
C3	0.0259 (14)	0.0216 (14)	0.0209 (14)	0.0038 (12)	0.0042 (12)	0.0041 (12)
C4	0.0177 (13)	0.0239 (14)	0.0185 (13)	0.0078 (11)	-0.0025 (11)	-0.0043 (11)
C5	0.0157 (13)	0.0336 (16)	0.0189 (14)	0.0042 (12)	0.0043 (11)	-0.0035 (12)
C6	0.0212 (13)	0.0268 (14)	0.0147 (13)	0.0023 (11)	0.0054 (11)	0.0038 (11)
C7	0.0172 (12)	0.0200 (13)	0.0144 (12)	-0.0010 (10)	0.0025 (10)	-0.0003 (11)
C8	0.0195 (13)	0.0189 (13)	0.0149 (12)	0.0006 (11)	0.0044 (10)	0.0007 (10)
C9	0.0192 (12)	0.0180 (12)	0.0124 (12)	0.0009 (10)	0.0034 (10)	0.0039 (10)
C10	0.0141 (12)	0.0149 (12)	0.0151 (12)	0.0014 (10)	0.0024 (10)	0.0015 (10)
C11	0.0170 (12)	0.0155 (12)	0.0144 (12)	0.0003 (10)	0.0032 (10)	0.0037 (10)
C12	0.0111 (11)	0.0113 (11)	0.0157 (12)	-0.0011 (9)	0.0013 (9)	-0.0006 (10)
C13	0.0139 (11)	0.0136 (11)	0.0144 (12)	0.0025 (10)	0.0009 (10)	0.0011 (10)
C14	0.0189 (12)	0.0140 (12)	0.0160 (12)	0.0025 (10)	0.0040 (10)	0.0016 (10)

C15	0.0174 (12)	0.0195 (13)	0.0158 (13)	-0.0001 (10)	0.0060 (10)	-0.0008 (10)	
C16	0.0172 (12)	0.0191 (13)	0.0244 (14)	0.0043 (11)	0.0067 (11)	0.0013 (11)	
C17	0.0231 (14)	0.0217 (14)	0.0210 (14)	0.0090 (11)	0.0053 (11)	0.0090 (11)	
C18	0.0190 (13)	0.0186 (13)	0.0200 (13)	0.0036 (11)	0.0064 (11)	0.0073 (11)	
C19	0.0109 (11)	0.0152 (12)	0.0142 (12)	0.0009 (9)	0.0034 (9)	0.0035 (10)	
C20	0.0155 (12)	0.0185 (12)	0.0116 (12)	0.0004 (10)	0.0018 (10)	0.0013 (10)	
C21	0.0145 (12)	0.0126 (12)	0.0190 (13)	0.0006 (10)	0.0046 (10)	-0.0011 (10)	
C22	0.0088 (11)	0.0157 (12)	0.0185 (13)	-0.0015 (9)	0.0038 (10)	0.0059 (10)	
C23	0.0176 (12)	0.0162 (12)	0.0139 (12)	-0.0009 (10)	0.0001 (10)	0.0002 (10)	
C24	0.0165 (12)	0.0124 (11)	0.0172 (13)	-0.0013 (10)	0.0032 (10)	-0.0002 (10)	
C25	0.0181 (13)	0.0154 (12)	0.0255 (14)	0.0025 (11)	0.0037 (11)	0.0076 (11)	

Geometric parameters (Å, °)

Br1—C4	1.903 (3)	C11—H11	0.9500
O1—C7	1.224 (3)	C12—C19	1.480 (3)
O2—C22	1.362 (3)	C13—C14	1.379 (4)
O2—C25	1.434 (3)	C13—C18	1.388 (4)
N1-C12	1.329 (3)	C14—C15	1.394 (3)
N1—N2	1.366 (3)	C14—H14	0.9500
N2	1.347 (3)	C15—C16	1.384 (4)
N2	1.435 (3)	C15—H15	0.9500
C1—C6	1.389 (4)	C16—C17	1.389 (4)
C1—C2	1.393 (4)	C16—H16	0.9500
C1—C7	1.504 (4)	C17—C18	1.392 (4)
C2—C3	1.383 (4)	C17—H17	0.9500
C2—H2	0.9500	C18—H18	0.9500
C3—C4	1.376 (4)	C19—C20	1.394 (3)
С3—Н3	0.9500	C19—C24	1.391 (3)
C4—C5	1.382 (4)	C20—C21	1.385 (4)
C5—C6	1.394 (4)	C20—H20	0.9500
С5—Н5	0.9500	C21—C22	1.391 (4)
С6—Н6	0.9500	C21—H21	0.9500
С7—С8	1.470 (4)	C22—C23	1.400 (3)
C8—C9	1.328 (4)	C23—C24	1.383 (4)
С8—Н8	0.9500	С23—Н23	0.9500
C9—C10	1.450 (3)	C24—H24	0.9500
С9—Н9	0.9500	C25—H25A	0.9800
C10-C11	1.382 (3)	C25—H25B	0.9800
C10—C12	1.427 (3)	C25—H25C	0.9800
C22—O2—C25	117.2 (2)	C14—C13—N2	119.2 (2)
C12—N1—N2	105.0 (2)	C18—C13—N2	119.4 (2)
C11—N2—N1	112.2 (2)	C13—C14—C15	119.4 (2)
C11—N2—C13	128.4 (2)	C13—C14—H14	120.3
N1—N2—C13	119.4 (2)	C15—C14—H14	120.3
C6—C1—C2	119.1 (2)	C16—C15—C14	120.2 (2)
C6—C1—C7	118.7 (2)	C16—C15—H15	119.9
C2—C1—C7	122.1 (2)	C14—C15—H15	119.9
C3—C2—C1	120.8 (3)	C15—C16—C17	119.7 (2)

С3—С2—Н2	119.6	C15—C16—H16	120.1
C1—C2—H2	119.6	C17—C16—H16	120.1
C4—C3—C2	118.7 (3)	C16—C17—C18	120.7 (3)
С4—С3—Н3	120.6	С16—С17—Н17	119.7
С2—С3—Н3	120.6	С18—С17—Н17	119.7
C3—C4—C5	122.3 (2)	C13—C18—C17	118.6 (2)
$C_3 - C_4 - Br_1$	118.9 (2)	C13—C18—H18	120.7
C5-C4-Br1	118.7 (2)	С17—С18—Н18	120.7
C4-C5-C6	118.2 (2)	C_{20} C_{19} C_{24}	1183(2)
C4—C5—H5	120.9	C_{20} C_{19} C_{21}	110.3(2) 119.7(2)
С6—С5—Н5	120.9	C_{24} C_{19} C_{12} C_{12}	121.8(2)
C1 - C6 - C5	120.8 (3)	$C_{21} = C_{20} = C_{12}$	121.0(2) 121.8(2)
C1-C6-H6	119.6	$C_{21} = C_{20} = C_{13}$	110 1
C5-C6-H6	119.6	$C_{21} = C_{20} = H_{20}$	119.1
$C_{3} = C_{0} = H_{0}$	117.0 122.2(2)	C_{20} C_{21} C_{22}	119.1 110.3(2)
01 - 07 - 01	122.2(2) 110.7(2)	$C_{20} = C_{21} = C_{22}$	119.3 (2)
01 - 07 - 01	119.7(2)	$C_{20} = C_{21} = H_{21}$	120.3
$C_{0} = C_{1} = C_{1}$	116.1(2)	$C_{22} = C_{21} = H_{21}$	120.3
C_{2}	121.1 (2)	02 - 022 - 021	124.8(2)
C7_C8_H8	119.4	02-022-023	115.6 (2)
C^{2} C^{2} C^{2} C^{10}	119.4	$C_{21} = C_{22} = C_{23}$	119.6 (2)
	127.1 (2)	$C_{24} = C_{23} = C_{22}$	120.2 (2)
C8—C9—H9	116.4	C24—C23—H23	119.9
С10—С9—Н9	116.4	C22—C23—H23	119.9
C11—C10—C12	104.5 (2)	C23—C24—C19	120.8 (2)
C11—C10—C9	123.8 (2)	C23—C24—H24	119.6
C12—C10—C9	131.6 (2)	С19—С24—Н24	119.6
N2—C11—C10	107.2 (2)	O2—C25—H25A	109.5
N2—C11—H11	126.4	O2—C25—H25B	109.5
C10—C11—H11	126.4	H25A—C25—H25B	109.5
N1—C12—C10	111.1 (2)	O2—C25—H25C	109.5
N1—C12—C19	118.7 (2)	H25A—C25—H25C	109.5
C10—C12—C19	130.2 (2)	H25B—C25—H25C	109.5
C14—C13—C18	121.4 (2)		
C12—N1—N2—C11	0.0 (3)	C9—C10—C12—C19	6.5 (5)
C12—N1—N2—C13	-179.2 (2)	C11—N2—C13—C14	-171.7 (2)
C6—C1—C2—C3	0.3 (4)	N1-N2-C13-C14	7.3 (3)
C7—C1—C2—C3	-177.2 (2)	C11—N2—C13—C18	8.5 (4)
C1—C2—C3—C4	0.2 (4)	N1—N2—C13—C18	-172.5 (2)
C2—C3—C4—C5	-0.8 (4)	C18—C13—C14—C15	1.4 (4)
C2—C3—C4—Br1	-178.9 (2)	N2-C13-C14-C15	-178.5 (2)
C3—C4—C5—C6	1.0 (4)	C13—C14—C15—C16	-1.1 (4)
Br1-C4-C5-C6	179.1 (2)	C14—C15—C16—C17	0.2 (4)
C2-C1-C6-C5	-0.1 (4)	C15—C16—C17—C18	0.6 (4)
C7—C1—C6—C5	177.5 (2)	C14—C13—C18—C17	-0.6 (4)
C4—C5—C6—C1	-0.5 (4)	N2-C13-C18-C17	179.2 (2)
C6—C1—C7—O1	-13.0 (4)	C16—C17—C18—C13	-0.3 (4)
C2—C1—C7—O1	164.4 (3)	N1—C12—C19—C20	-120.3 (3)
C6—C1—C7—C8	167.2 (2)	C10—C12—C19—C20	56.7 (4)

C2—C1—C7—C8	-15.4 (4)	N1-C12-C19-C24	54.7 (3)	
O1—C7—C8—C9	-19.6 (4)	C10-C12-C19-C24	-128.3 (3)	
C1—C7—C8—C9	160.2 (2)	C24—C19—C20—C21	0.1 (4)	
C7—C8—C9—C10	179.5 (2)	C12-C19-C20-C21	175.2 (2)	
C8—C9—C10—C11	-174.4 (3)	C19—C20—C21—C22	-0.6 (4)	
C8—C9—C10—C12	1.9 (5)	C25—O2—C22—C21	4.0 (4)	
N1-N2-C11-C10	0.3 (3)	C25—O2—C22—C23	-176.8 (2)	
C13—N2—C11—C10	179.4 (2)	C20—C21—C22—O2	-179.9 (2)	
C12—C10—C11—N2	-0.5 (3)	C20—C21—C22—C23	0.9 (4)	
C9-C10-C11-N2	176.7 (2)	O2—C22—C23—C24	179.9 (2)	
N2—N1—C12—C10	-0.3 (3)	C21—C22—C23—C24	-0.8(4)	
N2—N1—C12—C19	177.2 (2)	C22—C23—C24—C19	0.3 (4)	
C11-C10-C12-N1	0.5 (3)	C20-C19-C24-C23	0.1 (4)	
C9-C10-C12-N1	-176.3 (3)	C12—C19—C24—C23	-175.0 (2)	
C11—C10—C12—C19	-176.6(2)			

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C11—H11…O1 ⁱ	0.95	2.25	3.198 (3)	173
C25—H25 <i>B</i> ··· <i>Cg</i> 1 ⁱⁱ	0.98	2.61	3.478 (3)	148

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*+2; (ii) -*x*+2, -*y*+2, -*z*+1.