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Abstract: COVID-19 causes thromboembolic complications that affect the patient’s prognosis. COVID-19
vaccines significantly improve the prognosis for the course of the infection. The aim of this study was
to evaluate the impacts of patient characteristics, including COVID-19 vaccinations, on perioperative
mortality in acute coronary syndrome in Poland during the pandemic. We analyzed the data of
243,515 patients from the National Registry of Invasive Cardiology Procedures (Ogólnopolski Rejestr
Procedur Kardiologii Inwazyjnej [ORPKI]). In this group, 7407 patients (21.74%) had COVID-19. The
statistical analysis was based on a neural network that was verified by the random forest method. In
2020, the most significant impact on prognosis came from a diagnosis of unstable angina, a short period
(<2 h) from pain occurrence to first medical contact, and a history of stroke. In 2021, the most significant
factors were pre-hospital cardiac arrest, female sex, and a short period (<2 h) from first medical contact
to coronary angiography. After adjusting for a six-week lag, a diagnosis of unstable angina and psoriasis
were found to be relevant in the data from 2020, while in 2021, it was the time from the pain occurrence
to the first medical contact (2–12 h) in non-ST segment elevation myocardial infarction and the time from
first contact to balloon inflation (2–12 h) in ST-segment elevation myocardial infarction. The number
of vaccinations was one of the least significant factors. COVID-19 vaccination does not directly affect
perioperative prognosis in patients with acute coronary syndrome.

Keywords: COVID-19; acute coronary syndrome; vaccination; myocardial infarction

1. Introduction

Numerous studies have demonstrated the link between the SARS-CoV-2 infection,
an increased risk of myocarditis and thromboembolic incidents, and the occurrence of
acute coronary syndrome or arrhythmia [1–3]. The angiotensin-converting enzyme type
2 (ACE-2) receptor and serine proteases (TMPRSS2) have been identified as crucial to the
virus’s ability to replicate and fuse with host cells [4]. ACE-2 receptors are downregulated,
bringing about the adverse effects of angiotensin, leading to increased metabolic demand,
immune activation, microcirculatory dysfunction, and subsequent myocardial damage [2].

Cytokines play an important role in a SARS-CoV-2 infection. Studies on IL-1β, a
cytokine with known pro-inflammatory activity, are proving interesting. It appears that
blocking this cytokine may reduce myocardial damage and inflammation and may improve
oxygenation in COVID-19 patients [5]. Cytotoxins and the systemic inflammatory response
affect the endothelium and coagulation system and may generate an increased risk of
embolic incidents in COVID-19 patients [6,7]. Pulmonary embolisms may contribute to
the development of pulmonary hypertension and secondary right ventricular failure. In
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one study, subclinical right ventricular dysfunction was found in 42% of post-COVID-19
patients [8].

During the COVID-19 pandemic, the course of ischemic heart disease was influenced
by numerous classical factors. Their distribution in the population was similar to the
time before the pandemic [9]. Vaccinations have increased the incidences of myocarditis
and pericarditis, especially in the younger population [10]. As the symptoms reported
by patients (i.e., chest pain) are similar, this could result in some difficulties in the final
selection of patients referred for invasive diagnostics [11].

With the increasing number of cases, a race against time took place to develop an
effective vaccine against the viral infection. The COVID-19 vaccination program began
in December 2020. Data on vaccinated individuals are continuously being updated. As
of May 2022, more than five billion people worldwide had received at least one dose of a
vaccine [12]. In Poland, in 2022, the daily number of vaccinations ranged from 305,900 in
January to 7800 in July 2022 [13].

To determine whether COVID-19 vaccinations affected the perioperative course in
patients with acute coronary syndrome (ACS) in Poland, we analyzed the available data
via a neural network model. Technological advances have contributed to the development
of artificial intelligence with machine learning and deep learning mechanisms based on
multilayer neural networks. The first mathematical model of a neuron, in the form of
an arithmetical/logical system, was proposed by McCulloch and Pitts in 1943. It was an
innovative work [14], the concept of which survives to this day and forms the basic building
blocks of the perceptron neural network. Neural networks are modeled on the structure
and operation of neurons in the human brain. Artificial neural networks typically consist
of three layers: an input layer, a hidden layer, and an output layer. The most common
type of neural network unit computes a weighted sum of input data and transforms the
result nonlinearly [15,16]. As with human beings, neural networks learn on the basis of
examples—more precisely, on data sets—which are created using appropriate learning
algorithms. There are two basic types of learning: supervised and unsupervised. The
widespread use of neural networks has become possible with the development of com-
puter programs. Nowadays, they are used in many fields outside of medicine, including
economics, automation, and energy technology.

The purpose of this study was to evaluate whether the increasing vaccination rates
during the first two years of the pandemic (2020 and 2021) affected the underlying factors
that determine the course of ACS and perioperative death.

2. Material and Methods

The aim of the presented study was to determine the impact of clinical factors extracted
from the synthesis of large databases on short-term prognosis (perioperative death) using a
neural network.

For this study, we used data from the National Registry of Invasive Cardiology Proce-
dures (Ogólnopolski Rejestr Procedur Kardiologii Inwazyjnej [ORPKI]). The centers of invasive
cardiology in Poland that are associated with the registry collect the data electronically.
Currently, this includes 161 catheterization labs in Poland. Before the pandemic, patients
with ACS were managed according to the guidelines of the Polish Cardiac Society.

Data on the clinical course of ACS and concomitant conditions were obtained from
the patient interviews and records from the emergency room (with admitting physicians
and hemodynamics laboratory physicians). The ORPKI registry included all patients
admitted with ACS; the obtained variables were automatically entered. The outbreak
of the epidemic, and then the pandemic, brought about different approaches regarding
patients who required invasive treatment but were also infected with COVID-19. This
type of management is consistent with the principles of invasive treatment as well as
self-protection and the protection of uninfected patients in the same hospital.

Patients who underwent invasive treatment for ACS in 2020 and 2021 were included
in the study group. The total number of evaluated patients, i.e., patients who were qual-
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ified for ACS treatment and registered in ORPKI, was 243,515. This group consisted of
190,595 patients without COVID-19 (78.26%) and 7407 patients who had been diagnosed
with COVID-19 (21.74%). We analyzed the latter group. A positive result was determined
by an antigen test performed in the ambulance or at the destination hospital. Due to limita-
tions of time, polymerase chain reaction (PCR) test results were not relied upon. Patients
with suspected COVID-19 infections (as recommended for triage by the National Institute
of Public Health and the Ministry of Health) were treated as potentially COVID-19 (+).
A diagnosis of COVID-19 was always available before any intervention (angiography or
percutaneous coronary intervention) and recorded in the ORPKI online database. Samples
for molecular RT-PCR were always obtained before the procedure.

COVID-19 infections were confirmed by RT-PCR tests in 2020 and by rapid antigen
tests and/or RT-PCR tests in 2021. The oxygen saturation of the patient was measured by a
non-invasive method before qualification. STEMI with a short duration of ischemia was
qualified for immediate intervention, while NSTEMI and UA underwent comprehensive
evaluation. The optimal pathway and timing of the intervention were chosen. If the patient
had features of respiratory failure, then s/he was referred for ventilatory support treatment.
Patients with ACS (from all over the country) were eligible for the study. Laboratory tests
were performed after the invasive procedure; the authors did not have access to the results.
This is beyond the scope of the current study.

The study analyzed the impact of the daily number of vaccinations in the voivodeship
where the ACS occurred based on official data [13]. Descriptive characteristics included the
average daily number of vaccinations for both COVID-19 + and −.

We performed a pooled analysis of comorbidities, predisposing factors, and medica-
tions in patients with ACS and COVID-19. Two groups of patients were compared: patients
with ACS but no confirmed infection, i.e., COVID-19 (−), and patients with ACS and con-
firmed infection, i.e., COVID-19 (+). Patients who qualified for invasive treatment signed
informed consent forms in accordance with the recommendations of the 1964 Helsinki
Declaration. Since we used anonymous data from the ORPKI database, the study did not
require the approval of the Bioethics Committee.

In-hospital-perioperative death was the primary endpoint of our study. Since the
ORPKI database aims to collect data on patients until invasive treatments are implemented,
it was not possible to continue patient follow-up after leaving the Cath Lab. Thus, it was
not possible to determine the number of deaths in intermediate and long-term observa-
tions. Perioperative death is, according to the authors, a good reflection of the impacts of
many factors during prehospital management on patient prognosis. UA is defined as the
occurrence of sudden angina symptoms or a significant exacerbation present without an
increase in infarction markers [17].

3. Statistical Methods

The study sample was randomly divided into two groups: training (70%) and vali-
dation (30%). Two models were used to compare the results of predicting death during
the procedure. The first model was a regression feedforward fully connected multilayer
perceptron neural network with three hidden layers. All 35 variables were added to the
input layer. During the learning process, each patient was randomly presented as a new
learning case. The algorithm repeatedly attempted to match the variable weights to obtain
the best prediction of the outcome. One numerical variable to be predicted—the number of
deaths during the procedure aggregated by day and voivodeship (unit of administrative
division of the highest level in Poland)—was in the output layer. Three hidden layers
were constructed between the input and output layers, which allowed more complicated
patterns to be identified between the input and output variables. We tuned the neural
network’s hyperparameters in an empirical, experimental way. The rectifier linear unit
(ReLU) activation function was used. The mean squared error loss was used for neural
network optimization. The neural network was trained with backpropagation using an
adaptive stochastic gradient descent algorithm. The model was evaluated with a loss curve,
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prediction vs. target plot, and mean squared error. After the neural network was trained
and evaluated, the permutation importance analysis was performed to determine which
variable had the greatest impact on the neural network model. The results are presented as
a graph. The model was trained independently four times. The training was conducted
separately for the 2020 data (without the impact of vaccines) and the 2021 data (with the
impact of vaccines). Moreover, training was conducted separately for datasets with imme-
diate vaccination effects (to check for the immediate vaccination effects on death during the
procedure) and six-week delayed vaccination effects (to check—after six weeks—whether
patient vaccinations had an impact on deaths during the procedures).

The second model was a regression random forest model. All 35 variables were added
as inputs. During the learning process, each patient was randomly presented as a new
learning case. The algorithm repeatedly created a decision tree for that sample for the
assigned number of trees. Then, an average across all decision trees was calculated and
taken as the final prediction. Thus, the mean prediction of the one numerical variable—the
number of deaths during the procedure aggregated by day and voivodeship—was the
model’s output. We tuned the random forest hyperparameters in an empirical, experimental
way. The squared error criterion was used. One hundred decision trees were constructed for
each random sample, which allowed more complicated patterns to be identified between
the input variables and the output variable. The model was evaluated with a loss curve,
prediction vs. target plot, and mean squared error. After the random forest was trained and
evaluated, the Gini importance analysis was performed to determine which variable had
the greatest impact on the random forest model. The results are presented as a graph. The
model was trained independently four times. The training was conducted separately for the
2020 data (without the impact of vaccines) and the 2021 data (with the impact of vaccines).
Moreover, training was conducted separately for datasets with immediate vaccination
effects (to check for immediate vaccination effects on deaths during the procedure) and
with six-week delayed vaccination effects (to check—after six weeks—whether patient
vaccinations had an impact on deaths during the procedure).

Probabilistic modeling, together with artificial neural networks, is called the “Bayesian
neural network”. In both artificial neural and Bayesian networks, the random initial
values of parameters were sampled from probability distributions, e.g., normal. However,
during training, in Bayesian neural networks, the probability distribution of each network
parameter is modeled; the single values themselves are not adjusted, as in a classical neural
network. Treating parameters as probabilistic would prevent changes to single parameter
values during repeated training of the model, although the random root in deep learning
is still in many places; it is likely that random fluctuations in single values would turn
into fluctuations in network probability distributions. There is also an approach where the
input and output variables are treated as probability distributions, they are probabilistic
neural networks.

It is not certain whether such a procedure could affect the lack of random fluctua-
tions in the significance of variables for the model; perhaps random fluctuations in the
significance of individual variables (based on the values of these variables) would turn into
random fluctuations (in the significance of individual probability distributions of variables).
However, articles are available in the literature that present Bayesian statistics in such
calculations [18].

4. Results

The descriptive characteristics revealed multiple differences between the COVID-19 (−)
and COVID-19 (+) groups (Tables 1 and 2). The authors used a fully-connected multilayer
perceptron neural network with three hidden layers (Figure 1).
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Table 1. Characteristics of patients analyzed in 2020.

Missing Overall COVID-19 (−) COVID-19 (+) p-Value

n 78,689 50,710 3104

Age, years, median [Q1, Q3] 52 67.0 [60.0, 74.0] 67.0 [60.0, 74.0] 66.0 [60.0, 74.0] 0.001

Sex (male), n (%) 454 50,704 (64.8) 32,850 (64.9) 2150 (69.7) <0.001

Diabetes, n (%) 0 17,204 (21.9) 11,356 (22.4) 662 (21.3) 0.173

Previous stroke, n (%) 0 2400 (3.0) 1516 (3.0) 110 (3.5) 0.090

Previous MI, n (%) 0 19,918 (25.3) 13,410 (26.4) 518 (16.7) <0.001

Previous PCI, n (%) 0 23,332 (29.7) 15,657 (30.9) 507 (16.3) <0.001

Previous CABG, n (%) 0 3972 (5.0) 2537 (5.0) 107 (3.4) <0.001

Smoking status, n (%) 0 16,880 (21.5) 11,018 (21.7) 762 (24.5) <0.001

Hypertension, n (%) 0 52,579 (66.8) 34,288 (67.6) 1847 (59.5) <0.001

Kidney disease, n (%) 0 4301 (5.5) 2914 (5.7) 182 (5.9) 0.817

COPD, n (%) 0 2614 (3.3) 1729 (3.4) 125 (4.0) 0.075

Diagnosis STEMI, n (%) 0 17,989 (22.9) 11,468 (22.6) 1469 (47.3) <0.001

Diagnosis NSTEMI, n (%) 0 22,372 (28.4) 14,505 (28.6) 966 (31.1) 0.003

Diagnosis UA, n (%) * 0 34,195 (43.5) 21,958 (43.3) 636 (20.5) <0.001

Diagnosis unstable angina, n (%) * 0 4133 (5.3) 2779 (5.5) 33 (1.1) <0.001

STEMI direct transport, n (%) 8457 4609 (6.6) 2895 (6.4) 548 (18.3) <0.001

NSTEMI direct transport, n (%) 8457 1190 (1.7) 727 (1.6) 89 (3.0) <0.001

Cardiac arrest at baseline, n (%) 8457 945 (1.3) 489 (1.1) 237 (7.9) <0.001

Death during the procedure, n (%) 0 276 (0.4) 178 (0.4) 27 (0.9) <0.001

STEMI time from pain to first
contact ≤ 2 h, n (%) 0 7114 (9.0) 4491 (8.9) 706 (22.7) <0.001

STEMI time from pain to first contact > 2 h
and ≤12 h, n (%) 0 13,844 (17.6) 8828 (17.4) 1263 (40.7) <0.001

STEMI time from pain to first
contact > 12 h, n (%) 0 1958 (2.5) 1240 (2.4) 177 (5.7) <0.001

STEMI time from first contact to
inflation ≤ 2 h, n (%) 0 10,047 (12.8) 6476 (12.8) 909 (29.3) <0.001

STEMI time from first contact to inflation > 2 h
and ≤12 h, n (%) 0 13,583 (17.3) 8674 (17.1) 1269 (40.9) <0.001

STEMI time from first contact to
inflation > 12 h, n (%) 0 418 (0.5) 269 (0.5) 34 (1.1) <0.001

NSTEMI time from pain to first
contact ≤ 2 h, n (%) 0 4824 (6.1) 3130 (6.2) 224 (7.2) 0.022

NSTEMI time from pain to first contact > 2 h
and ≤12 h, n (%) 0 15,448 (19.6) 10,029 (19.8) 702 (22.6) <0.001

NSTEMI time from pain to first
contact > 12 h, n (%) 0 15,108 (19.2) 9826 (19.4) 676 (21.8) 0.001

NSTEMI time from first contact to
coronarography ≤ 2 h, n (%) 0 3214 (4.1) 2007 (4.0) 224 (7.2) <0.001

NSTEMI time from first contact to
coronarography > 2 h and ≤12 h, n (%) 0 15,562 (19.8) 10,062 (19.8) 780 (25.1) <0.001

NSTEMI time from first contact to
coronarography > 12 h, n (%) 0 5460 (6.9) 3677 (7.3) 199 (6.4) 0.085

Number of vaccinations, mean (SD) 0 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0

CABG—coronary artery bypass graft; COPD—chronic obstructive pulmonary disease; MI—myocardial infarc-
tion; NSTEMI—non-ST-elevation myocardial infarction; PCI—percutaneous coronary intervention; Q—quartile;
STEMI—ST-elevation myocardial infarction; UA—unstable angina; * variables counted separately by the computer
algorithm (but they should be interpreted together).
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Table 2. Characteristics of patients analyzed in 2021.

Missing Overall COVID-19 (−) COVID-19 (+) p-Value

n 164,826 139,885 4303

Age, years, median [Q1,Q3] 90 68.0 [61.0, 74.0] 68.0 [61.0, 74.0] 67.0 [60.0, 74.5] 0.001

Sex (male), n (%) 587 106,320 (64.7) 90,455 (64.7) 2855 (66.5) 0.019

Diabetes, n (%) 0 35,001 (21.2) 30,169 (21.6) 1002 (23.3) 0.007

Previous stroke, n (%) 0 4260 (2.6) 3595 (2.6) 135 (3.1) 0.024

Previous MI, n (%) 0 42,593 (25.8) 37,119 (26.5) 811 (18.8) <0.001

Previous PCI, n (%) 0 52,549 (31.9) 45,883 (32.8) 820 (19.1) <0.001

Previous CABG, n (%) 0 8465 (5.1) 7301 (5.2) 191 (4.4) 0.025

Smoking status, n (%) 0 28,729 (17.4) 24,819 (17.7) 933 (21.7) <0.001

Hypertension, n (%) 0 113,095 (68.6) 97,198 (69.5) 2707 (62.9) <0.001

Kidney disease, n (%) 0 8570 (5.2) 7425 (5.3) 227 (5.3) 0.953

COPD, n (%) 0 4660 (2.8) 4064 (2.9) 132 (3.1) 0.563

Diagnosis STEMI, n (%) 0 18,011 (10.9) 14,330 (10.2) 1538 (35.7) <0.001

Diagnosis NSTEMI, n (%) 0 21,886 (13.3) 18,106 (12.9) 943 (21.9) <0.001

Diagnosis UA, n (%) * 0 37,721 (22.9) 31,186 (22.3) 979 (22.8) 0.489

Diagnosis unstable angina, n (%) * 0 3864 (2.3) 3279 (2.3) 73 (1.7) 0.006

STEMI direct transport, n (%) 21,596 4556 (3.2) 3594 (3.0) 392 (9.8) <0.001

NSTEMI direct transport, n (%) 21,596 1259 (0.9) 1005 (0.8) 93 (2.3) <0.001

Cardiac arrest at baseline, n (%) 0 253 (0.2) 190 (0.1) 21 (0.5) <0.001

Death during the procedure, n (%) 0 324 (0.2) 250 (0.2) 37 (0.9) <0.001

STEMI time from pain to first
contact ≤ 2 h, n (%) 0 6919 (4.2) 5529 (4.0) 650 (15.1) <0.001

STEMI time from pain to first contact > 2 h
and ≤12 h, n (%) 0 13,505 (8.2) 10,815 (7.7) 1243 (28.9) <0.001

STEMI time from pain to first
contact > 12 h, n (%) 0 2087 (1.3) 1627 (1.2) 212 (4.9) <0.001

STEMI time from first contact to
inflation ≤ 2 h, n (%) 0 9746 (5.9) 7861 (5.6) 843 (19.6) <0.001

STEMI time from first contact to inflation > 2 h
and ≤12 h, n (%) 0 13,241 (8.0) 10,627 (7.6) 1204 (28.0) <0.001

STEMI Time from first contact to
inflation > 12 h, n (%) 0 388 (0.2) 304 (0.2) 48 (1.1) <0.001

NSTEMI time from pain to first
contact ≤ 2 h, n (%) 0 4175 (2.5) 3441 (2.5) 243 (5.6) <0.001

NSTEMI time from pain to first contact > 2 h
and ≤12 h, n (%) 0 14,514 (8.8) 12,097 (8.6) 749 (17.4) <0.001

NSTEMI time from pain to first
contact > 12 h, n (%) 0 14,196 (8.6) 11,836 (8.5) 720 (16.7) <0.001

NSTEMI time from first contact to
coronarography ≤ 2 h, n (%) 0 2767 (1.7) 2237 (1.6) 201 (4.7) <0.001

NSTEMI time from first contact to
coronarography > 2 h and ≤12 h, n (%) 0 14,561 (8.8) 12,147 (8.7) 753 (17.5) <0.001

NSTEMI time from first contact to
coronarography > 12 h, n (%) 0 5204 (3.2) 4434 (3.2) 191 (4.4) <0.001

Number of vaccinations, mean (SD) 0 9529.3 (11,504.0) 8901.8 (10,584.9) 9402.6 (10,470.8) 0.002

CABG—coronary artery bypass graft; COPD—chronic obstructive pulmonary disease; MI—myocardial infarc-
tion; NSTEMI—non-ST-elevation myocardial infarction; PCI—percutaneous coronary intervention; Q—quartile;
STEMI—ST-elevation myocardial infarction; UA—unstable angina; * variables counted separately by the computer
algorithm (but they should be interpreted together).
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Figure 1. Model of the neural network used in the study. This model is a deep artificial neural
network (DNN) with architecture, consisting of 35 input neurons (for one variable each), 3 hidden
layers with 10 neurons each (for feature extraction from data), and 1 output neuron (for the prediction
of the count of patient deaths during the procedures).

For the 2020 variables, this model showed that the most relevant variables for prognosis
were a diagnosis of unstable angina, a short period from pain occurrence to first medical
contact (<2 h), and a history of stroke. For 2021, the relevant variables were pre-hospital cardiac
arrest, female sex, and a short period from first medical contact to coronary angiography
(<2 h) (Figures 2 and 3). The model was of good quality (Supplementary Figures S1–S4). After
adjusting for a six-week lag, the prognostically relevant factors were the diagnosis of unstable
angina and psoriasis (2020).

Figure 2. Permutation feature importance analysis for patients in 2020. The diagram shows a decrease
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in the model’s efficiency when values in single individual features are randomly shuffled column-wise
and the rest of the features are left unchanged. We measured neural network efficiency by calculating
the mean squared error (MSE) between the target value (true number of deaths during the procedure)
and the predicted value (model’s output). The calculation was conducted for each row from data
separately and then averaged. In permutation feature importance, the difference between the MSE
error from the neural network, predicting the value from the non-preprocessed dataset, and the MSE
error from the neural network—predicting the value from the permuted dataset was measured and
showed a decrease. Significance p ≥ 0.05. CABG—coronary artery bypass graft; COPD—chronic
obstructive pulmonary disease; MI—myocardial infarction; NSTEMI—non-ST-elevation myocardial
infarction; PCI—percutaneous coronary intervention; Q—quartile; STEMI—ST-elevation myocardial
infarction; UA—unstable angina (defined as the occurrence of sudden angina symptoms or a significant
exacerbation present without an increase in infarction markers).

Figure 3. Permutation feature importance analysis for patients in 2020. The diagram shows a decrease
in the model’s efficiency when values in single individual features are randomly shuffled column-wise
and the rest of the features are left unchanged. We measured neural network efficiency by calculating the
mean squared error (MSE) between the target value (true number of deaths during the procedure) and
the predicted value (model’s output). The calculation was conducted for each row from data separately
and then averaged. In permutation feature importance, the difference between the MSE error from
the neural network, predicting the value from the non-preprocessed dataset, and the MSE error from
the neural network—predicting the value from the permuted dataset was measured and showed a
decrease on the plot. Variables, when permuted, were affected most in the model’s efficiency decrease
and exceeded the significance threshold. Significance p ≥ 0.05. CABG—coronary artery bypass graft;
COPD—chronic obstructive pulmonary disease; MI—myocardial infarction; NSTEMI—non-ST-elevation
myocardial infarction; PCI—percutaneous coronary intervention; Q—quartile; STEMI—ST-elevation
myocardial infarction; UA—unstable angina.
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In 2021, the most relevant factors were the time from pain occurrence to first medical
contact (2–12 h) in non-ST segment elevation myocardial infarction (NSTEMI) and the time
from first contact to balloon inflation (2–12 h) in ST-elevation myocardial infarction (STEMI)
(Figures 4 and 5).

Figure 4. Permutation feature importance analysis for patients in 2020 with a six-week lag. Diagram
shows the decrease in the model’s efficiency when values in single individual features are randomly
shuffled column-wise and the rest of the features are left unchanged. We measured the neural
network efficiency by calculating the mean squared error (MSE) between the target value (true
number of deaths during the procedure) and the predicted value (model’s output). The calculation
was conducted for each row from data separately and then averaged. In the permutation feature
importance, the difference between the MSE error from the neural network, the predicting value
from the non-preprocessed dataset, and the MSE error from the neural network, the predicting
value from the permuted dataset was measured and showed a decrease on the plot. Variables,
when permuted, were affected most in the model’s efficiency decrease and exceeded the significance
threshold. Significance p ≥ 0.05. CABG—coronary artery bypass graft; COPD—chronic obstructive
pulmonary disease; MI—myocardial infarction; NSTEMI—non-ST-elevation myocardial infarction;
PCI—percutaneous coronary intervention; Q—quartile; STEMI—ST-elevation myocardial infarction;
UA—unstable angina.
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Figure 5. Permutation feature importance analysis for patients in 2021 with a six-week lag. Diagram
shows a decrease in the model’s efficiency when values in single individual features are randomly
shuffled column-wise and the rest of the features are left unchanged. We measured the neural
network efficiency by calculating the mean squared error (MSE) between the target value (true
number of deaths during the procedure) and the predicted value (model’s output). The calculation
was conducted for each row from data separately and then averaged. In permutation feature
importance, the difference between the MSE error from the neural network, the predicting value
from the non-preprocessed dataset, and the MSE error from the neural network, the predicting
value from the permuted dataset was measured and showed a decrease on the plot. Variables,
when permuted, were affected most in the model’s efficiency decrease and exceeded the significance
threshold. Significance p ≥ 0.05. CABG—coronary artery bypass graft; COPD—chronic obstructive
pulmonary disease; MI—myocardial infarction; NSTEMI—non-ST-elevation myocardial infarction;
PCI—percutaneous coronary intervention; Q—quartile; STEMI—ST-elevation myocardial infarction;
UA—unstable angina.

The quality of the model was good (Supplementary Figures S5–S8). Using the second
random forest model, no variables were found relevant in 2020 and 2021 (Figures 6 and 7),
even considering a six-week delay (Figures 8 and 9).
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Figure 6. Gini feature importance analysis for patients in 2020. The diagram shows the mean decrease of
the model’s impurity. In the analysis, each feature’s importance is calculated as the sum over the number
of splits across all trees, which includes the features proportional to the number of samples in the split. In
the random forest model, the variable is considered important if the tree split on this variable is affected
by large impurity (labels homogeneity in the node) and decreases. CABG—coronary artery bypass graft;
COPD—chronic obstructive pulmonary disease; MI—myocardial infarction; NSTEMI—non-ST-elevation
myocardial infarction; PCI—percutaneous coronary intervention; Q—quartile; STEMI—ST-elevation
myocardial infarction; UA—unstable angina.

Figure 7. Gini feature importance analysis for patients in 2021. Diagram shows the mean decrease of the
model’s impurity. In the analysis, each feature’s importance is calculated as the sum over the number of
splits across all trees, which includes the feature proportional to the number of samples in the split. In
the random forest model, the variable is considered important if the tree split on this variable is affected
by large impurity (labels homogeneity in the node) and decreases. CABG—coronary artery bypass graft;
COPD—chronic obstructive pulmonary disease; MI—myocardial infarction; NSTEMI—non-ST-elevation
myocardial infarction; PCI—percutaneous coronary intervention; Q—quartile; STEMI—ST-elevation
myocardial infarction; UA—unstable angina.
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Figure 8. Gini feature importance analysis for patients in 2020 with a six-week lag. The diagram shows
the mean decrease of the model’s impurity. In the analysis, each feature’s importance is calculated
as the sum over the number of splits across all trees, which includes the feature proportional to the
number of samples in the split. In the random forest model, the variable is considered important if the
tree split on this variable is affected by large impurity (labels homogeneity in the node) and decrease.
CABG—coronary artery bypass graft; COPD—chronic obstructive pulmonary disease; MI—myocardial
infarction; NSTEMI—non-ST-elevation myocardial infarction; PCI—percutaneous coronary intervention;
Q—quartile; STEMI—ST-elevation myocardial infarction; UA—unstable angina.

Figure 9. Gini feature importance analysis for patients in 2020 with a six-week lag. The diagram shows
the mean decrease of the model’s impurity. In the analysis, each feature’s importance is calculated
as the sum over the number of splits across all trees, which includes the feature proportional to the
number of samples in the split. In the random forest model, the variable is considered important if the
tree split on this variable is affected by large impurity (labels homogeneity in the node) and decreases.
CABG—coronary artery bypass graft; COPD—chronic obstructive pulmonary disease; MI—myocardial
infarction; NSTEMI—non-ST-elevation myocardial infarction; PCI—percutaneous coronary intervention;
Q—quartile; STEMI—ST-elevation myocardial infarction; UA—unstable angina.

The quality of the model was good (Supplementary Figures S9–S12). In each model,
vaccination was the least relevant factor affecting the occurrence of periprocedural death.
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5. Discussion

The COVID-19 pandemic had a profound impact on healthcare around the world. The
different approaches to COVID-19 (+) patients required a number of changes that could
be observed as successive waves of infections passed. Healthcare organizations had to be
versatile in order to safeguard patients with acute conditions, including those with ACS.

Kaziród-Wolski et al. compared COVID-19 (+) and COVID-19 (−) patients treated for
ACS in 2020 and found that COVID-19 (+) patients were more frequently transported to
the interventional cardiology laboratory within 12 h of symptom onset than COVID-19 (−)
patients. This indicates an adequate organization of emergency and invasive cardiology
services and efficient healthcare organization [9]. Similar results were published by Mat-
sushita et al., who found minimal delay before treating patients with STEMI and COVID-19
infections [19].

Patients with COVID-19 and ACS have worse prognoses [9], which may be caused
by different pathophysiology states during the course of the disease. SARS-CoV-2 has
the ability to damage cells directly or indirectly by inducing excessive activation of the
coagulation system, an abnormal systemic inflammatory response, or endothelial dys-
function [6,7]. Further research in this area may contribute to more effective treatment of
COVID-19 patients.

Infections caused by SARS-CoV-2 are associated with an increased risk of cardiovascu-
lar complications. Katsoularis et al. estimated the risk of ACS to be higher in COVID-19
(+) patients than in the control group in a study involving a large group of patients. For
ACS, excluding the day of exposure, the incidence rate ratio (IRR) was 2.53 (1.29–4.94)
and the odds ratio (OR) in the control group was 3.41(1.58–4.94) at week 2 of COVID-19
infection. For the analysis, including day 0, the IRR was 2.56 (1.31–5.01) and the OR was
6.61(3.56–12.20) [1].

The analysis of our study population revealed that periprocedural mortality was
associated with sudden pre-hospital cardiac arrest, a diagnosis of unstable angina, and
NSTEMI with the onset of pain occurring 2 to 12 h after initial medical contact. Previous
studies reported an association between vaccination and the course of ACS. Showkathali
et al. conducted a study on 89 patients with a diagnosis of ACS and the presence of coronary
thrombus on coronary angiography. In this group, 37 patients (42%) had been vaccinated
against COVID-19 (with COVISHIELD and Covaxin vaccines) one to four weeks earlier [20].
Similar observations regarding the presence of thrombi in the coronary arteries and the
likely association with COVID-19 vaccination were reported by Tajstra et al. In a case report
of an 86-year-old patient with ACS, three thrombi were found in the coronary arteries, likely
associated with COVID-19 vaccination. This patient was administered the Pfizer-BioNTech
vaccine [21]. In our study of a large sample (n= 243,515), there was no significant association
between periprocedural death during the course of ACS and vaccination against COVID-19
in the shorter (four weeks) or longer (six weeks) periods.

In the fight against the COVID-19 pandemic, the relevance of vaccines has been
emphasized. While they provide varying levels of protection, they have shown great
efficacy in preventing severe disease course, hospitalization, or death caused by infection.
So far, several vaccine types have been developed. They induce adequate immune responses
through different mechanisms. According to studies conducted on the immune response
after vaccination against COVID-19, the first measurable level of antibodies in individuals
without prior infection occurs 14 to 28 days after the first vaccine dose [20]. The second
dose results in a significant increase in antibody titers, with a peak occurring several days
after vaccination [22]. The post-vaccine immune response varies according to the type of
vaccine, the number of doses, the person’s age, and whether they were infected before the
first dose of vaccination. In convalescent patients, the increase in antibody levels is greater
after the first dose [22,23].

A recurring topic that usually accompanies the discussion of vaccinations is adverse
reactions. In the case of the most common vaccines, headache, fatigue, pain at the injection
site, nausea, and muscle pain are among the most frequently reported adverse reactions.
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In terms of the effects of vaccines on the cardiovascular system, there has been some
discussion about the complication of myocarditis caused by mRNA vaccines. A large
meta-analysis estimated the incidence of such a complication at 11 per 10,000 vaccinated
individuals [24]. In another study, the overall incidence of myopericarditis after vaccination
against COVID-19 in 22 studies was 33.3 cases (95% CI, 15.3–72.6) per million doses of
vaccine [25]. Thus, the incidences of such complications are rare.

In the treatment of myocarditis during COVID-19, steroid therapy may yield favorable
results; the use of other agents, such as IL-6 inhibitors, intravenous immune globulin, and
colchicine, seems questionable [26].

For several years, the authors conducted studies on large groups of patients and
cardiac registries. These studies used perioperative death as an endpoint [27,28]. The
COVID-19 pandemic, which occurred between 2020 and 2021, caused significant changes
in the healthcare system and patient management (including ACS patients being eligible
for invasive treatment). The pandemic has become a new element in the evaluation of ACS
patients. Morbidity and the vaccination program may also be elements of this evaluation.

In Poland, during the first year of the pandemic, the ACS number decreased signif-
icantly [29]. We could speculate that patients did not want to report to hospitals during
the peak of the pandemic. On the other hand, the organizational problems with access
to specialized care could have been an obstacle. During the second year of the analysis,
a relative normalization of the situation was observed. Differences due to the pandemic
were unavoidable. However, in our opinion, they did not affect the results of the neural
network analysis because each year one individual factor was analyzed separately. The
results obtained allow us to faithfully reproduce the course of the ACS in the first two years
of the pandemic.

After adjusting for the six-week post-vaccination period, psoriasis proved to be a
prognostically significant factor in our study. The impact of psoriasis on the prognosis
of patients with ACS has already been described. Psoriasis is a systemic inflammatory
disease [30] and has implications beyond the skin. Studies have demonstrated the impact
of psoriasis on the cardiovascular system, with the risk of death from cardiovascular causes
estimated to be 57% higher in patients with severe psoriasis [31]. Other authors have
indicated an increased risk of myocardial infarction (HR: 1.21) in patients with severe
psoriasis [32]. An attempt to explain the correlation of psoriasis with increased atheroscle-
rosis and increased risk of coronary artery disease is the fact that both conditions show
similarities in the immunoinflammatory mechanisms related to the activation of T-helper
Th1 and Th17 cells and decreased regulatory T cell function [32]. To date, data on psoriasis
and ACS during the COVID-19 pandemic and their impacts on these conditions are limited.
However, it appears that the prevailing inflammation that underlies the course of these
three diseases may interact with each other and produce an exacerbated effect. It has been
proven that patients with COVID-19 experience exacerbated psoriasis symptoms [33]. Inter-
esting data were provided by a randomized, double-blind, placebo-controlled study, where
secukinumab was used in patients with psoriasis. It was shown that such treatment may
have a beneficial effect on cardiovascular risk by improving endothelial functions [34]. The
endothelium and the degree of its damage is one of the key elements of pathophysiology in
COVID-19. Our study indicates the need for further research on the impact of psoriasis on
CVD risk in patients with COVID-19.

Differences in the clinical course of different forms of ischemic heart disease during
the COVID-19 pandemic are well known and described. Hakim R. et al. presented a 25%
reduction in invasive treatment in STEMI from January to April 2020 (at the beginning of the
pandemic) compared to the previous year in a large study involving the French registry [35].
Similarly, other researchers in their observations reported a significant reduction in invasive
treatment in STEMI during the COVID-19 pandemic. In Austria—25.5%, Italy—26.5%,
Spain—40%, the United States—48%, and China—26% [36–40].

There were also significant differences in the course of UA during the pandemic. We
found the differences in diagnoses affecting patient prognoses between the years. In 2020,
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these were unstable angina, a short period from pain onset to the first medical contact
(<2 h), and history of stroke; in 2021, they were pre-hospital cardiac arrest, female gender,
and the short period from first medical contact to coronary angiography (<2 h). One
particularly interesting finding seems to be the impact of the pandemic on the course of
angina and its effect on patient prognosis. Possible explanations for this observation may
be related to the healthcare system as well as the patient himself. Desai et al. studied the
course of cardiac catheterization for suspected ACS or OHCA between January 1, 2020, and
June 2, 2020, which was divided into three subgroups: pre-isolation, strict isolation, and
loosened isolation periods. During the period indicated as “pre-isolation” to “strict isolation
period,” there was a significant reduction in the mean weekly number of catheterizations
for NSTEMI/UA (8.29 vs. 12.5, p = 0.019), while the mean weekly catheterization events
for NSTEMI/UA increased by 27% between the “strict isolation” and “loosened isolation
period,” which the authors explain as a “rebound effect” [41]. Therefore, we hypothesize
that a similar phenomenon and accumulation of UA cases may have occurred in the case of
our observations. An additional factor contributing to such an effect may include emotional
stress, especially during the pandemic. It has been shown that stress, through the generation
of hyperglycemia, in patients without previously diagnosed diabetes, was associated with
a poorer prognosis in patients admitted to the hospital for ACS [42] and, therefore, may
have influenced the different courses of UA. Our 2021 data differed from the previous
year. Perhaps this was influenced by a period of relative stability, the implementation of
appropriate patient management procedures, mass vaccinations, and the natural evolution
of SARS-CoV-2. Thus, the different incidences of UA and STEMI in our study can be
explained by the atypical incidences of UA and STEMI during the COVID-19 pandemic
period compared to the pre-pandemic period.

Even though the research is ongoing, preliminary data show significant benefits from
vaccination. However, the problem may be the emergence of new variants of SARS-CoV-2
and the limited efficacy of the immune response generated by vaccines.

The current study compared patients with and without COVID-19 who were diag-
nosed with ACS. Neural analysis revealed no significant effect of COVID-19 vaccination on
perioperative mortality in ACS patients.

Neural networks are stochastic algorithms (until training is complete). Neural network
training involves many random elements, e.g., the initial initialization of parameters [43],
the random order in which individual rows from the training databases are presented to
the network, the random division between the training and validation datasets, and the
detailed random aspects of the optimization algorithms. All of these factors have led to the
problem of reproducibility and reliability of analyses using neural networks.

The parameters (weights) of the neural network, which were initialized randomly,
were overwritten accordingly during the training of the network, to minimize the network’s
error and bring the values of the network’s predictions closer to the known true values.
Since the weights were permutable in terms of hidden layers, there were many different
solutions (multiple minima) that led to the same low network error. This means that neural
networks are non-convex in terms of the objective [44]. Moreover, different combinations
of the model parameters themselves, such as the learning rate, the type of optimizer, or
the number of hidden layers, can lead to the same, equally good result. This means the
under-specification of neural networks [45]. In addition, quantization errors and the types
of hardware used in the calculations contribute to randomness [46].

Regarding preprocessing the data before using them to train the neural network, and
then the model construction itself—training and obtaining results in the deep learning
domain is a process that combines the application of many different computational tools
that have different accuracies [47]. Differences in the accuracy of the tools also affect
the randomness and, thus, the non-reproducibility of subsequent experiments on neural
network models.
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6. Conclusions

According to our neural network study, the increasing number of patients with COVID-
19 did not affect periprocedural death in ACS. Classic clinical factors had the greatest impact
on the occurrences of perioperative death in ACS during the COVID-19 pandemic. The
estimations of periprocedural death through neural networks and statistical models were
useful for analyzing large amounts of data and population variables.

7. Study Limitations

The results show factors that are not consistent with large clinical experience, e.g., UA
is a greater risk factor for death than STEMI and psoriasis is a leading risk factor for death.
Moreover, the inconsistency between 2020 and 2021 raises significant concerns about the
reliability and reproducibility of the neural network approach.

No information was obtained about the type of vaccine administered or the number
of doses given to individual patients. Another limitation of the presented study was the
lack of determination of the severity of psoriasis.
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