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Abstract: Organometallic derivatization of nucleosides is a highly promising strategy for the im-
provement of the therapeutic profile of nucleosides. Herein, a methodology for the synthesis of
metalated adenosine with a deprotected ribose moiety is described. Platinum(II) N-heterocyclic
carbene complexes based on adenosine were synthesized, namely N-heterocyclic carbenes bearing
a protected and unprotected ribose ring. Reaction of the 8-bromo-2′,3′,5′-tri-O-acetyladenosine with
Pt(PPh3)4 by C8−Br oxidative addition yielded complex 1, with a PtII centre bonded to C-8 and an
unprotonated N7. Complex 1 reacted at N7 with HBF4 or methyl iodide, yielding protic carbene 2 or
methyl carbene 3, respectively. Deprotection of 1 to yield 4 was achieved with NH4OH. Deprotected
compound 4 reacted at N7 with HCl solutions to yield protic NHC 5 or with methyl iodide yielding
methyl carbene 6. Protic N-heterocyclic carbene 5 is not stable in DMSO solutions leading to the
formation of compound 7, in which a bromide was replaced by chloride. The cis-influence of com-
plexes 1–7 was examined by 31P{1H} and 195Pt NMR. Complexes 2, 3, 5, 6 and 7 induce a decrease of
1JPt,P of more than 300 Hz, as result of the higher cis-influence of the N-heterocyclic carbene when
compared to the azolato ligand in 1 and 4.

Keywords: N-heterocyclic carbenes; adenosine; platinum complexes; organometallic nucleosides;
195Pt NMR; cis-influence

1. Introduction

Organometallic functionalization is a very promising strategy to improve the biolog-
ical activity of drugs, of which ferrocifen [1] and ferroquine are very good examples [2].
Indeed, the organometallic derivatization of nucleosides, often used in the clinic in treat-
ment of several diseases, has the potential to not only improve their therapeutic profile but
also to promote additional modes of action due to the incorporation of the metal. Nucleo-
sides currently used as drugs generally contain a modified sugar, a modified nucleobase,
or both, and often target the synthesis of nucleic acids. However, modified nucleosides
can also target specific proteins involved in the regulation of a given biological process.
One such case is the development of adenosine antagonists. Adenosine is a crucial ex-
tracellular modulator, involved in several biological processes. It is released under stress
conditions and has an important regulatory role. This multi-signaling molecule restores
the intracellular energy levels and mediates tissue protection by adjusting the oxygen
levels, thus acting as an anti-inflammatory agent, and stimulating angiogenesis [3]. These
functions are achieved by activating specific adenosine receptors (ARs), which represent
pharmacological targets for the treatment of several human diseases, including neurologi-
cal, inflammatory or ischaemic conditions. Several agonists and antagonists of ARs have
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been developed, mostly derived from adenosine itself through functionalization of the
purine ring, or at the sugar moiety [3,4]. In line with this, we became interested in the
development of organometallic nucleosides based on adenosine.

We have recently reported the synthesis of platinum and palladium NHCs based on
guanosine derivatives [5,6]. Similarly, Hahn’s group described a synthetic methodology for
the synthesis of guanosine and adenosine complexes with palladium [7]. These compounds
can be obtained by C-X [5,7] or C-H [6] oxidative addition to Platinum(0) or palladium(0)
centres. We showed that metalated nucleosides maintain the ability to form Watson–Crick
base pairs, and that the presence of the metal does not influence base-pairing. Herein, we
report the synthesis of Platinum(II) N-heterocyclic carbenes based on adenosine, both with
a protected and unprotected ribose moiety, describing a methodology for deprotection of
the sugar where both the Pt-C8 and the glycosidic bond remain stable. We also examine
the cis influence of these compounds by monitoring the effect of carbene formation on the
coupling constant of the Pt–P bond.

2. Results
2.1. Synthesis of Protected Adenosine Complexes

The synthesis employs oxidative addition of brominated adenosine to platinum(0). Ac-
cordingly, the reaction of proligand 2′,3′,5′-tri-O-acetyl-8-bromoadenosine (BrAdeAc) [8,9]
with Pt(PPh3)4 in toluene, at 100 ◦C, affords the adenosine complex 1 (Scheme 1) in
76% isolated yield. Protection of the ribose is required, since the reaction with unprotected
nucleoside leads to a mixture of products. Complex 1 was characterized by NMR spec-
troscopy. In the 1H NMR of 1, the C’1-H of the ribose ring appears as a doublet at 6.93 ppm,
shifted by 0.85 ppm with respect to the ligand precursor BrAdeAc. The most significant
effect of the metalation is on the chemical shift of the NH2 protons, which undergo an
upfield shift of 1.25 ppm with respect to BrAdeAc.
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Scheme 1. Synthesis of complex 1 by oxidative addition.

In the 13C{1H} NMR, the C8 carbon resonates at 152.1 ppm, a value similar to other
platinum analogues [6], while the ribose ring of 1 gives rise to five signals between δ 62.7
and 89.0 ppm. The 31P{1H} NMR spectrum confirms the expected trans connectivity already
described for similar platinum compounds [10,11]. The two phosphorous atoms are located
in two non-interconverting diastereotopic sites, due to the presence of the chiral ribose unit
combined with the hindered rotation around the Pt–C8 bond. For this reason, it is possible
to observe the coupling between the two phosphorus nuclei, with an AB spin system at
19.29 and 18.13 ppm featuring a very substantial rooftop effect and a 2JP,P = 435 Hz for both.
Additionally, we observe two slightly different coupling constants with 195Pt, with a value
of 1JPA,Pt = 2754 Hz and 1JPB,Pt = 2735 Hz. For 195Pt NMR, it is not possible to distinguish the
different couplings of PA and PB and a triplet is observed at −4485 ppm, with a coupling
constant of 1JPt,P = 2735 Hz, consistent with values determined by 31P{1H} NMR.

Compound 1 reacts readily at N7 in the presence of acid or methyl iodide, leading to
the formation of compounds 2 and 3, respectively (Scheme 2). This reactivity parallels the
one found for palladium and platinum analogues [6,7].
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Both complexes 2 and 3 were characterized by NMR spectroscopy. For complex 2,
the 1H NMR shows the new N7-H at 10.66 ppm, and significant variations for the NH2
protons, which undergo a downfield shift of 0.93 ppm, relatively to 1. For compound
3, the new N7-CH3 resonates at 3.67 ppm and, as with 2, the NH2 protons undergo
a downfield shift of 1.44 ppm to 6.39 ppm. In the 13C{1H}, for the protic NHC 2, the
carbenic carbon (C8) appears as a triplet at 163.6 ppm (2JC,P = 9.5 Hz), with a downfield
shift of 11 ppm, reflecting the formation of the NHC. This is also the case for 3, with
C8 at 163.8 ppm (2JC,P = 9.0 Hz). Similarly to 1, the 31P{1H} spectra of complexes 2 and
3 show the presence of AB spin systems due to the coupling of the two phosphorus.
The AB quartet resonates at 16.15, 15.26 ppm for 2, and at 16.12, 15.04 ppm for 3, with
2JP,P = 414 Hz and 2JP,P = 413 Hz, respectively. From the 195Pt satellites, it is evident that
in both 2 and 3, the two phosphorus nuclei also have different coupling constants with
the platinum centre, with 1JPA,Pt = 2433 Hz; 1JPB,Pt = 2423 Hz for 2, and 1JPA,Pt = 2415 Hz;
1JPB,Pt = 2408 Hz for 3. In the 195Pt NMR spectra, only one coupling constant is observed in
both cases, and compounds 2 and 3 show triplets at −4498 (1JPt,P = 2421 Hz) and −4500
(1JPt,P = 2408 Hz) ppm, with 1JPt,P consistent with those determined by 31P NMR. This is
a decrease of 1JPt,P of approximately 300 Hz relatively to 1 for both, which comes as result
of carbene formation, which will be further discussed in a following section.

Crystals of compound 2 were obtained from a saturated chloroform solution and were
analysed by single-crystal X-ray diffraction. Unfortunately, the X-ray analysis revealed that
the crystals presented racemic twinning and thermal disorder, which prevented the refine-
ment in the chiral space group P1, only allowing the structure refinement with full data
convergence in the centrosymmetric space group P−1. Still, its molecular structure, which
fully agrees with the remaining chemical analysis, is depicted in Figure S1. The platinum
centre in 2 displays a square planar geometry, where the sum of the four cis-L–Pt–L′ angles
is 360.3(3)◦. The plane of the adenine ligand is nearly perpendicular to the coordination
plane of the metal centre (dihedral angle of 92.8(3)◦). All distances and angles are within
the expected values for similar compounds [5].

The formation of complexes 2 and 3 is indicative of the increased nucleophilic char-
acter of N7, which becomes the most nucleophilic position in complex 1. This increased
nucleophilic character is in line with our previous findings regarding the stability of
C8-platinated guanosine derivatives. For these compounds, we have demonstrated that
metalation induces a higher stability of the nucleoside towards hydrolysis [5–7]. This
higher stability is a consequence of a stronger N9-C1′ bond, itself a result of the increased
nucleophilic character of the N9 upon metalation. This is due to the electron donation from
the metal centre to the adjacent nitrogen of the C-bonded heterocycle [5,6,12–16]. This is
also the case for N7, where electron donation renders the N7 more prone to methylation and
protonation. While in the case of guanosine, N7 is the most nucleophilic site, irrespectively
of metalation at C8; for the adenosine fragment in 1, the higher nucleophilic character of
N7 is in striking contrast with what is observed for the free nucleoside. Indeed, the most
nucleophilic position in adenosine is N1 and when adenosine is reacted with methyl iodide,
1-methyladenosine is formed exclusively (Scheme 3). We can conclude that platination at
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C8 induces a change in charge distribution within the adenine ring which can be further
used to expand the reactivity of the nucleoside.
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Importantly, for complex 1, we were unable to determine if metalation induced
a higher stability to the adenosine fragment. When adenosine and complex 1 are heated at
100 ◦C in DMF-d7 for several hours, both compounds remain stable and no decomposition
is noted, contrasting with what we observed for guanosine complexes [5], for which the
metalated nucleoside is far more stable.

2.2. Synthesis of Deprotected Adenosine Complexes

One of the main issues when synthesizing organometallic nucleosides is the need to
protect the sugar moiety. While for protected sugars it is possible to direct the synthesis and
improve efficiency, without protection, the synthesis can lead to a myriad of compounds.
However, subsequent deprotection can compromise the integrity of the formed complex
and lead to decomposition. Indeed, Messere et al. showed that a palladium complex
C-bound thymidine decomposes upon deprotection [17]. There are nonetheless reports for
the functionalization of nucleosides via cross-coupling with late transition metals that do
not require protection [18], although the corresponding metalated intermediates have not
yet, to the best of our knowledge, been isolated.

We have recently reported a successful methodology for the deprotection of palladium
and platinum compounds based on guanosine that does not compromise the stability of
the M–C bond and does not promote the hydrolysis of the sugar [5,6]. This methodology
makes use of acidic ethanolic solutions and can also lead to the direct formation of protic
NHCs by concomitant protonation of N7. Unfortunately, when the same methodology was
employed with adenosine complex 1, deprotection was not efficient and led to a mixture of
compounds. We were able to circumvent this issue by using ammonium hydroxide solu-
tions, upon which the synthesis of compound 4 was achieved efficiently, with 66% isolated
yield (Scheme 4). Again, this deprotection methodology does not compromise the Pt–C
bond or the glycosidic bond, as confirmed by NMR.

Compound 4 was characterized by NMR spectroscopy in DMSO-d6, due to the higher
resolution achieved in this solvent as compared to CDCl3. Compounds 1 and 2, as well
as both ligand precursors, were also characterized in DMSO-d6 for comparative purposes.
For compound 4, the presence of the hydroxyl groups can be confirmed by the appearance
of three additional signals 5.50(dd), 5.46(d) and 5.23(d) ppm. The chemical shifts of the
H−2′ and H−3′ vary significantly upfield (~1.5 ppm), with respect to 1. In the 13C{1H}
NMR spectrum, the C−8 peak resonates at 147.5 ppm, similar to that of 1. 31P{1H} shows a
slightly broader singlet at 17.93 ppm with a 1JP,Pt = 2820 Hz. The 195Pt NMR shows a triplet
at −4470 ppm, with 1JPt,P ≈ 2812 Hz consistent with the value found in 31P{1H}.
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As in the case of 1, compound 4 reacts in the presence of a proton or methyl source
leading to the formation of compounds 5 (97% yield) and 6 (70% yield), respectively
(Scheme 5). Both compounds were characterized by NMR. In the 1H NMR, the new NH
group in 5 can be detected at 14.03 ppm, a downfield shift of 1.54 ppm with respect to 2,
probably a result of hydrogen bonding with the chloride. For 6, the new methyl group
resonates as a singlet at 3.30 ppm. In both complexes, the NH2 group undergoes significant
variations, with downfield shifts of approximately 0.9 ppm for both 5 and 6. In the 13C{1H}
NMR, the carbenic C8 in 5 resonates at 156.7 ppm as triplet with a 2JC,P = 9.0 Hz, while for 6,
the triplet resonates at 161.0 ppm (2JC,P = 10.0 Hz). As in the case of 2 and 3, the variations
of C8 in 5 (9 ppm) and 6 (14 ppm), with respect to 4, reflect the formation of the NHC. In
the 31P{1H} NMR, we observe an upfield shift of the 31P signals upon quaternization of N7.
Again, an AB quartet due to the coupling between the two phosphorus nuclei is detected, at
16.79, 16.10 (2JP,P = 418 Hz) for 5, and 15.70, 15.06 (2JP,P = 415 Hz) for 6, and 1JP,Pt values of
2493 Hz and 2456 Hz, respectively. In the 195Pt, the corresponding triplets can be detected
at −4490 (5) and −4504 ppm (6), and calculated values of 1JP,Pt are in agreement with those
calculated for 31P NMR.

It should be noted that attempts to deprotect complexes 2 and 3, where the NHC is
already formed, were not successful. Thus, the synthesis of the complexes requires the
deprotection of 1 and subsequent protonation/methylation. This methodology has the
advantage of allowing the synthesis of complex 4, the deprotected complex with an anionic
adenosinyl ligand. For guanosine, the synthesis of the analogous compound was not
possible thus far, since deprotection is performed under acidic conditions, which always
lead to the formation of the corresponding protic NHC [6].

2.3. Anion Exchange

We have noted that, when in DMSO-d6 solutions, compound 5 is not stable. After a few
days, the concentration of 5 decreases and another compound starts to form. An additional
set of signals becomes very evident by 1H NMR after 6 days (Figure 1). This new compound
is characterized by a new NH signal at 13.65 ppm and a doublet at 6.49 ppm, close to the
H−1′ signal in 5 (6.52 ppm). The remaining 1H NMR signals for the sugar moiety are also
indicative of the formation of the new compound in DMSO-d6 solutions, although they
are mostly overlapped with those of 5. The 13C{1H} NMR spectrum of the mixture after
6 days is not very informative, with only one clear extra signal at 94.4 ppm, close to the
C−1′ signal of compound 5 (94.2 ppm). 31P{1H} NMR analysis of the solution confirms the
presence of a second compound, with two singlets observed at 18.10, 18.24 ppm (Figure 2).
Additionally, the 195Pt NMR spectrum also shows a second triplet at −4337 ppm (Figure 3),
which is a shift of 153 ppm with respect to 5.
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The lability found for 5 is specific for DMSO, since solutions of 5 in CDCl3 (prepared in
situ by addition of HCl) showed only the presence 5 and no further changes were observed,
even after 2 weeks (see Supporting Information).

We monitored the evolution of 5 by 1H NMR for several days (Figure 4). The concen-
tration of the new compound increases very slowly, from circa 30% after 6 days to 70%
after 5 weeks, after which the mixture remains essentially stable. During this time, the
NH signals and the NH2 undergo an upfield shift for both compounds. For the remaining
signals of 5, no variation is noted, while new signals evolve with time, confirming the
formation of a new compound (7).

We hypothesized that this new compound could be the result of either a DMSO
derivative of 5, whereby the bromide is replaced by DMSO, or an exchange of halides
between bromide and chloride, the counterion (Scheme 6).

To determine which hypothesis was correct, we prepared a solution of 5 in non-
deuterated DMSO and examined this solution after 5 days by mass spectrometry (ESI-
HRMS). The mass spectrum displayed a set of peaks at 1066.1608, corresponding to com-
pound 5 (M + H), and 1022.2123, which can be attributed to a compound bearing a chloride
instead of a bromide as co-ligand (M + H adduct). These values agree with the calculated
theoretical values and also with the expected isotopic pattern. Additionally, to the solutions
of 5 in DMSO-d6 that already had reached maximum conversion to 7 (3:7), 10 equivalents
of NaCl were added. Analysis by 1H NMR showed that the amount of the new compound
7 increases (Figure 5), albeit very slowly, and after 17 days, it was the only compound
detected. It should be noted that, in the absence of an external chloride source, the mixture
remains unchanged for months. Upon the addition of NaCl, the NH signals change to
lower field, probably due to hydrogen bonding.

Compound 7 was fully characterized by NMR. Apart from the changes in the NH and
H1′ group already highlighted, the carbenic C8 resonates at 155.2 ppm, a very slight shift
with respect to 5. The 31P{1H} NMR shows an AB quartet at 18.27, 18.14 ppm, 2JP,P coupling
of 420 Hz and 195Pt satellites with a 1JPt,P of 2530 Hz. In 195Pt NMR, a triplet is detected
at −4340 ppm, with the coupling constant similar to that determined by 31P NMR. Anion
exchange was also noted for DMSO solutions of compound 6, with iodide as counterion.
When dissolved in DMSO-d6, it shows the presence of two new minor species, around
6% each. The mixture remains stable and the ratio of the compounds does not increase
with time nor with the addition of an iodide source. Mass spectrometry of compound 6 in
DMSO solutions allowed to identify one of the compounds as the iodide adduct (8), but we
were unable to identify the second complex. In 195Pt NMR, only the triplet corresponding
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to compound 6 is detected. 31P{1H} NMR shows two pairs of singlets at 17, 28, 17.15 (1JPt,P
of 2482 Hz) and 11.47, 11.40 (1JPt,P of 2420 Hz), but we cannot confidently distinguish
which one is compound 8. Most probably, the singlets located at higher field correspond to
compound 8, being similar to other trans-[Pt(PPh3)2(NHC)I] [19], but we emphasize that
this assignment is purely speculative.
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It should be noted that the substitutions have only been observed for the NHCs 5
and 6. Probably, this is a consequence of the trans effect exerted by the NHC, which can
accelerate [20] the dissociation of bromide to form a vacant site/solvento complex that
would then lead to the formation of the halide complexes, to an extent that is most probably
dependent on the stability of the final compound. The lability of compound 5 and 6 is
indicative of the propensity of these complexes to undergo exchange of the ligand trans
to the NHC moiety. This lability is suggestive of the capacity of adenosine complexes to
coordinate to DNA and of their potential use as antiproliferative compounds which could
complement the well-known activity of adenosine as an anticancer agent [21].
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2.4. Comments on the 31P and 195Pt NMR

The coupling constant of the Pt–P bond can be used as an estimate of the bond
strength in compounds 1–7. Indeed, one bond coupling constants can be used as a measure
of the bond strength when the bond involves some s character, as is the case of Pt–P [22].
Elegant work from Manassero and Pasini showed that in complexes of the type trans-
[PtXY(PPh3)2], in which the mutual trans influence of the two PPh3 remains constant
throughout, any variation on the properties of the Pt–P bond results from changes in X and
Y, and thus reflect the cis influence of these ligands [23]. For these complexes, Pt(II) back
donation to phosphorus is not of relevance [24], and the Pt–P bonds are formed mainly
by sigma donation from P to Pt. Therefore, Pt–P bonds become weaker as the central
platinum becomes less electrophilic [25]. In line with this, cis influence can be defined
as the capacity of a given ligand to lower the positive charge on Pt [20,26]. For these
reasons, we considered that the 1JPt,P obtained for complexes 1–7 should be diagnostic of
the influence of the formation of the NHC and the corresponding σ-donor properties on
the strength of Pt–P. Indeed, in complexes 1–7, the trans effect for the phosphines remains
constant. Compounds 1 and 4 are neutral, while 2, 3, 5, 6 and 7 are salts, with a cationic
platinum centre. The data for 195Pt, 31P and 1JPt,P is compiled in Table 1. All complexes
were measured in DMSO-d6, except complex 3, which was measured only in CDCl3.

Table 1. 31P{1H}and 195Pt NMR data for complexes 1–7.

Compound Solvent 31P (ppm) 1JPt–P(Hz) 195Pt(ppm) ∆1JPt–P(Hz)

1 CDCl3 19.29, 18.13 2735 −4485 -
2 CDCl3 16.15, 15.26 2421 −4498 ∆ (1,2) = 314
3 CDCl3 16.12, 15.04 2408 −4500 ∆ (1,3) = 327
1 DMSO-d6 19.05, 18.04 2786 −4488 -
2 DMSO-d6 17.24, 16.60 2454 −4494 ∆ (1,2) a = 332
4 DMSO-d6 17.93 2812 −4470 -
5 DMSO-d6 16.79, 16.10 2494 −4490 ∆ (4,5) = 326
6 DMSO-d6 15.70, 15.06 2456 −4504 ∆ (4,6) = 364
7 DMSO-d6 18.62, 17.69 2530 −4340 ∆ (5,7) = 74

a Values for DMSO-d6.

When inspecting the values of 1JPt,P for complexes 1, 2 and 3, and 4, 5 and 6, it is
evident that upon NHC formation, 1JPt,P decreases considerably, more than 300 Hz. This
decrease is consistent in protic and methyl NHCs, both in protected and deprotected
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complexes. The decrease is higher for methyl NHCs 3 and 6 than for protic NHCs 2 and
5, perhaps reflecting a slightly higher electron donation due to the methyl group [27].
This is demonstrative of the cis influence of the NHC as a consequence of its σ-donor
capacity, which lowers the electrophilicity of the metal centre. Hence, we can conclude
that formation of the NHC leads to a decrease in Pt–P bond strength. It is also possible to
observe an upfield shift in the 31P signals when going from 1 to 2/3 and 4 to 5/6, which
agrees well with the reduction of electrophilic character of Pt [28,29]. As for the 195Pt
values, an upfield shift is observed upon carbene formation, consistent with the increase
of electronic density at the metal centre [30]. Although complexes bearing the NHCs are
cationic, the overall charge of the cation seems to exert little effect on 1JPt,P values, being
largely compensated by the increase of electron density due to the σ donation of the NHC.
For compound 7, 1JPt,P increases when changing from bromide (6) to chloride. It has been
reported that for halogens, the cis influence decreases in the order I > Cl > F [23]. The
cis influence for bromide was not computed in the aforementioned study, but the value
of 1JPt,P for 7 agrees with a higher cis influence of bromide versus chloride. Although it
is tempting to include in this discussion compound 8, bearing an iodide coordinated to
platinum, we cannot state, in rigor, which of the signals in 31P{1H} spectra correspond to 8.
Two minor compounds are present, one with chemical shifts of 17.28, 17.15 and 1JPt,P of
2482 Hz and the other with chemical shifts of 11.47, 11.40 and 1JPt,P of 2420 Hz. The latter
values agree well with the presence of an iodide [19], and fit the trend previously reported.
Still, our data is insufficient to state confidently that 8 corresponds to that specific peak. As
indicated previously, we were unable to increase the concentration of 8 with the addition
of an excess iodide source.

3. Conclusions

We have synthesized a new set of Platinum(II) complexes based on adenosine N-
heterocyclic carbenes by means of C-Br oxidative addition to Pt(0)PPh3. A suitable depro-
tection methodology allowed to obtain the unprotected complexes while keeping intact
the M–C and the glycosidic bonds. For adenosine complexes, platination at C8 induces
a change in the charge distribution within the nucleoside and N7 becomes more nucle-
ophilic than N1. Compound 5 and 6, when in DMSO solutions, undergo an exchange with
the corresponding counterions, reaching a maximum conversion of 70% for 5 and 7% for 6.
The formation of the NHCs from their anionic adenosinyl precursors occurs with a marked
decrease in the 1JPt,P, which is indicative of a decrease in Pt–P bond strength. This results
from the higher cis influence of the NHC, which makes the Pt centre less positively charged,
reducing its electrophilicity. Evaluation of the antiproliferative activity of these complexes
is currently ongoing.

Supplementary Materials: The synthetic procedures, NMR spectra, mass spectra and X-ray analysis
are available online.
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