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Background: Zinc (Zn) is an essential trace element with high relevance for the immune
system, and its deficiency is associated with elevated infection risk and severe disease
course. The association of Zn status with the immune response to SARS-CoV-2
vaccination is unknown.

Methods: A cohort of adult health care workers (n=126) received two doses of
BNT162B2, and provided up to four serum samples over a time course of 6 months.
Total SARS-CoV-2 IgG and neutralizing antibody potency was determined, along with
total as well as free Zn concentrations.

Results: The SARS-CoV-2 antibodies showed the expected rise in response to
vaccination, and decreased toward the last sampling point, with highest levels
measured three weeks after the second dose. Total serum Zn concentrations were
relatively stable over time, and showed no significant association with SARS-CoV-2
antibodies. Baseline total serum Zn concentration and supplemental intake of Zn were
both unrelated to the antibody response to SARS-CoV-2 vaccination. Time resolved
analysis of free Zn indicated a similar dynamic as the humoral response. A positive
correlation was observed between free Zn concentrations and both the induced
antibodies and neutralizing antibody potency.

Conclusion: While the biomarkers of Zn status and supplemental Zn intake appeared
unrelated to the humoral immune response to SARS-CoV-2 vaccination, the observed
correlation of free Zn to the induced antibodies indicates a diagnostic value of this novel
biomarker for the immune system.
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INTRODUCTION

The essential trace element zinc (Zn) is required as cofactor for
the structure and function of a high number of proteins and
enzymes (1, 2). It also participates in signaling pathways and
supports or even mimics the functions of hormones, growth
factors, and cytokines (3). Moreover, it contributes essentially to
many aspects of innate and adaptive immunity (4–9), including
the maturation of dendritic cells, mast cell activation, and T cell
maturation (6, 8, 10). Zinc supplementation has been shown to
promote a Th1 response (11), whereas Zn deficiency is associated
with cell-mediated immune dysfunction due to a shift from Th1
to Th2 (6). In addition, pronounced Zn deficiency impairs
production of cytokines such as interferon-gamma,
interleukin-2 (IL-2), and tumor necrosis factor-alpha (TNF-a)
(12, 13).

Intracellular Zn has been described as a potent second
messenger/signaling ion (14–16), which may be released in
response to extracellular signals, e.g. in mast cells upon
stimulation of the high-affinity IgE receptor, resulting in a
phenomenon called a zinc wave (17). Hereby, MAPK activity
and expression of interleukin-6 and TNF-a genes are regulated
via Zn-dependent inhibition of phosphatase activity (14, 16).
Similarly, stimulation of T-cell receptors (TCR) leads to an
increase in cytoplasmic Zn via influx from extracellular
sources, enhancing proximal TCR signaling and affecting the
T-cell response to antigens and vaccines (15). A strong
interrelationship of Zn status with survival odds and mortality
risk of patients affected by the ongoing Coronavirus Disease-
2019 (COVID-19) pandemic has been described in recent
observational studies (18–23). This finding was also supported
by in vitro studies assessing the effects of Zn2+ on SARS-CoV
replication and RNA polymerase activity (24). In addition, a
potential direct interrelation of Zn was also proposed for SARS-
CoV-2 maturation (25, 26). The published studies on immune
responses to anti-viral vaccines in relation to Zn status are
controversial and inconclusive at present (27, 28). However, in
view of the consistently reported interrelationship between
serum Zn deficiency and severe COVID-19 course and
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mortality, we hypothesized that the vaccination response to
SARS-CoV-2 immunization correlates with zinc status, in
particular with the fraction of free zinc as a potential
biomarker of extracellular Zn availability.
MATERIAL AND METHODS

Study Design and Study Cohort
All blood samples were collected from healthy adults
participating in the observational ATORG Study (29, 30). The
authorities in Bavaria, Germany, provided ethical counselling
(Ethik-Kommission der Bayerischen Landesärztekammer,
Munich, Germany, EA No. #20033), and the study had been
registered at the German Clinical Trial Register (Deutsches
Register Klinischer Studien, ID: DRKS00022294, Sept. 14th
2020). An amendment to the protocol was added Jan. 12th,
2021 (Ethik-Kommission der Bayerischen Landesärztekammer).
All participants enrolled into the observational study provided
written informed consent at study entry. The final cohort of
subjects analysed consisted of adult male and female health care
workers (n=126 at baseline), who received two doses of the
Biontech/Pfizer vaccine BNT162b2 during a highly coordinated
hospital-wide vaccination process. Serum samples were taken at
four consecutive time points, i.e., at first dose of vaccination, at
the time of second dose (n= 115) (week three), at week six
(n=113) and at week 24 (n=56). The samples obtained were
shipped on dry ice to the analytical laboratory in Berlin,
Germany, and analysed by scientists and technicians blinded to
the clinical data, essentially as described previously (29, 30). All
analyses were conducted at Charité-Universitätsmedizin Berlin,
except for the analyses of free zinc, which was measured at
Technische Universität Berlin.

Measurement of Antibodies to SARS-CoV-2
and Their Neutralizing Activity
The measurements of antibodies to SARS-CoV-2 IgG and the
assessment of neutralizing activity were described earlier (29, 30).
GRAPHICAL ABSTRACT |
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In brief, IgG concentrations to SARS-COV-2 were determined
with an automated chemiluminescent two-step capture
immunoassay (TGS COVID-19, product code: CVCL100G,
Immunodiagnostic Systems (ids) Holdings PLC, Frankfurt,
Germany). The neutralizing activity was determined via a
competitive immune-enzymatic colorimetric method, as
described (SPIA, Spike Protein Inhibition Assay, product code:
DKO205/RUO, ids Holdings PLC) (29, 30).

Quantification of Total Serum Zn
The concentration of total serum Zn was determined by total
reflection X-ray fluorescence (TXRF) using a benchtop TXRF
spectrometer (S4 T-STAR, Bruker Nano GmbH, Berlin,
Germany), as described (21, 31, 32). Briefly, serum samples were
spiked with a gallium standard, applied to polished glass slides and
dried. Fluorescence from X-ray activation was recorded by a
benchtop TXRF spectrometer and used to calculate trace
element concentrations from the emission spectrum.

Free Zinc Measurement and Ratio of Free
to Total Zinc
The concentration of free Zn was determined by a fluorimetric
method using the lowmolecular weight Zn sensor Zinpyr-1 (Santa
Cruz biotechnology, Dallas, USA), as described (23, 33, 34).
Briefly, 20 mL of serum sample, which had been pre-diluted in
assay buffer (1:10) and stored at -80°C, was added to 80 mL pre-
warmed assay buffer containing a final concentration 0.05 mM
Zinpyr-1. The fractional saturation of the sensor was determined
with 15 μL EDTA (800 μM) or 15 μL ZnSO4 (4.5 mM) to induce a
minimal and maximal fluorescence signal of Zinpyr-1,
respectively. Free serum Zn concentrations were calculated using
the dissociation constant (Kd) for the Zinpyr-1-Zn-complex of 0.7
nM (35, 36). The ratio of free Zn/total Zn per sample was
calculated using the following formula:

Free   zinc   nmol=Lð Þ   ∗   65:38   g=molð Þ   ∗ 102
Total  Zinc   μ g

L

� �

Statistical Analysis
Distribution of numerical variables was investigated visually by
histogram plots as well as statistically by applying the Shapiro-
Wilk-Test (37). When describing baseline patient characteristics,
continuous variables were expressed as median (interquartile
range (IQR)). Pairwise comparisons were conducted by applying
the Wilcoxon-Rank-sum test to detect differences in serum
markers between different sampling time points. In addition,
time resolved distributions of total serum Zn, free Zn and the free
Zn/total serum Zn ratio over time were visualized with ridge-
density plots. Spearman’s rank correlation was used to detect
correlations between continuous variables. Zinc biomarkers at
baseline were categorized into tertiles. Differences in antibody
concentrations to SARS-CoV-2 and neutralizing potency across
different tertiles of Zn biomarkers were determined by applying
the Kruskal-Wallis-test. All statistical analyses were two-sided,
and p-values below 0.05 were classified as statistically significant.
The statistical analyses were performed using the R software,
Frontiers in Immunology | www.frontiersin.org 3
version 4.1.1, implementing the packages dplyr, tidyr,
gtsummary, ggplot2, and ggpubr (38–40).
RESULTS

SARS-CoV-2 Antibody Concentrations and
Zn Status Over Time
Healthy adult male and female health care workers (n = 126)
were successfully enrolled into this prospective observational
study. All participants received two doses of an mRNA-based
vaccine (Biontech BNT162b2) within a time frame of three weeks
(Figure 1A). Four consecutive time points of blood sampling
were offered per subject, i. e., on the days of the first and second
vaccination, as well as six and 24 weeks after the first vaccination.
Most of the subjects contributed a sample at the sampling points
one to three, and about one half also provided a sample at time
point four, i.e., after 24 weeks. The majority of participants at
study start were female (83.3%), and 30% reported self-
administered Zn supplementation (Table S1). A total of 410
blood samples were finally available for analysis and assessed for
SARS-CoV-2 antibody concentrations, neutralizing antibodies
inhibiting spike protein binding to ACE2, as well as total and free
Zn concentrations, i.e., an average of 3.25 samples/participant.
The SARS-CoV-2 antibody levels displayed some variation in the
first sample analysed, likely due to previous exposure to the virus
and to patients with COVID-19. Non-detectable IgG levels were
observed in 35 samples at first time point. At sampling point
three, all samples were SARS-CoV-2 antibody positive (>11.5
AU/mL) according to the threshold predefined by the
manufacturer. A decrease in SARS-CoV-2 IgG concentrations
is seen towards the fourth sampling point (Figure 1B). The
neutralizing activity of the antibodies showed very similar
dynamics to the concentration of antibodies to SARS-CoV-2
across the study (Figure 1C). Concentrations of total serum Zn
were not different in the first three samples, but appeared slightly
elevated in the last sample (Figure 1D).

Alterations in Total Serum Zn and Free Zn
Concentrations After Vaccination
Concentrations of total serum Zn and free Zn were determined
in all samples available, analysed and compared. Free Zn showed
a transient increase after vaccination during the period of
observation, with a relative peak at the third sampling point,
and declining towards a relative minimum at the end of the study
(Figure 2A). Meanwhile, serum Zn stayed stable over the first
three sampling time points, indicating an initial shift from
protein bound Zn to unbound free Zn, which was apparently
reversed in the last time point. The ratio of free Zn to total serum
Zn showed a similar picture, with the differences between the
time points being more pronounced (Figure 2B). Total serum
Zn and free Zn concentrations correlated at all sampling times,
with least stringency at the transient peak of free Zn at time point
three (Figure 2C). A moderate positive correlation in the full
cohort of samples analysed was observed (Spearman, R = 0.25,
p < 0.001) (Figure 2D).
June 2022 | Volume 13 | Article 906551
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Vaccination Response in Relation to
Baseline Zn Status
Initial Zn status of the subjects at first vaccination was
separated into tertiles (Q1-Q3). A comparison of antibody
levels to SARS-CoV-2 developing after vaccination according
Frontiers in Immunology | www.frontiersin.org 4
to total serum Zn (Figure 3A), free Zn (Figure 3B), or the
free Zn/total serum Zn ratio (Figure 3C) indicated no
significant differences. The same result was obtained for
initial Zn status and neutralizing activity of the samples
(Figure S1).
A B

C

D

FIGURE 1 | Study design, SARS-CoV-2 antibody response and Zn status during the period of observation. (A) Healthy adult subjects received two doses of
BNT162b2 vaccine within three weeks. Blood samples were collected on the days of vaccination, as well as three weeks and 21 weeks after second vaccination.
The serum samples were analysed for SARS-CoV-2 antibodies, neutralizing activity, and total serum Zn as well as free Zn concentrations. (B) Total SARS-CoV-2
antibody concentrations increased from first vaccination to a transient peak at three weeks after second vaccination, and declined thereafter. After six weeks, all
participants reached seropositivity. (C) The serum samples showed neutralizing activities in parallel to SARS-COV-2 antibody concentrations, again with a transient
peak at time point three, and with all participants passing the predefined threshold of positivity (dark orange line). (D) Total Zn concentrations were similar during the
first three sampling points, but were slightly elevated at study end. All data points are shown including three samples with exceptionally high total serum Zn
concentrations (D, right hand panel). The data on SARS-CoV-2 antibodies (B, C) were presented earlier in relation to vitamin D and Se, and are provided here for
orientation. Pairwise comparisons were conducted applying the Wilcoxon-Rank-Sum test.
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Effects of Self-Administered Zn
Supplementation on the Vaccination
Response
A subgroup of the study probands reported self-administered
intake of Zn-containing supplements before and/or during the
time of vaccination (Table S1). The concentrations of total
serum Zn (Figure S2A) and free Zn (Figure S2B) were not
significantly different in relation to supplemental intake. The
analysis of antibodies induced in response to vaccination with
respect to supplemental Zn intake showed no significant differences
between the two groups of subjects classified according to reported
self-administered Zn supplementation (Figure 4).
Frontiers in Immunology | www.frontiersin.org 5
Relationship of Zn Parameters With
Antibodies to SARS-CoV-2
The three parameters of Zn status, i.e., total serum Zn, free Zn
and the free Zn/total serum Zn ratio were compared to the
induced antibodies to SARS-CoV-2. There was no significant
correlation between total serum Zn and SARS-CoV-2 antibody
concentrations (Figure 5A). In comparison, free Zn
concentrations correlated with antibodies to SARS-CoV-2
(Figure 5B). Accordingly, the free Zn/total serum Zn ratio
showed a similar strong correlation to the concentration of
SARS-CoV-2 antibodies (Figure 5C). A parallel analysis was
conducted for the interrelationship between the Zn parameters
A

B

C D

FIGURE 2 | Changes in free Zn concentrations and free Zn/total Zn ratio during the study. (A) Free Zn concentrations displayed a transient peak at time point three
(six weeks after first vaccination), and a relative minimum at study termination (24 weeks after first vaccination). (B) The ratio of free Zn/total serum Zn showed a
similar and more pronounced pattern of changes. (C) Total serum Zn and free Zn correlated positively at all sampling time points. (D) In the full cohort of samples,
the parameters free Zn and total serum Zn showed a positive linear correlation. Three data points of exceptionally high serum Zn are not shown due to reasons of
scale. Pairwise comparisons were conducted by applying the Wilcoxon-Rank-Sum test. Correlations were analysed by Spearman’s rank correlation.
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A

B

C

FIGURE 3 | Baseline Zn status in relation to antibodies to SARS-CoV-2 after vaccination. (A) Total serum Zn was categorized into tertiles at time of first vaccination
(Q1 < 764.3 µg/L; Q2 < 852.4 µg/L; Q3 > 852.4 µg/L), and plotted against SARS-CoV-2 antibody concentrations. No significant differences were observed between
the groups. (B) Free Zn was divided into tertiles at first vaccination (Q1 < 0.51 nM; Q2 < 0.59 nM; Q3 > 0.59 nM). Again, no significant differences in humoral
vaccination response over time was detected. (C) The free Zn/total serum Zn ratio was calculated and used to classify the samples into tertiles (Q1 < 4.09; Q2 <
4.81; Q3 > 4.81). No significant difference in the concentrations of antibodies to SARS-CoV-2 were detected across the tertiles. Two-sided Kruskal-Wallis test was
used to assess differences.
Frontiers in Immunology | www.frontiersin.org June 2022 | Volume 13 | Article 9065516
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and the neutralization activity of the serum samples. Again, total
serum Zn was not correlated to antibody-mediated neutralizing
activity (Figure S3A), whereas free Zn and the free Zn/total
serum Zn ratio showed a significant positive correlation to
inhibition activity of the induced SARS-CoV-2 antibodies
(Figures S3B, C).
DISCUSSION

This study reports an analysis of three parameters of serum Zn
status in relation to the response to SARS-CoV-2 vaccination in
healthy adult subjects over the course of 24 weeks. Total serum
Zn concentrations showed no significant association with the
vaccination response, but free Zn and a composite biomarker
represented by the ratio of free Zn/total serum Zn concentrations
correlated stringently to the induced antibodies. Qualitatively,
the same results were obtained when comparing the Zn
biomarkers to the neutralizing activity of the antibodies,
measured as the disrupting effect on the binding of
recombinant spike protein to the SARS-CoV-2 receptor ACE2;
again, free Zn or the ratio of free Zn/total serum Zn showed
significant positive correlations to neutralizing activity, whereas
there was no interrelationship with total serum Zn
concentrations. Collectively, our data indicate that the small
fraction of labile-, or non-protein-bound Zn ions, which is
Frontiers in Immunology | www.frontiersin.org 7
denoted as free Zn, constitutes a promising biomarker of Zn
status for clinical research. The positive correlation of free Zn
concentrations with the vaccination response may indicate a
general beneficial interrelationship of free Zn with the
activity of the immune system, with potential relevance also in
other conditions, e.g., in infectious, inflammatory or
autoimmune diseases, albeit this hypothesis needs to be tested
in future analyses.

Under regular conditions, the physiological amount of Zn in
serum corresponds to ca. 1% of total body Zn. Serum levels in
heathy humans range from 750 to 920 μg/L (11.5- 15.0 μM) (41),
with Zn deficiency according to the 2.5th percentile of healthy
European subjects starting at as low as 642.5 mg/L (21, 42). In
human serum, the essential trace element is mainly transported
bound to albumin (60%), a-macroglobulin (30%) and
transferrin (10%) (43). It can be assumed that due to the
replete Zn status of the enrolled participants of the study, the
self-reported supplementation was not yielding increased
serum Zn concentrations. However, it can not be excluded
that self-supplementation caused increased intracellular Zn
levels , which is not necessari ly reflected in serum
concentrations. For this reason, a lack of effect on circulating
Zn concentration does not exclude a modulatory effect on Zn-
dependent biochemical pathways in certain target cells. In
addition to protein-bound Zn, several studies have indicated
the presence of a small fraction of free, labile- or non-protein-
A

B

FIGURE 4 | Vaccination response in relation to self-administered supplemental Zn intake. A subset of probands reported no (No) or active (Yes) self-administered
intake of Zn-containing supplements during the study. Immune responses measured by (A) total antibody concentrations to SARS-CoV-2, or by assessment of
(B) binding inhibition were not significantly different between the two groups. Pairwise comparisons were conducted by applying the Wilcoxon-Rank-Sum test.
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bound Zn ions (44), which may interact with low molecular
weight ligands and thereby constitute the available and
biologically active Zn species in human blood. There are
indications that this fraction is responsible for cellular
activities, enzymatic functions and internalization, as
convincingly shown in cell based studies and preclinical
models (23, 34, 45). The assessment of this fraction is
considered as a useful biomarker of Zn status (46), potentially
reflecting physiologically relevant alterations in Zn availability
and homeostatic adaptations to certain challenging conditions
(2). However, clinical studies comparing the different fractions
of protein-bound versus free Zn ions are very few, and no
significant differences in relation to clinical parameters have
been reported so far. To our knowledge, the present study is the
first investigation of a potential interrelationship between the
humoral immune response and free zinc in human subjects.

For this reason, the present study was conducted,
hypothesizing that total serum Zn and free Zn both being of
importance for successful vaccination response. Only the
fraction of free Zn ions showed a significant correlation to the
Frontiers in Immunology | www.frontiersin.org 8
vaccination-induced increase in SARS-CoV-2 antibodies. Until
now, the available observational data on an interrelationship of
Zn with the antibody response to an infection by SARS-CoV-2
have been rather controversial (47, 48), potentially due to
unknown confounding factors.

Several clinical studies assessing serum Zn in patients with
COVID-19 reported consistently that low serum Zn
concentrations are associated with severe disease, poor
clinical outcome, and death risk (20, 21, 49, 50). COVID-19
patients with Zn deficiency displayed a higher rate of
complications, higher odds of acute respiratory distress
syndrome (20), and longer time span until recovery (20, 50).
Furthermore, a sufficiently high Zn status appeared essential
to support the therapeutic measures in COVID-19 treatment
(51–53). Targeted intervention has indicated that supplemental
Zn positively affects lymphocyte counts as compared to
untreated patients (51). Fast treatment of newly infected
subjects with a combination of supplemental Zn, low-dose
hydroxychloroquine and azithromycin successfully reduced
hospitalization rate (52). Longer times of active Zn
A B

C

FIGURE 5 | Correlation analysis of the three different parameters of serum Zn status with antibodies to SARS-CoV-2. (A) Total serum Zn concentrations and
antibodies to SARS-CoV-2 showed no significant correlation in the study cohort (three data points of very high serum Zn are not shown in the figure for reasons of
scale). The parameters (B) free Zn concentrations, and (C) free Zn/total Zn ratio correlated positively and significantly with antibodies to SARS-CoV-2. Data were
analysed by Spearman’s rank correlation.
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supplementation proved efficient to protect from SARS-CoV-2
infection risk and severe COVID-19 course (54). These results
were in line with prior analyses on a protective effect of
supplemental Zn on development of common colds (55). An
intravenous application would be an alternative and fast
measure to correct and reverse Zn deficiency in the acute
phase of disease (53, 56). However, some intervention studies
also showed no supplementation effects, e.g. no benefit was
observed in the randomized placebo-controlled COVID A to Z
trial (53). Similarly, Zn supplementation in the elderly was
inefficient in improving antibody response after influenza (57)
or hepatitis B vaccination (58). Collectively, the current picture
highlights several positive associations of Zn with an efficient
function of the immune system in the defense towards infection
or the mounting antibody response upon vaccination; yet some
intervention studies were unsuccessful, showing null results,
and others reported ambiguous findings (19, 56, 59, 60). In this
respect, an analysis of the fraction of free Zn and its comparison
to total serum Zn concentrations may be helpful to providing a
better and more consistent picture on the role of Zn in
infectious diseases and upon vaccination, and for identifying
the confounders affecting the relative proportion of both
biomarkers of Zn status. The time resolved analysis of the
immune biomarkers, of serum Zn and free Zn also revealed a
pattern indicating an initial shift of bound Zn to free Zn after
vaccination, which is apparently reversed 21 weeks after the
second vaccination. This shift in the ratio of bound to free Zn
may constitute a consequence of vaccination and concomitant
inflammation, yet a longer time period is needed to assess how
the reversion of the initial shift behaves in long term, and
whether this displays a SARS-CoV-2 vaccine-specific finding or
a more general mechanism. Future investigation into whether
this initial shift is a general response and applies similarly to
other vaccines or inflammatory states is particularly important,
as free Zn constitutes the biologically active component of
serum Zn. While it is needed for various beneficial purposes
and might be taken up by cells in need more readily and
efficiently, free Zn is also associated with toxic properties
(45), which may become relevant upon sudden increase and
as a direct response to inflammation or vaccination (61, 62).

Among the strengths of our analysis are the well-designed
vaccination program underlying our observational study, and the
standardized collection, transport and measurement of the
serum samples at a remote location by experienced
scientists blinded to any clinical information. The parallel
quantification of two biomarkers of vaccination response and
of two Zn-dependent serum parameters giving rise to three
complementary biomarkers of Zn status constitutes another
strength. Finally, the clear-cut results falsifying our initial
hypothesis on the prime importance of total serum Zn
concentrations, but highlighting the potential value of free Zn
concentrations as a physiologically relevant immune-related
parameter of Zn status, further support the value of this study.

Among the limitations are the focus on humoral immune
response only, i.e., the measurement of circulating antibodies,
without an assessment of cell-based immune responses.
Frontiers in Immunology | www.frontiersin.org 9
Moreover, the nature of our analysis as an observational study
precludes conclusions on mechanisms and causality, and there is
a general lack of molecular understanding that might give rise to
the observed differences between total serum Zn and free Zn
concentrations in relation to the immune response. Additionally,
the time points of analysis were few, and a more frequent
sampling scheme would have provided a more detailed picture
on the dynamic alterations occurring in response to vaccination.
And finally, a larger study cohort would have allowed for a better
statistical analysis taking additional confounders such as dietary
patterns, additional anthropometric differences, and other acute
parameters of health and disease into account. Further, our study
did not include any random sampling method for enrolment,
which may limit the generalizability of the results. In addition,
our study considered healthy adults only with a moderate
baseline Zn status; seniors, children, adolescents or diseased
patients were not included, and our data cannot be
extrapolated to these groups of subjects.

Nevertheless, in view of the general correlation between total
serum Zn and free Zn and at the same time the strong
differences in correlation strengths to the induced antibodies,
we consider the herein provided findings as highly relevant for
the clinical assessment of Zn status, as they highlight a potential
value of free Zn as a novel promising biomarker associated with
vaccination and humoral immune response. Therapeutic
measures to positively modify the fraction of free Zn and the
identification of disruptors of free Zn mobilisation may
enable further insights into the endogenous pathways
regulating Zn homeostasis and might provide new clues for
adjuvant immunomodulation.
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