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Abstract
Although pharmaco-epidemiological studies provided evidence for the anticancer potential of non-steroidal anti-inflammatory 
drugs (NSAIDs), the mechanism of their anti-cancer activity is not known. Several lines of evidence suggest that proline 
dehydrogenase/proline oxidase (PRODH/POX) may represent a target for NSAIDs-dependent anti-cancer activity. PRODH/
POX catalyzes conversion of proline into Δ1-pyrroline-5-carboxylate releasing ATP or reactive oxygen species for autophagy/
apoptosis. Since NSAIDs are ligands of peroxisome proliferator-activated receptor (PPARs) and PPARs are implicated in 
PRODH/POX-dependent apoptosis we provided a hypothesis on the mechanism of NSAIDs-induced apoptosis in cancer cells.
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Anticancer activity of NSAIDs

Non-steroidal anti-inflammatory drugs (NSAIDs) are a class 
of drugs commonly prescribed due to their wide spectrum 
of pharmacological effects. However they are preferred 
for the treatment of inflammatory diseases. The molecular 
mechanism of NSAIDs action is related to the inhibition 
of cyclooxygenases (COX-1 and COX-2), enzymes catalyz-
ing the biosynthesis of prostaglandins (PGs) from arachi-
donic and linoleic acids. COX-1 is expressed constitutively 
in most mammalian cells and maintains homeostasis of 
some physiological processes, while COX-2 is induced in 
response to inflammation [1]. While inhibition of COX-1 

evokes antiplatelet effect, inhibition of COX-2 has strong 
anti-inflammatory, antipyretic and analgesic effects [2, 3].

It is well established that inflammatory environment pro-
motes cancer development. The mechanism of this process 
is due to increased levels of COX-2 and prostaglandin E2 
(PGE2) [4–7] that promote proliferation, migration, invasion, 
and cell adhesion [8, 9]. According to these facts, medica-
tion with NSAIDs was associated with decreased risk of cer-
tain cancer types, particularly gastrointestinal tract cancers 
(gastric or colorectal cancer), lung, breast, and prostate can-
cers [10–14]. Clinical and pharmacoepidemiological studies 
provide evidence that aspirin and other cyclooxygenase-2 
enzyme inhibitors lower recurrence of colorectal cancer by 
about 20% [12, 15, 16]. Another example is that regular, 
non-selective COX-2 NSAIDs treatment (i.e. aspirin and 
ibuprofen) caused a 69% reduction in the relative risk of lung 
cancer [17]. The explanation for the potential mechanism 
of anticancer activity of NSAIDs comes from studies on 
the inhibitory effect on cyclooxygenases that are frequently 
overexpressed in different types of cancer [18, 19]. Such a 
mechanism was observed in cultured HT-29 human colon 
cancer cells where apoptosis occurred after incubation with 
sulindac and sulindac sulfide, salicylate and other NSAIDs 
[20]. COX-2 inhibition attenuates also angiogenesis through 
expression of vascular endothelial growth factor (VEGF) 
and metalloproteinases [21]. However, some experiments 
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show that the anti-neoplastic effect of NSAIDs is more 
complex and cannot be explained on the basis of cyclooxy-
genase inhibition pathway [22]. In human prostate cancer 
cell lines, PC3 and LNCaP which are lacking COX-2, the 
treatment with selective COX-2 inhibitor, celecoxib inhib-
ited the growth of both cell lines independently of PGE2 
level. The similar effect was observed in vivo [23, 24]. Other 
representative studies carried out using human colon cancer 
HT-29 cells expressing COX-1 and -2 and HCT-15 lacking 
both isoforms of cyclooxygenase confirmed prostaglandin-
independent effects of NSAIDs. However, the concentra-
tions of NSAIDs required for inhibition of COX and cancer 
cell proliferation are different [20, 25]. The concentration 
of NSAIDs required for inhibition of cell proliferation is 
much higher than those for inhibition of cyclooxygenases 
activity. Another evidence for COX-independent effect of 
NSAIDs was provided by studies on chiral centers of ibupro-
fen and flurbiprofen. When the drugs are S-enantiomers they 
evoke non-selective COX inhibition while R-enantiomers 
are deprived of both COX-1 or COX-2 inhibitory activity. 
However, both S- and R-enantiomers have the same anti-
proliferative effects. It has been suggested that this effects 
of NSAIDs can be related to inhibition of cyclic guanosine 
monophosphate phosphodiesterases (cGMP PDEs) signal-
ing, Wnt/β-catenin signaling, peroxisome proliferator-acti-
vated receptors, retinoid X receptors, IKKβ/NF-κB, PDK-1/
AKT, Akt/mTOR signaling inhibition and AMP-activated 
protein kinase (AMPK) up-regulation [26–28].

Another possible pathway potentially involved in NSAIDs 
induced apoptosis in cancer cells is related to the activity 
of 15-lipoxygenase-1 (15-LOX-1). COX and LOX are the 
major enzymes responsible for polyunsaturated fatty acids 
metabolism. In vitro and in vivo studies indicated that gene 
expression of 15-LOX-1 and level of its main product, 
13-hydroxyoctadecadienoic acid (13-S-HODE) is signifi-
cantly decreased in adenomas or carcinomas comparing to 
normal mucosa [29, 30]. LOX is the main enzyme metabo-
lizing colonic linoleic acid to eicosanoids. In-vitro experi-
ments with colon cancer cells that have a different level of 
COXs expression show that NSAIDs (e.g. sulindac sulfone) 
can up-regulate 15-LOX-1 expression and increase the for-
mation of 13-S-HODE—the main metabolic product of this 
enzyme. These effects were related to the apoptosis induc-
tion in colon cancer cells and LOX-dependent apoptosis 
was reversed by using caffeic acid—a 15-LOX-1 inhibitor. 
Interestingly when the cells were incubated with sulindac 
sulfone, caffeic acid and 13-S-HODE, apoptosis was sig-
nificantly elevated but the substitution of 13-S-HODE by 
linoleic acid had no effect in this combination. One expla-
nation of this effect can be a shift of substrate away from 
the COXs and toward the LOXs [31]. Another possibility 
could be the interaction between LOX activity and peroxi-
some proliferator-activated receptors (PPARs). Increased 

level of 13-S-HODE, in response to 15-LOX-1 activation 
can be responsible for significant down-regulation of per-
oxisome proliferator-activated receptor δ (PPARδ) in RKO 
and DLD-1 colon cancer cells. Linoleic acid as a substrate 
for 15-LOX-1 did not have the same effect alone. Further 
experiments proved that molecular mechanism for this 
effects is also related to 13-S-HODE direct binding with 
PPARδ and downregulation of its expression [32, 33] or 
even direct 15-LOX-1 to tumor suppressor protein (p53) 
interaction independently of lipoxygenase enzymatic activity 
[34]. Another important fact is that products of 15-LOX-1 
are well-known ligands of peroxisome proliferator-activated 
receptor γ (PPARγ). In vitro model with macrophages or 
HCT-116 and KO1 cells proved that products of lipid oxida-
tion, particularly 13-S-HODE are effective PPARγ activators 
and can promote apoptosis. Some studies have revealed that 
native LDL had no influence on reporter PPARγ activity 
even when high concentrations were used. When PPARγ 
reporter activity was stimulated at low concentration of 
13-S-HODE [35] it contributed to 70% PPARδ downregu-
lation [32]. Therefore, it has been suggested that NSAIDs-
dependent pro-apoptotic activity is mediated by PPARs. 
Although native LDL has no influence on PPARγ activation, 
such an activity evokes oxidized LDL (oxLDL) that medi-
ates PPARγ transcription [35].

All those signaling pathways are linked to PPARγ-
dependent functions. NSAIDs-dependent activation of 
PPARγ down-regulate pro-survival pathways (e.g. Wnt/β-
catenin and Akt/mTOR signaling) and up-regulate pro-apop-
totic signaling (e.g. AMPK or LOX-1 activated PPARγ and 
PRODH/POX).

Molecular polymorphism and function 
of PPAR

The peroxisome proliferator-activated receptors (PPAR) 
are ligand-dependent transcription factors belonging to the 
nuclear hormone receptor family. PPARs can regulate the 
transcription of multiple genes in response to activation by 
natural or synthetic ligands. Although PPARs regulate lipid 
metabolism, glucose homeostasis, and adipogenesis [36], 
they can also affect inflammation, proliferation, differen-
tiation, and carcinogenesis [37, 38]. Activation of PPAR 
requires heterodimerization with retinoid X receptors (RXR) 
to form PPAR/RXR complex which binds to specific DNA 
fragment called PPAR response element (PPRE) in a target 
gene [39]. Three different isoforms of PPAR are known: 
PPARα (NR1C1), PPARβ/δ (NR1C2) and PPARγ (NR1C3) 
and they all are encoded by different genes [40–42]. Iso-
forms α, β/δ, γ are differentially expressed in embryonic 
and adult tissues [43]. PPARα, PPARβ/δ and PPARγ have 
similar structural and functional domains specific for this 
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group of the nuclear receptors. Four of them: A/B, C, D, and 
E/F domains have been determined [44]. N-terminal A/B 
ligand-independent transactivation function domain (activa-
tion function—AF-1) and its activity is related to phospho-
rylation or sumoylation. Depending on receptor isotype it 
can be active or non-active in the basal state. DNA-binding 
domain C contains two highly conserved zinc finger motifs 
which bind hormone response element (HRE) and recog-
nizes the promoter region of target genes known as PPRE. 
Flexible hinge region with activity of docking site for cofac-
tors is in D domain, and E/F domain with ligand binding 
domain (LBD) which is C-terminal plays important role in 
activation of PPAR and PPRE interaction. This results in 
amplifying of target genes expression with important role 
of activation function-2 (AF-2) [45, 46]. If the ligand is not 
present, PPARs can heterodimerize with RXR and bind to 
promoter region of target gene and recruit corepressors like 
N-CoR or SMRT resulting in inhibition of gene expression. 
Conformational changes in PPAR structures (due to ligand 
binding), lead to corepressor dissociation and interaction 
with coactivator initiating gene expression [47].

PPARα was the first cloned isoform of this receptor fam-
ily [48]. It regulates the genes expression involved in choles-
terol transport and free fatty acids (FAs) metabolism through 
the β-oxidation and peroxisomal pathways [49, 50]. PPARα 
serves as the main regulator of lipid metabolism in the liver 
[51]. It is highly expressed in tissues catabolizing fatty acids 
such as skeletal muscle, brown adipose, kidney, heart, and 
liver [52, 53]. Moreover these receptors are expressed in 
vascular and immune cells [54] and also in the hippocam-
pus and hippocampal neurons [55]. Activation of PPARα 
by statins like simvastatin leads to increased neurotrophins 
expression which is important in processes of learning and 
memory [56].

PPARβ/δ have ubiquitous localization with high expres-
sion in the intestine, liver, abdominal adipose tissue, skel-
etal muscle, liver. They regulate glucose and cholesterol 
level in blood and are involved in lipid metabolism [57, 58]. 
PPARβ/δ function as a transcriptional repressor in its unli-
ganded state what differs them from PPARα and PPARγ. 
Repression of basal transcription as well as PPARα- and 
PPARγ-mediated transcription can occur due to unliganded 
PPARβ/δ through the corepressor recruitment. PPARβ/δ 
can inhibit PPARα and PPARγ activity by isotype-specific 
repression due to PPRE sites competition [59]. Activation 
of PPARβ/δ has also pro-tumorigenic effect in breast can-
cers. Fatty acid-binding protein 5 (FABP5) interaction with 
PPARβ/δ mediates epidermal growth factor receptor (EGFR) 
dependent cell proliferation. GW501516, GW0742, and 
L-165041 are the synthetic ligands with very high affinity 
to β/δ isoform at low concentrations (1.1 nM for GW501516, 
1.0 nM for GW0742 and 50 nM for L165041) and significant 
selectivity over the other isoforms of PPARs [60].

Selective PPARβ/δ agonist GW501516 accelerated tumor 
formation in mice while inverse agonist inhibited PPARβ/δ 
targeting genes related to MDA-MB-231 cell invasion. High 
expression of PPARβ/δ in MCF-7 enhanced cell migration 
and increased resistance to endoplasmic reticulum stress 
conditions as low glucose and hypoxia. This suggests their 
important role in the adaptation of breast cancer cells to 
different micro-environmental stress conditions [61]. It was 
found that overexpression of PPARβ/δ in human cancers 
promotes tumor growth by increasing VEGF expression and 
activating PI3K-Akt signaling supporting cell survival [62]. 
Moreover, higher expression of PPARδ in chronic lympho-
cytic leukemia (CLL) and other hematologic cancers was 
found to support growth in stress conditions as hypoxia, 
low glucose, and exposure to cytotoxic drugs. Synthetic 
PPARδ antagonists and genetic deletion of PPARδ reversed 
its growth supporting activity [63].

PPARγ is widely expressed in brown and white adi-
pose tissue, spleen and large intestine [64, 65]. PPARγ has 
three isoforms which are transcribed on the same gene but 
undergo control of different promoters [66]. γ1 and γ3 have 
different mRNA but the protein is the same for both isoforms 
[64]. γ1 is present in brown and white adipose tissue, large 
intestine, immune cells, pancreas, liver, small intestine and 
kidney [67]. Low level of expression is in central nervous 
systems like in astrocytes, neurons, microglia, and oligoden-
drocytes. Isoform γ2 is present only in adipose tissue and 
differs from others due to an additional 30 amino acids on 
the N-terminal site [68, 69]. Targeting PPARγ was used for 
the type 2 diabetes treatment with thiazolidinedione (TZD) 
class of drugs i.e. rosiglitazone, troglitazone, and pioglita-
zone [70]. PPARγ agonists have been also shown to function 
as an anticancer factors, especially for obesity related can-
cers as a prostate, breast, colon, liver, thyroid, lung, and pitu-
itary cancers [71]. It has been linked to the anti-inflamma-
tory activity of PPARs. Anti-inflammatory effects of PPARγ 
were observed due to inhibition of tumor necrosis factor α 
(TNF-α), interleukin 1β (IL-1β), interleukin 6 (IL-6) and 
PGE2 production [72]. PPARγ is expressed in breast adeno-
carcinoma, human liposarcoma and some of colonic cancer 
cell lines [73]. Activation of PPARγ contributes to lowering 
the level of angiogenic factors and reduction in migration 
and proliferation of endothelial cells [74]. Ligand activation 
of PPARγ by troglitazone promotes TRAIL-induced apop-
tosis in human lung cancer via autophagy [75]. Adenovirus 
gene transferred SNU-668 gastric cancer cells with overex-
pression of PPARγ presented significant the growth inhibi-
tion and apoptosis activation due to strong IGFBP-3 upregu-
lation. Insulin-like growth factor-binding protein-3 IGFBP-3 
is a tumor suppressor gene, independent of IGF signaling 
[76]. Some reports proved that activation of PPARγ can 
inhibit the growth of ovarian cancer by suppressing proto-
oncogene B-cell lymphoma 3-encoded protein (BCL3) in 
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response to microRNA-125b (miR-125b) tumor suppressor 
upregulation. In fact in bladder, breast, ovarian and lung can-
cer, it was observed that miR-125b tumor suppressor level 
was downregulated and this affected IGF, PI3K/Akt/mTOR, 
and mitogen activated protein kinase (MAPK) signaling 
pathways [77]. Although the PPARγ activation contributes 
to the pro-apoptotic phenotype of cancer cells, the molecu-
lar mechanism of this process in still unknown. One of the 
enzymes regulated by PPARγ and involved in cell death is 
proline oxidase (POX).

PRODH/POX‑dependent apoptosis

Proline oxidase (POX) also known as a proline dehydro-
genase (PRODH) is an inner mitochondrial membrane fla-
vin-dependent enzyme which catalyzes the conversion of 
l-proline to ∆1-pyrroline-5-carboxylate (P5C). This process 
donates electrons through flavin adenine dinucleotide (FAD) 
to the electron transport chain for ATP generation. From 
this point of view the activity of PRODH/POX promotes 
cell survival. However, in certain conditions the same elec-
trons are directly transferred to oxygen forming superoxide 
radicals and other reactive oxygen species (ROS) leading to 
programmed cell death—apoptosis. However depending on 
environmental conditions superoxide radicals generated by 
PRODH/POX may promote pro-survival autophagy [78, 79]. 
In healthy human tissues PRODH/POX activity may vary 
depending on the type of tissue. High expression is present 
in liver and kidney while in brain and heart is low. In most 
of the other tissues PRODH/POX is undetectable [80, 81]. 
Variety of cancer cell lines under low oxygen level (hypoxia) 
have increased PRODH/POX activity, compared to nor-
moxia [82]. In stress conditions like glucose depletion and 
hypoxia it was observed PRODH/POX upregulation through 
AMPK activation promoting cancer cell survival. In low glu-
cose conditions with or without hypoxia PRODH/POX was 
found to induce adenosine triphosphate (ATP) production, 
however appropriate glucose level and hypoxia resulted in 
protective autophagy with PRODH/POX-mediated reactive 
oxygen species (ROS) generation. These findings suggest 
the important role of tumor microenvironment in PRODH/
POX-dependent functions [83].

Proline oxidase expression and function can be regu-
lated by different factors. One of this factor is PPARγ. 
Stimulation of PPARγ by its ligand as troglitazone 
increased the binding of PPARγ to the PRODH/POX pro-
moter and triggered its expression. Furthermore troglita-
zone treated cancer cells presented significantly increased 
PRODH/POX mRNA level (in dose depended manner) in 
comparison to non-treated cells. These data suggested the 
important role of PPARγ in PRODH/POX expression, 
intracellular ROS generation, and cell death. A selective 

inhibitor of PPARγ GW9662 in combination with drugs 
mentioned above recovered this effect but had no effect 
alone [84, 85]. In the model of colon cancer cells with 
doxycycline regulated PRODH/POX expression activation 
of PRODH/POX significantly reduced COX-2 expression, 
PGE2 level and induced ROS generation leading to strong 
proapoptotic effect. This phenomenon was reversed by 
the treatment with PGE2 and also manganese superoxide 
dismutase (MnSOD), a mitochondrial enzyme, which neu-
tralizes superoxides. Moreover, PRODH/POX-dependent 
down-regulation of COX-2 was partially reversed by EGF 
through Wnt/β-catenin and EGFR signaling mechanism 
[86].

In DLD-1 colon cancer cells expressing PRODH/POX, 
supplementation of culture media with 0.5 mM of l-pro-
line resulted in mitochondria-mediated apoptosis due to, 
caspase 9 activation, cytochrome c release and nuclear 
condensation/fragmentation independently of p53 contri-
bution [80]. Studies of recent years have established an 
important role of proline in cancer cell metabolism. Under-
standing the role of this amino acid in regulation on cell 
survival and death focused therefore on enzymes involved 
in proline cycling. PRODH/POX and pyrroline-5-carboxy-
late reductase (P5CR, a.k.a. PYCR) are of special interest. 
Ornithine or glutamate are substrates for proline synthe-
sis and both of them leads to l-glutamate-γ-semialdehyde 
(GSAL) production, which can be converted reversibly 
and spontaneously into P5C. Transformation of ornithine 
to GSAL is possible due to ornithine δ-aminoacid trans-
ferase (OAT), while P5C synthase (P5CS) catalyzes the 
process of P5C synthesis from l-glutamate with GSAL 
intermediate. These steps of proline biosynthesis occur 
in mitochondria. If P5C is transferred to the cytosol, then 
it can be reduced to proline. This process is catalyzed by 
P5C reductase (PYCRL) which is the NADPH-dependent 
enzyme. A similar reaction can take place in mitochondria, 
but in this case different isoform of this enzyme as PYCR1 
or PYCR2 are involved. It was proved that knockdown of 
PYCR1 can be also responsible for reduced cell prolifera-
tion in liver cancer [87]. Proline metabolite—glutamate 
by further conversion to αKG by glutamate dehydroge-
nase can enter the TCA cycle and contribute to cellular 
energy production. Another issue is the role of proline 
cycle in cell proliferation and biomass production through 
the link to the pentose phosphate pathway. During this 
step some precursors of nucleotides required for DNA and 
RNA synthesis are produced [88, 89]. However proline for 
PRODH/POX-dependent apoptosis is also derived from 
collagen degradation products. Proline and hydroxypro-
line constitute about 25% of residues in collagen [90]. The 
most important process supporting intracellular proline is 
regulated by prolidase.
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The role of prolidase in PRODH/
POX‑dependent apoptosis

Prolidase (PEPD, peptidase D or iminopeptidase) is imido-
dipeptidase or imido-tripeptidase localized in the cyto-
plasm [91, 92] and its function is to cleave imido-peptides 
with C-terminal proline or hydroxyproline [93]. They are 
derived mainly from collagen degradation products [94, 
95]. In the α1 subunit of type I procollagen, proline forms 
119 bonds with glycine and in α2 subunit such a dou-
blet occurs 106 times. Although in matured collagen pro-
line is mostly hydroxylated. Un-hydroxylated proline in 
glycine–proline (gly–pro) doublet occurs 25 times [95]. 
Therefore collagen degradation significantly contributes 
to intracellular proline concentration. It is known that 
prolidase activity is an important factor for proline recy-
cling for collagen re-synthesis and therefore the enzyme 
plays a step limiting role in the regulation of collagen 
biosynthesis. The importance of this iminopeptidase in 
regulation of collagen biosynthesis was documented in 
fibroblast treated with proline metabolite—P5C [96], anti-
inflammatory drugs [97], during experimental fibroblasts 
aging [98], experimental chondrocytes inflammation [99], 
activation of integrin receptor for type I collagen [100], in 
fibroblast-derived from osteogenesis imperfecta affected 
patients [101] and in several cancer tissues [102–104]. It 
was also found that prolidase may act at the level of tran-
scription factors regulation. In colorectal cancer cells pro-
lidase overexpression was correlated with increased levels 
of nuclear hypoxia inducible factor 1α (HIF-1α) and HIF-
1α-dependent gene products like a vascular endothelial 
growth factor (VEGF) and glucose transporter-1 (Glut-
1)—important factors in cancer progression [105]. Sup-
pressed proteasomal degradation of HIF-1α and increased 
HIF-1α transcriptional activity occurs when HIF prolyl 
hydroxylase activity is inhibited by proline. The increased 
HIF-1α transcriptional activity is due to increased con-
centration of cytoplasmic proline, as a result of prolidase 
overexpression. Activation of HIF-1α related pro-sur-
vival signaling pathways undergoes through inflamma-
tory and pro-angiogenic genes (eg. COX-2, TNFα, IL-1, 
NFκB, VEGF) [106]. It suggests that prolidase activity 

plays important role in regulation of HIF-1α-dependent 
functions.

All these data suggest COX-independent mechanisms 
of NSAID-dependent apoptosis in cancer cells. Until now 
numerous investigations were conducted to confirm that 
cancer cells treatment with NSAIDs are associated with 
downregulation of oncogenic factors expression and up-
regulation of apoptosis pathway with significant role of 
the PPARγ [12–16]. Since NSAIDs are ligands of PPARγ 
and PPARγ induces PRODH/POX-dependent apoptosis, 
this sequence of events may represent the mechanism of 
anticancer activity of NSAIDs.

Conclusions

Studies of last decade provided evidence for the role of 
PRODH/POX and PPARs in the regulation of apoptosis/
autophagy in cancer cells. PRODH/POX expression is often 
down-regulated in various tumors, limiting mitochondrial 
proline degradation and PRODH/POX-dependent apopto-
sis. NSAIDs were shown to stimulate the transcriptional 
activity of PPARα/γ that are well-characterized PRODH/
POX inducers. However, the critical factor for the PRODH/
POX-induced apoptosis is proline availability that depends 
on the activity of prolidase (enzyme supporting cytoplas-
mic proline level) and the intensity of collagen biosynthesis 
(proline utilizing process). Although specific environmental 
conditions may affect PPARs and PRODH/POX it seems 
that NSAIDs activate PRODH/POX-dependent apoptosis 
through PPARα/γ. The hypothesis is outlined in Fig. 1.

NSAIDs up-regulate PPARα/γ directly or indirectly (by 
15-LOX-1-dependent generation of 13-S-HODE). Up-reg-
ulated PPARγ induces transcription of PRODH/POX and 
subsequently conversion of proline into P5C, generating 
ROS-inducing apoptosis. The process requires proline avail-
ability that is dependent on the activity of prolidase (proline 
supporting enzyme) and collagen biosynthesis (proline uti-
lizing process). The role of other outlined NSAIDs-depend-
ent pathways in the PRODH/POX-dependent apoptosis are 
unknown.
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