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Abstract

Background: Multiple molecular subtypes with distinct clinical outcomes in

gastric cancer have been identified. Nonetheless, the immunogenomic sub-

types of gastric cancer and its mediated tumor microenvironment (TME)

characterizations have not been fully understood.

Methods: Six gastric cancer cohorts with 1506 samples were obtained. Un-

supervised methods were used to perform immunogenomic phenotype clus-

tering. The least absolute shrinkage and selection operator regression method

was used to construct immunogenomic characterization score (IGCS).

Results: Three distinct immunogenomic phenotypes were determined. We

observed a prominent survival difference between three phenotypes. The TME

cell‐infiltrating characteristics under these three phenotypes were highly

consistent with three immune subtypes of tumors. Cluster 1, was character-

ized by the “immune‐desert” phenotype, with relatively lower cell infiltration

level (type 1 “cold tumor”); Cluster 2, characterized by “immune‐inflamed”
phenotype, with abundant innate and adaptive immune cell infiltration (“hot
tumor”); Cluster 3, characterized by “immune‐excluded” phenotype, with

significant stromal activation and inactivated immune cell infiltration (type 2

“cold tumor”). We demonstrated IGCS signature was significantly correlated

with TME inflammation and stroma activity, molecular subtypes, genetic

variation, microsatellite instability, immune checkpoint molecules, and pa-

tient prognosis. High IGCS subtype, with poorer survival and enhanced stro-

mal activity, presented an immune‐exclusion and non‐inflamed TME

characterization. Low IGCS, related to increased mutation/neoantigen load

and microsatellite instability, showed enhanced responses to anti‐checkpoint
immunotherapy. Four immunotherapy cohorts confirmed patients with low
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IGCS exhibited prominently enhanced clinical responses and treatment

advantages.

Conclusions: This study demonstrated the immunogenomic characteriza-

tions could play a crucial role in shaping the complexity and diversity of tumor

microenvironment. Targeting tumor immunogenomic characteristic in order

for changing adverse phenotypes may contribute to exploiting the novel im-

munotherapy combination strategies or novel immunotherapeutic drugs, and

promoting the advance of tumor personalized immunotherapy.
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1 | INTRODUCTION

In the previous decade, although technological advances and
novel mechanistic insights have altered strategies for gastric
cancer treatment, only a limited number of patients could
benefit from these improvements in overall survival, with
less than 20% 5‐year survival.1,2 However, anti‐checkpoint
immunotherapy represented by the anti‐PD‐1/PD‐L1 anti-
bodies, offered outstanding survival benefits to a small group
of patients with robust responses. Unfortunately, the benefits
are either minimal or non‐existent to the majority of pa-
tients, far from meeting a clinical necessity. Additionally,
both within and across the tumor types, there is an existing
disparity in clinical response rates, suggesting the presence of
intrinsic and adaptive immune resistance to immune
checkpoint blockade.3–5

Recently, with the development of cancer genomics, the
classification of gastric cancer has changed from the tradi-
tional histological subtype to the molecular subtype. The
Asian Cancer Research Group described four molecular
subtypes of gastric cancer using gene expression data in-
cluding the subtypes of epithelial–mesenchymal transition
(EMT), microsatellite instability (MSI), microsatellite stability
(MSS)/TP53+ and MSS/TP53−.6–8 TCGA project has also
categorized gastric cancer into four subtypes based on the
comprehensive depiction for its molecular landscape, en-
compassing chromosomal instability (CIN), MSI, genome
stable (GS), and EBV.6 Despite our deepened understanding
of the molecular subtypes of gastric cancer, the im-
munogenomic phenotypes as well as their induced tumor
microenvironment (TME) cell‐infiltrating characterizations
of gastric cancer remain poorly known. Investigating the
distinct immunogenomic phenotypes in the role of TME
cell‐infiltrating complexity and heterogeneity formation will
advance the existing knowledge on the antitumor immune
response of TME, which could guide and exploit more ef-
fective immunotherapeutic strategies.9,10 However, owing to

technical limitations, most research focuses on one or two
immune cells, which may lead to the biases cognition of the
overall cell infiltration characteristics of TME.11–14 The re-
cent progress in next‐generation sequencing creates oppor-
tunities to identify the immunogenomic changes in gastric
cancer effectively. Additionally, founded on the im-
munogenomic profiling from the tumor tissue RNA‐Seq,
numerous computational methods estimating TME cell in-
filtration abundance has been developed. Dissecting the
TME cell infiltration patterns induced by distinct im-
munogenomic phenotypes could be possible by utilizing
immunogenomic data and calculation methodology. Also,
the capabilities for predicting patients' responsiveness
to immunotherapy are likely to improve from this
process.4,5,9,15–17 In this study, we integrated the im-
munogenomic profiling to comprehensively evaluate the
immunogenomic phenotypes of gastric cancer, and corre-
lated the immunogenomic phenotypes with the TME cell‐
infiltrating characteristics. We successfully defined three
immunogenomic phenotypes with distinct TME cell in-
filtration patterns and immune escape mechanisms in gastric
cancer based on 1506 samples. We demonstrated that the
tumor immunogenomic characterization played a crucial
role in the TME heterogeneity and complexity formation as
well as immunotherapeutic response differences between
individuals.

2 | METHODS

2.1 | Gastric cancer cohorts and
preprocessing

We included six gastric cancer cohorts with complete clinical
annotation information including the TCGA‐STAD,
GSE84437, GSE62254/ACRG, GSE57303, GSE34942,
GSE15459.7,18–20 For Affymetrix platforms, the affy R
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package was utilized to data preprocessing.21 For Illumina
platform, we directly download the normalized matrix files.
For TCGA‐STAD cohort, we downloaded the FPKM values
of gene expression and then converted FPKM values into
transcripts per kilobase million (TPM) values.22 The sva
package was used to correct the batch effects. All data ana-
lyses were based on the Bioconductor packages and the R
software (version 3.6.1). The detailed information of each
cohorts was listed in Table S1.

2.2 | Immunogenomic phenotypes
clustering

We performed unsupervised clustering for 730 immune‐
related genes to identify the immunogenomic char-
acterizations of gastric cancer. The immune genes were
derived from GPL19965 immune profiling platform. We
used the consensus clustering algorithm of Con-
sensuClusterPlus package to determine the optimal
number of stable immunogenomic phenotypes. To
guarantee classification stability, we repetitively con-
ducted this analysis for 1000 consecutive times.

2.3 | Functional annotation and gene
set variation analysis

We conducted GSVA enrichment analysis to explore the
characteristics of biological functions in these three im-
munogenomic phenotypes22,23 based on “c2.cp.kegg.v6.2.
symbols” gene set.24 The functional annotation for dif-
ferentially expressed genes (DEGs) was carried out by the
clusterProfiler R package.25 We used the limma package
for identifying DEGs between distinct phenotypes with
p< .001.26

2.4 | Inference of TME cell abundance

We performed the single sample gene set enrichment ana-
lysis (ssGSEA) for the gene expression profiles to estimate
the relative abundance of each TME cell subtype.27

(Table S2) We sourced the gene set to mark each type of
TME infiltration cell from the study of Charoentong.5,28

2.5 | Generation of immunogenomic
signatures

We used the Least Absolute Shrinkage and Selection
Operator (LASSO) Cox regression to perform di-
mensionality reduction and select the most robust

immune signature genes.29 The immunogenomic char-
acterization score (IGCS) was then defined as follows:

 Coefi Expri,IGCS= ×
n

i=1

where Coefi was the Cox Regression coefficient, and
Expri was the immune signature gene expression.

2.6 | Acquisition of the transcriptome
data of immunotherapeutic cohorts

We analyzed the correlation between IGCS signature and
the known signatures to further investigate the biological
characteristics of IGCS.30 We eventually included four
immunotherapeutic cohorts with complete correspond-
ing clinical information and transcriptome data after
systematically searching the public databases. Of these,
the IMvigor210 cohort analyzed the PD‐L1 blockade ef-
fectiveness in patients with metastatic urothelial malig-
nancies.30 GSE78220 cohort investigated the efficacy of
anti‐PD‐1 antibody in metastatic melanoma.31 Patients in
GSE93157 cohort were also intervened by PD‐1
inhibitors.32

2.7 | Statistical analysis

We used the Kruskal‐Wallis and one‐way analysis of
variance methods to perform a difference significance
test for groups of three or more.33 The Wilcoxon test was
utilized to perform the difference analyses between the
two groups. The survminer R package was used to plot
the survival curves, and the log‐rank tests was to perform
the difference test. The optimal cut‐off point to classify
patients into low and high IGCS group was determined
by the MaxStat R package.34 The hazard ratios (HR) for
survival analyses was calculated through the univariate
Cox regression model. All statistical p‐values were two‐
sided. The p< .05 was considered as a statistical sig-
nificance. All data was processed through the software
R 3.6.1.

3 | RESULTS

3.1 | Landscape of immune genome in
gastric cancer

The scheme of gastric cancer immunogenomic pheno-
type identification and immunogenomic prognostic sig-
nature construction was shown in Figure S1A. In total,
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730 immune‐related genes were extracted from five gas-
tric cancer datasets (Table S3). We found there existed
significant difference on the immune genome between
normal gastric tissues and tumor tissues (Figure 1A and
Table S4). Dimension reduction for these immune‐
related genes using principal component analysis meth-
ods showed tumor samples and normal samples pre-
sented two completely disjoint populations, suggesting
that the immunogenomic characterizations have under-
gone significant variation with the progression of gastric
cancer (Figure 1B). Functional annotations showed these
genes were significantly associated with immune reg-
ulation pathways (Figure 1C and Table S5). Then, we
analyzed the mutational landscape of the immune gen-
ome in gastric cancer. Out of 433 samples, we observed
mutations in at least one immune gene in 92.84% of the
patients (data not shown). The results suggested that
TP53, followed by ATM, demonstrated the highest mu-
tation frequency. Here, we presented the mutation
landscape of 24 immune genes with a mutation rate
greater than 5% (Figure 1D). Further research discovered
the marked co‐occurring mutation relationship between
these highly mutated immune genes (Figure 1E). The
copy number variation (CNV) alteration frequency study
also revealed a widespread CNV alteration in highly
mutated immune genes that mainly concentrated on
copy number amplifications, while C3 and MAGEC1 had
prevalent CNV deletion frequency (Figure 1F). We in-
vestigated the messenger RNA (mRNA) expression levels
between normal and tumor samples to determine the
potential influence of these genetic variations on the
expression of highly mutated immune genes in tumors.
The results showed that CNV alterations could be the
prominent factors causing perturbations on the expres-
sion of immune‐related genes. The amplificated CNV of
immune‐related genes in gastric cancer tissues was ac-
companied by the increase of their mRNA level (e.g.,
LRRN3 and NFATC2), and vice versa (e.g., MAGEC1)
(Figures 1F and S1B). Survival analyses for highly mu-
tated genes revealed their crucial effects on the prognosis
of patients (Figure S1C and Table S3). The correlation
analyses revealed the potential association among these
genes (Figure S1D).

3.2 | Identification of immunogenomic
phenotypes in gastric cancer

We enrolled five GEO cohorts including GSE84437,
GSE62254/ACRG, GSE57303, GSE34942, and GSE15459
into one meta‐cohort for further analyses. The unsupervised
clustering was used to characterize the immunogenomic
phenotypes in gastric cancer. We successfully classified all

tumors into three distinct clusters based on expression of 730
immune‐related genes. We termed these clusters as IGPC1‐3
(immunogenomic phenotype cluster), respectively
(Figure S2A–S2E). Prognostic analysis for the three distinct
immunogenomic phenotypes revealed the particularly pro-
minent survival advantage in IGPC2 subtype, and the sur-
vival inferiority in IGPC3 subtype (Figure 2A). The ACRG
cohort, which included 300 patients with gastric cancer, in-
tegrated the most comprehensive clinical information. We,
therefore, focused on the ACRG cohort to further investigate
the features of these immunogenomic phenotypes in various
biological behaviors and clinicopathology. Consistent with
all patients clustering, we also discovered three fully distinct
immunogenomic phenotype clusters in ACRG cohort based
on the immune gene expression, including 117 samples in
IGPC1 subtype, 106 samples in IGPC2 subtype, and 77
samples in IGPC3 (Figures S3A–S3D, 2B‐D, and Table S6).
The significant distinction in immunogenomic profile was
observed among the three clusters, confirming that there
were indeed three different immunogenomic phenotypes in
gastric cancer (Figure 2C,D). Survival analysis also revealed
significant survival differences among the three phenotypes
(Figure 2B). To note, patients with the diffuse histological
subtypes were significantly clustered in IGPC3 phenotype,
suggesting tumors in this phenotype presented a poorer
differentiation. While patients in IGPC1 and IGPC2 pheno-
types were characterized by the intestinal histological sub-
type, which were markedly correlated with a better tumor
differentiation (Figure 2D). We then investigated the ex-
pression of immune‐related genes with high mutation fre-
quency among the three immunogenomic clusters. We
observed the highly mutated immune genes presented sig-
nificant difference in expression between the three im-
munogenomic phenotypes (Figure 2E).

3.3 | TME cell infiltration
characteristics in distinct
immunogenomic phenotypes

We executed the GSVA enrichment analysis to investigate
the biological behaviors amongst distinct immunogenomic
phenotypes. As shown in Figure S4A–S4B and Table S7, we
observed pathways correlated with immune activation were
significantly upregulated in the IGPC2 phenotype including
T‐cell receptor signaling pathway, Toll‐like receptor signaling
pathway, cytokine–cytokine receptor interaction, and anti-
gen processing and presentation pathways (Figure S4A). The
stromal‐related pathways were prominently activated in the
IGPC3 phenotype such as vascular endothelial growth factor,
transforming growth factor‐β signaling pathways as well as
the extracellular matrix receptor interaction (Figure S4A).
While IGPC1 phenotype presented a significant enrichment
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FIGURE 1 Landscape of immune genome in gastric cancer. (A) Expression of 730 immune‐related genes in tumor and normal samples
based on hierarchical clustering. (B) Reducing dimension for the immune‐related genes by principal component analysis revealed two
entirely disjoint populations. (C) Functional annotation for immune‐related genes via GO enrichment analyses. (D) The mutation landscape
of immune‐related genes with high mutation frequency in TCGA‐STAD cohort. (E) The mutation co‐occurrence and exclusion analyses for
24 immune‐related genes with high mutation frequency
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FIGURE 2 Immunogenomic phenotype clustering in gastric cancer. (A) Survival analyses for three distinct immunogenomic
phenotypes based on 1051 patients from five gastric cancer cohorts. (B) Survival analyses for the three immunogenomic phenotypes in
ACRG cohort. (C) Principal component analysis for the immune‐related genes in the three immunogenomic phenotypes. (D)
Immunogenomic phenotype clustering in the ACRG gastric cancer cohort and hierarchical clustering of immune‐related genes among three
phenotypes. (E) Immune‐related genes with high mutation rates expressed in the three immunogenomic phenotypes
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in biological pathways associated with immune suppression
(Figure S4B). According to the succeeding TME cell in-
filtration analyses, IGPC3 had unusually high levels of innate
immune cell infiltration, including resting dendritic cells
(DCs), mast cells, activated dendritic cells, and natural killer
cells (Figure 3A,B and Table S6). However, we did not ob-
serve a matching survival advantage with the immune in-
filtration levels in this phenotype (Figure 2B). To further
investigate the overall TME cell infiltration levels in each
immunogenomic phenotype, we utilized the ESTIMATE
algorithm. We found that despite the higher immune level in
tumors with IGPC3 phenotype, the TME stromal activity of
their microenvironment was significantly higher than other
two phenotypes (Figure 3C–E). The stromal cells especially
fibroblasts and endothelial cells were also markedly activated
in IGPC3 phenotype, which could result in the loss of innate
immune cell infiltration ability (Figure 3B). Based on the
signature genes of stromal‐related pathways from Mar-
iathasan's study, we quantified the activity of specific stromal
pathways in the three phenotypes. Consistent with the above
findings, the activity of stromal pathways was significantly
enhanced in IGPC3 phenotype including the activation of
pan‐fibroblast TGF‐β response (Pan‐F‐TBRS), EMT, and
angiogenesis pathways (Figure 4A). Subsequent analysis re-
vealed the clustering of most patients with EMT molecular
subtypes into the IGPC3 phenotype, and patients with MSI
molecular subtypes were mainly clustered into IGPC2 phe-
notype (Figure 4B). Based on the above results, it was found
that the three immunogenomic phenotypes of gastric cancer
had significantly distinct TME cell infiltration patterns.
IGPC1 phenotype, characterized by relatively lower TME cell
infiltration, was classified as immune‐desert cluster (type 1
“cold tumor”). IGPC2 phenotype, characterized by relatively
higher innate and adaptive TME cell infiltration, was clas-
sified as immune‐inflamed cluster (“hot tumor”). IGPC3
phenotype, characterized by stromal activation and false in-
nate immune cell infiltration, was classified as immune‐
excluded cluster (type 2 “cold tumor”).

We then examined the correlation between each
highly mutated immune gene and each TME infiltration
cell type. We noted there existed a significantly tight
relation between TME infiltration cell levels and highly
mutated immune gene expression (Figure 3F and
Table S8).

3.4 | Transcriptome traits of distinct
immunogenomic phenotypes

To further explore the potential biological characteristics
of the three immunogenomic phenotype, we investigated
the transcriptome differences between the three pheno-
types and a total of 642 phenotype‐related DEGs were

determined by using limma package (Figure 4C and
Table S9). The univariate Cox regression model revealed
their prognostic values in gastric cancer (Table S9). It was
found the three immunogenomic phenotypes exhibited
specific genomic characterization, respectively
(Figure 4D). The enrichment analysis revealed these
DEGs were significantly enriched in immune‐related
biological processes, confirming again that tumor im-
munogenomic characterizations played a crucial role in
shaping the TME cell infiltration complexity and di-
versity (Figure 4E and Table S10).

We studied cytokine and chemokine expressions that
characterize these three phenotypes to explore further
the function of tumor immunogenomic phenotypes in
the TME immunoregulation.29,35 The results revealed the
significant upregulation of the mRNAs pertinent to the
TGFb/EMT pathway in IGPC3 phenotypes, which in-
dicated this cluster could be classified as stromal‐
activated subtype (Figure 4F). IGPC2 phenotypes
demonstrated increased expression of mRNAs associated
with immune‐activation transcripts, making this cluster
an immune‐activation subtype (Figure 4G). Immune
checkpoint molecules that had an upregulated expres-
sion in IGPC2 phenotypes could lead to the immune
escape of this phenotype (Figure 4H). The above out-
comes reconfirmed the significant relevance of IGPC3
phenotypes to stromal activation as well as IGPC2 phe-
notypes to immune activation (Figure 4F–H).

DCs, a bridge that connect innate and adaptive im-
mune responses, are accountable for antigen presenta-
tion and activating naive T cells. And, their activation
relies on the increased expression level of major histo-
compatibility complex molecules, as well as adhesion
and costimulatory factors.36 Here, we found significant
differences in the transcripts of DCs activation molecules
between the three immunogenomic phenotypes of gastric
cancer. Consistent with the TME cell infiltration pat-
terns, the expression of DCs activation molecules was
prominently upregulated in tumors with IGPC2 pheno-
types, suggesting a relatively higher TME cell infiltration
level in this phenotype (Figure S3E).

3.5 | Construction of immunogenomic
signatures

To evaluate the immunogenomic characterization of in-
dividual tumor, we constructed the immunogenomic
signature using the LASSO regression model. The IGCS
was utilized to quantify the immunogenomic character-
ization of individual tumor as well as evaluate patient
clinical outcomes. The IGCS was determined by the ex-
pression of 42 immune‐related genes, which were
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FIGURE 3 Characteristics of TME cell infiltration among the three distinct immunogenomic phenotypes. (A) The abundance of
24 TME cell infiltration among three immunogenomic phenotypes visualized by heatmap. (B) Differences of 24 TME cell infiltration
abundance between three immunogenomic phenotypes. (C–E) ESTIMATE algorithm analyses revealing the overall TME cell infiltration
landscape among three immunogenomic phenotype. (F) The correlation between highly mutated immune genes and TME cell subtypes.
TME, tumor microenvironment
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FIGURE 4 Transcriptome traits of distinct immunogenomic phenotypes. (A) Variations between three distinct immunogenomic
phenotypes in pathways with stroma activation. (B) The proportion of ACRG molecular subtypes in the three immunogenomic phenotypes.
(C) The venn diagram showing 642 immunogenomic phenotype‐related genes. (D) Hierarchical clustering of phenotype‐related genes
among three immunogenomic phenotypes. (E) GO functional enrichment analyses for immunogenomic phenotype‐related genes. (F)
Difference in the TGF‐β‐EMT pathway‐related gene expression among three immunogenomic phenotypes. (G) Difference in the
immune‐activation‐related gene expression among three phenotypes. (H) Difference in the immune‐checkpoint related gene expression
among three phenotypes. EMT, epithelial‐mesenchymal transition; TGF‐β, transforming growth factor β
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obtained from the LASSO Cox regression (Figures 5A
and S5A). The coefficient was summarized in Table S11.
Patients were classified as high and low IGCS subtype
with the optimal cutpoint at 4.262 generated by the
MaxStat algorithm (Figure 5B). A remarkable survival
benefit was observed in the low IGCS subtype (hazard
ratio [HR] 3.30 [2.13–5.11]; Figure 5C), with a 5‐year
survival two times higher than the high IGCS subtype
(77.0% vs. 40.8%). Our investigation for the IGCS sig-
nature in predicting the effectiveness of adjuvant che-
motherapy in gastric cancer patients revealed that those
with low IGCS experienced substantial treatment ad-
vantages (Figure 5D). The another outcome suggested
that adjuvant chemotherapy did not interfere with the
predictive power of the IGCS signature. Patients in the
low IGCS group consistently presented significant sur-
vival advantage among those who are undergoing che-
motherapy or not. Furthermore, the Kruskal‐Wallis test
found significant variations on IGCS between im-
munogenomic phenotypes. IGPC2 phenotypes displayed
the lowest median IGCS, while the IGPC3 phenotypes
showed the highest median IGCS (Figure 5E). In contrast
with the other three ACRG molecular subtypes, patients
with EMT molecular subtypes exhibited a highest IGCS
(Figure 5F). We then explored the potential relationships
between IGCS and the known biological signature in
gastric cancer for an improved illustration of IGCS bio-
logical features. The IGCS presented a significant positive
correlation with the signatures related to stromal acti-
vated and a negative correlation with immune activated
signatures (Figure 5G). These results firmly manifested
the significant correlation of low IGCS with immune‐
activation as well as high IGCS with stromal‐activation.
Using IGCS signature may better assess the im-
munogenomic characterization of an individual tumor,
and accurately identify its patterns of TME cell infiltra-
tion. The alluvial diagram also revealed tumors with
poorer differentiation exhibited a higher IGCS, and better
differentiation was associated with lower IGCS
(Figure 5H and Table S12). Also, we found the significant
negative correlation of the IGCS with the expression of
immune checkpoint molecules, which suggested that the
tumor immunogenomic characterization could have a
potential influence on the immunotherapeutic clinical
responses (Figure 5I and Table S13).

We then investigated the relationships between IGCS
and clinicopathological features. The MSI subtype, which
had a better prognosis, was significantly associated with a
lower IGCS, while the MSS subtype with a poorer prog-
nosis had a higher IGCS (Figure S5B). Multivariate Cox
regression model analysis demonstrated that IGCS could
function as an independent prognostic biomarker to as-
sess patient outcomes (Figure S5C). The TCGA‐STAD

cohort also confirmed the value of IGCS in evaluating
patients' prognosis (Figure S5D). We also tested whether
IGCS signature can be used to classify other types of
cancer. We took colon cancer as an example and found
that IGCS could also be used to predict the outcome of
colon cancer patients. Patients with low IGCS have sig-
nificantly prolonged survival compared to patients with
high IGCS (Figure S5E).

3.6 | Immunogenomic characteristics of
TCGA molecular subtypes and tumor
somatic mutation

TCGA project evaluated the exhaustive molecular char-
acterization in gastric cancer, classified into four mole-
cular subtypes that included CIN, EBV, GS, and MSI. We
analyzed how IGCS differed across these molecular
subtypes. The results highlight the substantial con-
centration of relatively higher IGCS on subtype CIN,
with a worse patient survival. The better survival was
evident in lower IGCS concentrated on subtypes MSI and
EBV (HR 1.54 [1.09–2.18]; 5‐year OS rate, 25.1% vs.
38.0%; Figure 6A,B). Then, we studied the differences in
the tumor somatic mutation distributions between low
and high IGCS groups. Tumors with low IGCS were
markedly correlated with a higher mutation burden
(Figure 6C). However, we did not observed an obvious
difference in mutation types between high and low IGCS
groups (Figure 6D,E). We summarized the differences of
TMB landscape between high and low IGCS subtypes
using the waterfall plot (Figure 6D,E). For the same
genes in each group, low IGCS always presented a sig-
nificantly increased mutation rates compared to
high IGCS.

3.7 | Role of tumor immunogenomic
characteristics in immunotherapeutic
responses

To further examine the IGCS stability and substantiate its
prognostic value, we applied the IGCS signature into
other independent cohorts of gastric cancer (GSE15459,
HR 4.27 [2.81–6.49]; GSE34942, HR 2.34 [1.08–5.08];
GSE57303, HR 3.11 [1.53–6.35]; GSE84437, HR 3.09
[2.34–4.08]; Figure S6A–S6D). The prognostic value of
IGCS signature was well validated in a combined set of
all GEO cohorts (HR 2.88 [2.42–3.43]; Figure 7E). The
IGCS could be also utilized to predict relapse‐free sur-
vival in gastric cancer patients (GSE62254, HR 2.86
[1.91–4.27]; Figure S6F). Then, our study extended the
IGCS signature to all gastrointestinal tumors to evaluate
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FIGURE 5 Construction of immunogenomic signatures. (A) The tenfold cross‐validation in the LASSO model was used to tuning parameter
selection. (B) The MaxStat R package identified the optimal cut‐off point to dichotomize IGCS. (C) Kaplan‐Meier curves showing the survival
difference between the lowand high IGCS subtypes. (D) Survival analyses of four subgroups, where patients were stratified according to adjuvant
chemotherapy (ADJC) and IGCS signature. (E) Differences in IGCS across three immunogenomic phenotypes in the ACRG cohort. (F) Differences
in IGCS across distinct ACRGmolecular subtypes. (G) Spearman correlation between the known signatures and IGCS in the ACRG cohort. Orange
marks depicted positive correlation and blue for the negative correlation. (H) The changes of clusters, ACRG molecular subtypes, histology and
IGCS, visualized by alluvial diagram. (I) The correlation chord chart showing the mutual correlation between IGCS and immune checkpoint
molecules. EMT, epithelial‐mesenchymal transition; IGCS, immunogenomic characterization score
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the patient outcomes comprising hepatocellular carci-
noma, pancreatic adenocarcinoma, colon adenocarcino-
ma, cholangiocarcinoma, and esophageal carcinoma (HR
1.60 [1.30–1.98]; Figure S6G). The significance of IGCS
signature for predicting outcomes in all gastric cancer
patients especially in patients with distal metastasis were
confirmed via the receiver operating characteristic curves
(Figure S6H–S6I). In addition, we investigated the ability
of IGCS as a continuous variable to predict patient out-
comes using the univariate Cox regression analyses. The
subgroup analyses revealed the significant prognostic
predictive values of IGCS signature among all clinical
stages and histological subtypes (Figure 7A).

The emergence of immunotherapies represented
by immune checkpoint blockade has become a major
breakthrough in curative therapeutic strategies for
cancer. Using four immunotherapy cohorts, we

explored the values of IGCS signature in predicting
patient response to immune checkpoint blockade
therapy. In the IMvigor210 cohort intervened by anti‐
PD‐L1 regimens, patients in low IGCS group, com-
pared to those in the high IGCS group, experienced a
remarkable treatment advantages and clinical bene-
fits as well as a markedly prolonged survival (HR 1.43
[1.09–1.87], Figure 7B; response 30% vs. 20%,
Figure 7C). Furthermore, there presented a notable
survival advantage among patients possessing both
high neoantigen burden and low IGCS (Figure 7D).
Patients with low IGCS also exhibited an increased
PD‐L1 expression, which demonstrated a potentially
enhanced response to anti‐PD‐L1 immunotherapy in
this group (Figure 7E). These results indicted the
quantification for tumor immunogenomic character-
istics was a promising and robust biomarker for

FIGURE 6 Immunogenomic characteristics of TCGA molecular subtypes and tumor somatic mutation. (A) Kaplan‐Meier curves
showing the survival analyses of high and low lGCS subtypes in TCGA‐STAD cohort. (B) Differences in IGCS between distinct TCGA gastric
cancer molecular subtypes. (C) Difference in tumor mutation burden between low and high IGCS groups. (D‐E) The waterfall plot showing
the differences of TMB landscape between low and high IGCS groups. (D) High IGCS group. (E) Low IGCS group. CIN, chromosomal
instability; GS, genome stable; IGCS, immunogenomic characterization score; MSI, microsatellite instability

54 | HAN ET AL.



FIGURE 7 (See caption on next page)
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evaluating clinical responses and survival outcomes of
patients when treated with immunotherapy. Sub-
sequent analyses for other three cohorts with anti‐PD‐
1 or anti‐CTLA‐4 immunotherapy regimens well
confirmed the crucial role of IGCS signature in pre-
dicting patient response to immunotherapy
(GSE93157 cohort, HR 2.01 [1.09–3.72], Figure 7F,G;
GSE78220, HR 1.29 [0.38–4.40], Figure 7H,I; TCGA‐
SKCM cohort, HR 4.10 [1.32–12.79], Figure 7J,K).

4 | DISCUSSION

As insights on the tumor microenvironment advance
heterogeneity and complexity, growing evidence under-
lines the crucial role of TME in mediating immune es-
cape and treatment resistance to immunotherapy.1,3

However, since most studies concentrated on only one
immune gene or one TME infiltration cell subtype, the
overall TME cell‐infiltrating patterns driven by distinct
immunogenomic characterizations remain unknown.
Comprehensively dissecting the immunogenomic char-
acterizations of gastric cancer will help enhance our
understanding of different TME cell‐infiltrating patterns
as well as guide more precise immunotherapeutic stra-
tegies.4,5,12 More importantly, identifying the im-
munogenomic phenotypes could contribute to revealing
the potential biomarkers significantly asscociated with
clinical response to immunotherapy, and the novel im-
munotherapeutic targets may be found.6,9

Here, we integrated the genomic profiling of 730
immune‐related genes and revealed three distinct im-
munogenomic phenotypes in gastric cancer, which had
substantially different TME cell infiltration character-
istics. IGPC1 phenotype was characterized by the im-
munosuppression, classified as immune‐desert cluster
(type 1 “cold tumor”). IGPC2 phenotype was character-
ized by activated innate and adaptive immunity, classi-
fied as immune‐inflamed cluster (“hot tumor”). IGPC3
phenotype was characterized by stromal activation and
inactivated innate immune cell infiltration, classified as

immune‐excluded cluster (type 2 “cold tumor”). Al-
though IGPC1 and IGPC3 were both classified into so‐
called “cold tumors,” they had obviously distinct TME
cell‐infiltrating patterns. We emphasized the TME acti-
vated stroma in the role of tumor immune escape. The
type 2 cold tumors, similar to inflamed tumors, was also
characterized by the presence of abundant immune cells.
However, unlike the immune‐inflamed tumors and in-
stead of infiltrating the tumor parenchyma, these im-
mune cells remained preserved in the stroma
surrounding the tumor cell nests. The stroma could pe-
netrate the tumor parenchyma or be limited to the tumor
capsule, making it seem that the immune cells are ac-
tually inside the tumor. The anti‐PD‐1/L1 agents can also
stimulate the activation and proliferation of stroma‐
associated T cells but not infiltration, and clinical re-
sponses are uncommon.35,37–40 Recent studies have re-
vealed a negative correlation between oncogenic pathway
activation and immune infiltration levels.41 However,
few studies paid special attention to the mechanisms of
impaired immune penetration. We showed that the
stroma signaling pathways of angiogenesis, EMT and
TGF‐β were significantly activated in tumors with IGPC3
phenotype characterized by type 2 cold tumor cell in-
filtration, suggesting the loss of ability of immune cells to
penetrate into tumor parenchyma may be mediated by
these pathways.

Currently, the transformation from “cold tumor” to
“hot tumor” has become a significant direction in cancer
research. Previous studies showed the decreased expres-
sion of PD‐L1, CD47, IL1β, CCL23, and CCL5 mediated by
MYC amplification could induce the inactivation of mac-
rophages and DCs, as well as limit the recruitment of
natural killer cells, T cells, and B cells.42–44 Compared to
the complex formation mechanism of type 1 cold tumor,
changing the TME cell infiltration patterns of type 2 cold
tumors mediated by IGPC3 immunogenomic phenotypes
may be more clinically practical. In this study, we de-
monstrated that the tumor immunogenomic phenotypes
could mediate the formation of TME cell infiltration di-
versity, suggesting targeting the immune genome of

FIGURE 7 Role of tumor immunogenomic characteristics in immunotherapeutic responses. (A) Subgroup analyses revealed the
prognostic value of IGCS as a continuous variable by using a univariate Cox regression model. (B) Kaplan‐Meier curves showing the survival
analyses of high and low IGCS groups in the IMvigor210 cohort. (C) The ratio of clinical response types in high IGCS and low IGCS groups
in the IMvigor210 cohort when treated with anti‐PD‐L1 immunotherapy. (D) Survival analyses for patients receiving anti‐PD‐L1
immunotherapy stratified by both neoantigen burden and IGCS signature. (E) Differences in the PD‐L1 expression in high and low IGCS
subtypes in IMvigor210 cohort. (F) Kaplan‐Meier curves displaying the survival difference of high and low IGCS groups in GSE93157 cohort.
(G) The ratio of clinical response types in high IGCS and low IGCS groups in the GSE93157 cohort when treated with anti‐PD‐1
immunotherapy. (H) Survival analyses for IGCS in GSE78220 cohort. (I) The ratio of clinical response types in each group in the GSE78220
cohort. (J) Survival analyses for IGCS in TCGA‐SKCM cohort. (K) The ratio of clinical response types in each group in TCGA‐SKCM cohort.
IGCS, immunogenomic characterization score
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gastric cancer in order for transforming its im-
munogenomic phenotype could be potential strategies to
change TME cell infiltration patterns. Based on the ob-
tained signature immune‐related genes from LASSO, we
then constructed IGCS signature to further evaluate the
immunogenomic phenotype in individual tumor as well as
its TME cell infiltration characterization. IGPC3 pheno-
type was characterized by high IGCS and IGPC2 pheno-
type characterized by low IGGS. We also revealed IGCS as
a robust and independent prognostic biomarker. We re-
vealed that IGCS was significantly correlated with
microsatellite status, tumor mutation burden, and im-
mune checkpoint molecule expression, suggesting that the
immunogenomic characterizations could play a crucial
role in mediating patient clinical responses to checkpoint
immunotherapy. Four immunotherapy cohorts confirmed
that in patients receiving anti‐checkpoint immunotherapy,
low IGCS group was associated with a prominently
improved clinical benefits and a markedly prolonged
survival compared to high IGCS group. Generally, the
clinical response to immunotherapy was approximately
12% higher among low IGCS groups than high IGCS
groups.

Our research has several translational clinical values.
Our results could help guide the screening of suitable
patients for immunotherapy. We discovered an im-
munogenomic phenotype distinguished by “hot tumors,”
accounting for about 33% of all gastric cancer patients
while revealing notable therapeutic benefits and clinical
advantages of immunotherapy in this cluster. More im-
portantly, we also found an immunogenomic phenotype
with type 2 cold tumor cell infiltration characterization
(approximately 21% of all cases) and revealed its poten-
tial mechanisms of impaired immune penetration. Re-
pairing the impaired immune penetration and releasing
the microenvironmental antitumor immunity of such
patients should probably be a more clinically practical
direction for expanding the benefit population of
immunotherapy.

There were several limitations in our study. Due to
the lack of patient body fluid sample data such as
serum, plasma, and so forth, we could not test whe-
ther IGCS signature was used for early diagnosis of
gastric cancer. At present, we are actively collecting
patient's body fluid samples to further verify the early
diagnosis value of ICGS signature. In addition, for
patients with distal metastasis, the prediction effi-
ciency of IGCS is excellent, and its AUC value reaches
0.984. However, for patients without distal metastasis,
the prediction efficiency of IGCS can be further im-
proved, and larger samples are still needed to test the
prediction value of IGCS signature.

5 | CONCLUSIONS

This study indicted a comprehensive dissection of im-
munogenomic characterizations will help enhance un-
derstanding the mechanisms of TME diversity and
complexity, as well as guide more precise im-
munotherapeutic strategies. The transformation of “cold
tumors” into “hot tumors” based on immunogenomic
characteristics could represent a step toward persona-
lized immunotherapy in gastric cancer.
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