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Fate decisions of breast cancer
stem cells in cancer progression
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and Linhai Zhu*

Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China
Breast cancer has a marked recurrence and metastatic trait and is one of the

most prevalent malignancies affecting women’s health worldwide. Tumor

initiation and progression begin after the cell goes from a quiescent to an

activated state and requires different mechanisms to act in concert to regulate t

a specific set of spectral genes for expression. Cancer stem cells (CSCs) have

been proven to initiate and drive tumorigenesis due to their capability of self-

renew and differentiate. In addition, CSCs are believed to be capable of causing

resistance to anti-tumor drugs, recurrence and metastasis. Therefore,

exploring the origin, regulatory mechanisms and ultimate fate decision of

CSCs in breast cancer outcomes has far-reaching clinical implications for the

development of breast cancer stem cell (BCSC)-targeted therapeutic

strategies. In this review, we will highlight the contribution of BCSCs to

breast cancer and explore the internal and external factors that regulate the

fate of BCSCs.

KEYWORDS
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Introduction

Breast cancer is the second major risk of cancer death in women (1). At present,

surgical resection is the preferred treatment for breast cancer, including breast-

conserving surgery (BCS) and mastectomy, and a series of comprehensive treatment

measures such as chemotherapy, radiao-therapy, hormone therapy and other novel

therapies are combined according to clinical-pathology. Despite increasingly accessible

systems for early diagnosis and therapy of breast cancer, it remains the most prevalent of

female malignancies in terms of mortality. Recurrence and metastasis are the main

reason for the increase in mortality (2–4). Most breast cancer patients express receptors

for estrogen (ER) and progesterone (PR) and therefore respond to hormone therapy or

aromatase inhibitors. However, triple negative breast cancer (TNBC) lacks the expression

of ER, PR and human epidermal growth factor receptor-2 (HER-2) (5). Breast cancer

contains a heterogeneous cell population and is divided into for major molecular
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subtypes according to genetic expression, including luminal A,

luminal B, HER2-enriched, and triple-negative (6, 7). Certain

subtypes are prone to drug resistance, resulting in limited

treatment efficacy, which poses a significant challenge to

clinical cure and survival of breast cancer patients.

BCSCs are a class of cells with the ability to continuously

self-renew, proliferate indefinitely and differentiate in multiple

directions, and possess multiple drug-resistant molecules that

are the main cause of drug resistance in breast cancer (8–10).

There are two hypotheses on the origin of BCSCs: one is that

BCSCs originate from adult stem cells and can acquire

malignant behaviors by changing their genetic characteristics;

the other is that BCSCs are transformed by early progenitor cells

that have acquired the ability to self-renew (11, 12). The concept

of BCSCs has been further developed to be involved in mediating

tumor heterogeneity, with the ability to clonally regenerate

tumors after seemingly successful treatment, and is of

profound importance in understanding and treating

hierarchically organized breast cancer (13). Therefore, further

understanding of the fate decisions of BCSCs, identifying

significant roles in tumor recurrence, metastasis and drug

resistance, and developing therapeutic strategies to target

BCSCs are of great clinical significance for the treatment of

breast cancer. Hence, we outline the hierarchy of BCSCs in the

origin of breast cancer and their role in tumor heterogeneity,

recurrence, metastasis and drug resistance, in conjunction with a

discussion of the potential of BCSCs as therapeutic targets to

provide clinicians with new strategies to improve breast

cancer treatment.

Unraveling the routes of mammary
stem cell differentiation

A highly dynamic organ that produces and secretes milk to

nourish offspring, the mammary gland undergoes multiple

phases of remodeling throughout a female’s life and consists of

two main parts: the parenchyma and surrounding stroma. The

parenchyma contains mainly epithelial cells, glandular cells and

myoepithelial cells: the epithelial cells are located in the inner

layer of the milk ducts; the glandular cells form the alveoli,

whose main function during lactation is to secrete milk; and the

myoepithelial cells form the basement membrane, which usually

surrounds or separates the epithelial cells from the glandular

cells (14, 15). The proliferation and differentiation of the

mammary gland is regulated by hormones and growth factors,

for example estradiol, progesterone and prolactin. According to

the characteristics of mammary gland development, it can be

roughly divided into six developmental stages: embryonic stage,

birth to early sexual maturity, sexual maturity, pregnancy,

lactation and involution, as well as each estrous/menstrual

cycle, both local and systemic stimuli can set off the mammary

cell expansions and/or differentiation (16).
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The mammary gland shows such obvious periodicity

because a hierarchical array of mammary stem cells (MaSCs)

and progenitor cells (PCs) are located in the organ, which

maintain the homeostasis under physiological conditions (17).

The differentiation of MaSCs is a two-step journey, consisting of

cell lineage determination (from MaSCs to PCs of a specific

lineage) and maturation (from PCs to particular cell types).

These cells can yield all the mature cell types in the mammary

gland, including ductal, alveolar and myoepithelial, and the

primary outgrowths contain daughter cells that have the same

regenerative capacity as the original stem cells (18). Thus, these

cells have the dual hallmarks of stem cells, multidirectional

differentiation and the ability to self-renew. Stem cell fate

decisions, which begin after the cells differentiate from a

quiescent to an activated state, require different mechanisms to

coordinate and regulate the expression of a specific set of lineage

genes. The presence of stem cells is necessary for the

regeneration of the mammary gland and is important for

studying the mechanisms of organogenesis and cell

differentiation, but abnormal differentiation and proliferation

of stem cells can lead to occurrence of tumors.
Stem cells as the cellular origin of
breast cancer

Unmasking the origins of breast cancer to be still a

challenging and creative topic in the field of oncology

research. The cellular origin of cancer continues to be an

important scientific question. Two major models have been

developed to describe the cellular origin of cancer. In the

somatic mutation model, the stepwise accumulation of a series

of independent mutations in differentiated cells promote the

capability to gradually reprogram and obtain malignant

genotypes (19, 20), while the second hypothesis involves

mutations in stem or progenitor cells (21). It is inevitable that

these twomodels will co-exist. About 5-10% of breast cancers are

inherited susceptibility due to germline mutations, such as

BRCA1 and BRCA2 (22–24). Using single-cell assays, in

BRCA1 mutation breast cancer, basal-like breast cancer (ER-)

and luminal breast cancer (ERhigh) respectively derive from

luminal progenitors and mature luminal cells respectively (25).

These discoveries indicate that breast cancers may be initiated by

mutations in differentiated cells. Interestingly, it is evident that

cancer cells and stem cells share many characteristics, including

high proliferative capacity, longevity, pliancy and the activity of

molecular pathways that regulate stem cells (26). Corinne A

Boulanger1 and Gilbert H Smith’s inventive research in breast

cancer was the first to demonstrate that the mammary epithelial

stem cells were indeed responsible for the evolution of

carcinogenesis in mature mammary gland and formed tumor

stem cell populations (27). Increased expression of stemness-
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associated genes, such as pseudokinase Tribble 3 (TRIB3) (28),

NOTCH1 (29) and SOX9 (30), is positively correlated with the

development of breast cancer. Patients with TNBC tend to have

a comparatively worse outcome than other subtypes, due to their

inherently invasive trait and the lack of molecular targets for

treatment (31). TNBC is often, but not always, a basal-like

subtype and expresses basal like markers (K5, K14, ITGA6, P-

cadherin and Id4) with the character of stemness (32, 33).

Definitely, high expression of stem cell-related gene traits in

the BCSC subpopulation were a potential predictor of worse

prognosis (34, 35). Interestingly, it is hypothesized that the

apparent heterogeneity within breast cancer tumors reflects the

different mammary epithelial cells as the cellular origin and

drivers of malignant transformation (36, 37). A comparison

between specific molecular features of normal breast epithelial

subpopulations and different breast cancer subtypes revealed

that the tumor subtypes appeared to have similar differentiation

characteristics to normal breast cells. The basal-like subtype

expresses intracavitary progenitor cell markers. This appears to

correlate with the basal MaSC molecular subtype and therefore

intuitively indicates that MaSC are a potential cellular source of

basal-like breast cancer. Correspondingly, the HER2, luminal A,

and luminal B subtypes express luminal lineage markers (18)

(Figure 1). Collectively, these discoveries provide several insights

into the origin of breast cancer cells: 1. Is oncogene-induced

transdifferentiation of mammary gland cell sufficient to explain

the plasticity and heterogeneity observed in breast cancer? 2.

Does the continuous differentiation of normal stem cells to
Frontiers in Oncology 03
replenish the pool of progenitor cells during the maintenance

of mammary gland homeostasis contribute to tumorigenesis?
Stem cell hierarchies in
breast cancer

During the last few decades, numerous studies have

demonstrated that both tissue stem cells and CSCs can survive

for long periods of time and have a great proliferative capacity,

which means not only that they can accumulate many

mutations, but also that they share the same capacity for

reversibly entering a quiescent cell-cell state, multidirectional

differentiation, an overlapping immunophenotype and gene

regulatory networks (26) . Through xenotransplant

experiments, Al-Hajj together with colleagues presented

directly the first investigated evidence for the presence of so-

called BCSCs (CD44+CD24-/lowLineage-), which are located at

the top of breast cancer with a hierarchical structure (38).

Subsequently, Christophe Ginestier and colleagues raveled out

that aldehyde dehydrogenase (ALDH) can act as a potential

marker for BCSCs, these cells with the widest lineage

differentiation potential and the greatest capacity for growth

(39). Surprisingly, BCSCs (CD44+CD24-) are predominantly

quiescent and localized at the front of the tumor invasion,

whereas epithelial-like BCSCs expressing ALDH are more

proliferative and more centrally located (40). High-throughput

sequencing technologies developed in recent decades have
FIGURE 1

Schematic diagram of the potential relevance of breast epithelial cell hierarchy and breast cancer stem cell origin to breast cancer subtypes.
MaSCs expose to mutations that cause abnormal differentiation and transformation into cancer stem cells. A comparison between specific
molecular features of normal breast epithelial subpopulations and different breast cancer subtypes revealed that the tumor subtypes appeared
to have similar differentiation characteristics to normal breast cells.
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enabled us to accumulate a wealth of relevant data on BCSC

hierarchies and fate decisions. At the single-cell level, BCSCs

showed high tumorigenesis and expressed stemness and EMT-

related genes, in particular ZEB2, SOX2, ID1 and TWIST1 (41).

Along with the ground, acquiring the properties of EMT allows

the cells to be reprogrammed to a more stem-like state (42).

Importantly, BCSCs, located at the top of the cancer hierarchy,

are considered to be in line with their healthy MaSCs, and they

can exacerbate breast cancer. More studies have confirmed that

BCSCs expressing relevant cell surface markers have biological

properties similar to MaSCs, including ALDH1+ (39), CK5+

(43), CD49f+ (44), ITGA6+ (45). These discoveries provide

insightful evidence not only of the clinical relevance of BCSCs

in breast cancer, but also indicate that breast cancer should be

uniquely therapeutic according to their gene profile (Figure 2).

Noticeably, not all cancers are considered to be stringently

hierarchical in organization. It is generally believed that the CSC

lies at the top of the hierarchy, whereas in reality the CSC

hypothesis is more complex than a simple linear model. Several

discoveries have shown that some non-CSCs can lead to

dedifferentiation through genetic mutation, and exhibit

plasticity by reversibly transitioning between a stem and non-

stem state (46). Importantly, the hierarchical heterogeneity is

beyond genetic mutations and covers non-genetic characteristics

with regard to epigenetic programs, immune characteristics,

inflammatory states and microenvironmental composition.

Lineage plasticity is important for the development of

aggressive BLBC, transcription factor SOX9 can regulate cell

phenotypic plasticity and breast cancer progression (30).
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Similarly, EMT-mediated phenotypic plasticity has important

clinical implications for breast cancer progression and drug

resistance (47). Similar to normal breast cells, BCSCs are able

to respond to external or internal stimuli, debugging their

phenotype and behavior via EMT, reversible quiescence and

senescence or metabolic plasticity to counteract the stress of

treatment. All of these characteristics contribute to the resistance

to treatment of CSCs. For example, BCSCs have built-in

mechanisms to promote phospholipid metabolism and the

generation of free fatty acids, which activate the relevant

signals and maintain stemness, thus contributing to chemo-

resistance as cisplatin, doxorubicin, or tamoxifen. In this case,

phospholipase A2 inhibitors, such as Giripladib, are required in

combination to effectively eliminate BCSCs and inhibit

tumorigenesis (48). Alexander Swarbrick and his colleagues

demonstrated that stromal cues form CAFs, including FGF5

and fibrillar collagen, are capable of inducing and maintain a

stem-like phenotype in TNBC cells by providing a supportive

niche (49). Corporately, these evidences suggest that BCSCs are

not in a specific-widespread phenotype but stay at a certain

plasticity. In conclusion, the model of tumor origin and

evolution is not limited to a single hierarchical level, but also

needs to take fully into account the polyclonal heterogeneity that

characterizes the successive interactions between different cell

populations. Certainly, they are not mutually exclusive and there

may be transitions between BCSC and BCSC-like states, and the

concept of BCSC populations needs to be treated more

dialectically, that is, there may be multiple BCSC populations

of different subtypes.
FIGURE 2

Different subtypes of breast cancer and distinct state of BCSCs. Breast cancer contains a heterogeneous cell population and is divided into four
major molecular subtypes according to genetic expression, including luminal A, luminal B, HER2-enriched, and triple-negative. The typical
molecular expression in each subtype is shown in the figure. There are two major distinct phenotypes of BCSCs: CD44+CD24-/low and ALDH+.
BCSCs (CD44+CD24-) are mesenchymal-like and predominantly quiescent and localized at the front of the tumor invasion, whereas epithelial-
like BCSCs expressing ALDH are more proliferative and more centrally located.
frontiersin.org

https://doi.org/10.3389/fonc.2022.968306
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xu et al. 10.3389/fonc.2022.968306
BCSCs as participant of breast
cancer heterogeneity

Breast cancers show marked heterogeneity due to genomic,

transcriptomic and microenvironmental differences, resulting in

different phenotypes and variability in biological behavior (50).

Due to inter-tumor heterogeneity, they can be classified into

different types based on their morphology, molecular expression

or genomic copy number patterns. There are currently two

models that address the issue of heterogeneous origins: the

clonal evolution model and the CSC model (37). These two

hypotheses are not independent, but rather a coexisting, dynamic

process that provides a theoretical basis for explaining inter-

tumor heterogeneity and intrinsic differences in the regenerative

capacity of breast cancer (51). The clonal evolutionary model

assumes that any undifferentiated and differentiated cell is

capable of accumulating mutations that lead to the creation of

clonal populations of cells within a tumor, while individual

tumor cells in a monoclonal clone share a degree of identical

genetic variation, and different subpopulations of tumor cells

have the ability to mutate individually during tumor evolution,

thereby mediating the creation of tumor heterogeneity. The CSC

model holds that a tumor actually consists of a cluster of stem

cells, as well as cells that are unevenly differentiated, and can

explain breast cancer tumorigenesis (52, 53). Typically, CSCs in

tumors are genetically unstable, with multiple isoforms, and

CSCs that survive adaptively in a clonal pool following altered

microenvironmental niches and targeted therapeutic

approaches, mediating the intar- and/or inter-tumor hierarchy

and promoting malignant progression. In conclusion, further

refinement and emphasis on the evolutionary and adaptive CSC

dynamic concept is complementary to explain the possible
Frontiers in Oncology 05
causes of tumorigenesis, recurrence and metastasis. Therefore,

eliminating the most diverse types of tumor cells, including

BCSCs, is the most fundamental strategy for curing

breast cancer.
BCSC identity markers

The development of BCSC-specific biomarkers for breast

cancer has expanded the understanding of heterogeneity and has

been further validated in both in vivo and in vitro breast cancer

models. These breast cancer stem cells represent only a small

fraction of the cells within the tumor and are extracted by flow

cytometry technique capable of identifying certain patterns of

surface markers (54, 55). A growing number of studies have

revealed and characterized BCSC markers, and these markers

have been shown to identify different stem cell populations well.

As mentioned above, CD44+CD24- and ALDH+ are common

molecular markers for BCSCs. Equally important, due to the

highly heterogeneous character of breast cancer, in which more

different phenotypes of BCSCs may exist, the discovery and

identification of their biological functions could achieve a

substantially more constructive reaction to anti-cancer therapy

in the design of new drugs targeting BCSCs (Table 1).
Regulatory mechanisms of BCSCs

The establishment of the BCSC theory provides the

theoretical basis for explaining the hierarchy and heterogeneity

of breast cancer. These fickle BCSC populations initiate and fuel

tumor growth and are intimately associated with intrinsic
TABLE 1 Principal BCSC identity markers.

Phenotypes Sample sources IsolationIdentification Ref.

CD44+/CD24−/low Human primary breast tumor
Pleural Effusion Injections

FACS (38)

ALDH+ Human breast tumors FACS
ALDH1 IF

(39)

CD133+ BRCA1Dexon11p53+/- mouse mammary tumors FACS
CD133 IF

(56)

CD24+CD29+ and
CD24+CD49f+

BRCA1-mutant mouse mammary tumors FACS
Tumorsphere

(57)

CD44+CD24-ESA+ Human SUM159, SUM1315 and MAD-MB-231 cell lines FACS
BrdU label

(58)

CD49f+EpCAM+ BRCA1-mutant human mammary tissues FACS
Microarray hybridizations

(59)

GD2+ Human breast tumor tissue and SUM-159, HS578T, MDA-MB-231 and MDA-MB-468 cell
line

FACS
Microarray analysis

(60)

CD90hi Human MAD-MB-231 cell line FACS
CD90 IF

(61)

CD133highCXCR4high

-ALDH1high
Human breast tumor tissue with chemo-treated patients Sphere-formation (62)
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treatment-resistant. BCSCs possess significant stemness and

plasticity, and their fate decisions that extensive and complex

regulatory mechanisms are required to coordinate and regulate

the expression of specific lineages of genes, starting after the cell

differentiates from a quiescent to an activated state. Here we

focus on the contribution of transcriptional regulation, signaling

pathway, epigenetic regulation, and post-transcriptional

modifications that occur during this process.
Transcription factors

Transcription factors (TFs), also known as trans-acting

factors, are functional protein molecules that specifically bind

to DNA and regulate gene transcription. Most TFs bind to DNA

before forming dimers or multimers through protein-protein

interactions. In addition to TFs that bind DNA directly, there are

regulatory proteins that do not bind DNA directly, but rather

bind DNA indirectly through protein-protein interactions,

regulating gene transcription and thus forming expression

regulatory complexes. The gene expression that defines the

phenotype is highly coordinated. As a result, regulatory

programs meticulously curated by crucial TFs have been

posited to have a central function in the determination of

cell fate.

Evidently, intratumoral hypoxia is a common manifestation

in advanced cancers. In hypoxic breast cancer cells, HIFs activate

the transcription of target genes that play important roles in

tumor progression, metabolic reprogramming, motility and

chemoresistance (63). Numerous studies have shown that the

response of BCSCs to hypoxia requires HIFs to regulate and

maintain the direct or indirect transcriptional regulation of

BCSC stemness-related factors including NANOG, SOX2, and

KLF4 (64, 65). In addition, HIF-1a maintains the onset of

hypoxia-induced EMT and regulates the plasticity of BCSC

(66, 67). Recently, researches showed that HIF-dependent

ALKBH5 and S100A10 expression mediates the enrichment of

BCSCs in the hypoxic tumor microenvironment (68, 69).

Similarly, HIF-1 can directly activate calreticulin (CALR)

transcription and facilitate breast cancer progression by

promoting the BCSC phenotype in hypoxic (70). Collectively,

these discoveries exhibit that hypoxia increases the percentage of

BCSCs and governs their phenotypic transformation in a HIF-

dependent manner.

Metastasis is the cause of up to 90% of cancer-related deaths,

yet it continues to be the least known integral part of cancer

pathogenesis. The most common sites of metastasis from breast

cancer are bone, lung, brain and liver. Truncated glioma-

associated oncogene homolog 1 (TGLI1) was found to

transcriptionally activate the expression of CD44 and OCT4,

contributing to BCSC renewal and thus promoting brain

metastasis (71). Mechanistically, malignant progression in

breast cancer is accompanied by an increase in the proportion
Frontiers in Oncology 06
of these BCSCs within the tumor and activation of the EMT (72,

73). EMT is a complex transdifferentiation program

characterized by the loss of epithelial-specific features

accompanied by the acquisition of mesenchymal phenotypes

that fuels non-transformed cells and tumor cells to acquire

stemness (74, 75). The loss of epithelial-specific features means

that the tumor is more aggressive and has a poorer prognosis.

Intrinsically, EMT-associated TFs (EMT-TFs) were crucial

regulatory mechanism for tumor progression and metastasis

including, Snail 2, Twist 1, Slug, SOX2/9 and Zeb1/2.
Non-coding RNAs

In contrast to well-known molecular signaling pathways, the

involvement of non-coding RNAs (ncRNAs) in CSC lineage

commitment has only just been discovered. Based on their

biological functions, ncRNAs are divided into two major

categories: housekeeping ncRNAs and regulatory ncRNAs.

Regulatory ncRNAs can be divided into short chain ncRNAs

and long chain ncRNAs according to the sequence length.

ncRNAs with short chains include microRNA (miRNA), small

interfering RNA (siRNA), piRNA and transcription initiation

RNA (tiRNA) have the characteristics of small molecule and

high sequence conservation. Whole-genome sequencing revealed

that ncRNAs comprise 98% of the human gene transcriptome and

consist mainly of miRNAs and LncRNAs that do not have

protein-coding functions (76). A variety of miRNAs and

LncRNAs are responsible for the modulation of BCSCs.
microRNAs

miRNAs are commonly expressed in organisms that are

approximately 18-25 nucleotides in length and can complement

the 3’-UTR of mRNA, leading to the degradation and/or

translational repression of target genes (77). miRNAs act as

regulators in stem cell proliferation, differentiation, apoptosis,

and metabolism (78, 79). In this way, miRNAs act as a switch of

gene networks, either as an oncogene or as a tumor suppressor

gene, and these miRNAs have quickly become an important

class of regulatory genes controlling developmental and disease

processes. In contrast to transcription factors and molecular

signaling pathways, miRNAs involved in stem cell lineage

determination have only just started to be studied. An

increasing number of miRNAs have been found to be

implicated in BCSCs to regulate fate decisions.

Interestingly, miRNAs with micro size but macro function are

known to have profound effects onmaintaining and regulating the

behavior of BCSCs by specifically targeting relevant TFs and

oncogenic signaling pathways and play an important role in

breast cancer initiation and prognosis. miRNAs serve as

oncogenes as well as tumor suppressors. Based on the current
frontiersin.org
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findings, we will focus on describing the regulatory role and

underlying mechanisms of miRNAs management of BSCS self-

renewal, differentiation, metastasis, EMT, drug resistance and

recurrence as potential links to breast cancer pathogenesis.

Analysis of 11 surgically resected breast cancer patient samples

revealed differentially expressed miRNAs in human BCSCs versus

nontumorigenic cells (NTG cells) (80). Three clusters of miRNAs,

including miRNA-200c-141, miR-200b-200a-429 and miR-183-

96-182 cluster, were consistently downregulated in human BCSCs

(80). The miR‐200 family maintains the stemness of BCSCs and is

able to target the EMT-associated transcription factor ZEB1,

thereby up-regulating E-cadherin, the expression of which is

reduced and its inhibitory effect on EMT is diminished (80–83).

Furthermore, other miRNAs, including let-7, miR-27b and miR-

185-3p, were differentially expressed in BCSCs and NTG cells

(84–86). It was recently shown that in BCSCs E2F1 binds to the

Nanog gene to promote its transcription and that miR-185-3p can

target E2F1 leading to a reduction in its expression, thereby

inhibiting the stemness of BCSCs (86). Similarly, miR-378a-3p

and miR-378d can activate the WNT and NOTCH pathways

through targeted inhibition of DKK3 and NUMB, leading to

doxorubicin (DOX) and paclitaxel (PTX) resistance (87). Taken

together, these discoveries show that miRNAs are instrumental in

determining the fate of BCSCs by targeting key coding TFs and

related signaling pathways.

Long noncoding RNAs

LncRNAs are ncRNAs with transcripts longer than 200

nucleotides and little or no protein-coding function. They

regulate gene expression and are involved in biological

processes such as apoptosis, metastasis, stemness maintenance,

proliferation, differentiation, metabolism and drug resistance.

LncRNAs can repress or activate gene expression through a

variety of mechanisms and exhibit specific expression patterns in

different cell and tissue types, respond to different stimuli, and

regulate cell fate (88). In the last decade, researchers have shown

great interest in the role of LncRNAs in CSC lineage

Commitment and differentiation.

LncRNAs influence cell growth, apoptosis and tumor

metastasis by participating in epigenetic, transcriptional or

post-transcriptional gene regulation. Brown and colleagues

summarized the LncRNAs in BCSCs and revealed that a series

of BCSC-associated LncRNAs were enriched in TNBC (89).

Notably, LncRNAs show differential expression in BCSCs versus

non-BCSCs. LncRNA lnc030, which is highly expressed in

BCSCs, is able to stabilize squalene epoxidase (SQLE) mRNA

cooperating with poly(rC) binding protein 2 (PCBP2) and

promote cholesterol synthesis, thereby activating PI3K/Akt to

amplify the stemness properties of BCSCs (90). Likewise, high

expression of LncRNA-ROPM can increase the stability of

PLA2G16 mRNA, thereby promoting phospholipid
Frontiers in Oncology 07
metabolism and activating PI3K/AKT signaling (48). In

addition, other LncRNAs that are upregulated in BCSCs, such

as LncRNA-ROR, LncRNA-HOTAIR, LncRNA-HAL, LncRNA-

Hh (91) and LncRNA-PVT1 (92), are able to induce EMT,

consequently increasing the percentage of BCSC population and

stemness. As LncRNAs research progresses, more and more

LncRNAs will be demonstrated in the regulation of BCSCs.

LncRNAs is a novel regulator of BCSCs by regulating mRNAs,

miRNAs and other LncRNAs and will improve the

understanding of new molecular regulation of BCSCs.
Tumor microenvironment

The tumor microenvironment (TME) plays a pivotal

function in several steps of tumorigenesis and progression,

including drug resistance, immune escape and distant

metastasis. The microenvironment regulates the biological

behavior of BCSCs through direct contact or ECM and

paracrine factors (93). The microenvironment provides fuel

and a proper niche for BCSCs, highly regulates their fate,

protects them from genotoxicity and improves their tolerance

to treatment. Reciprocally, BCSCs are able to influence the TME

while adapting to changes in the TME. The TMEmainly consists

of surrounding normal tissue cells, tumor stroma and

microvessels. For example, tumor cells can release immune

inhibitory cytokines to evade detection by immune cells in

TEM, resulting in immune escape (94). Concurrently, the

TME provides the driving force for BCSC plasticity, inducing

angiogenesis and recruitment of immune and stromal cells,

which in turn accelerates tumor invasion and metastasis.

Stromal cells, such as cancer-associated fibroblasts (CAFs),

are verified that affect BCSC activity through the cell-cell

interactions, the secretion growth factors, cytokines,

chemokines, and the remodeling of the ECM (95). These

secreted factors are involved in a variety of regulatory roles for

cells in TME and tumor cells. In particular, CAFs, a major

component of the stroma, have been shown to support CSC

function by secreting cytokines such as IL-6, IL-8 and IL-1b,
activating signaling pathways, and promoting BCSC stemness

and plasticity (96). The origin of CAFs is now thought to be

multiple, including transference of resident fibroblasts (97),

transdifferentiation of perivascular cells (97), differentiation of

mesenchymal stem cells (MSCs) and EMT. CAFs haven been

found to be able to secrete periostin, which in turn recruits Wnt

ligands, activates intracellular Wnt signaling in BCSCs, remodels

the ECM, establishes a nascent stromal niche and creates the

conditions for metastatic colonization of BCSCs (98). Similarly,

CAFs also secrete FGF5, which promotes fibronectin collagen

formation and remodels the ECM, resulting in the induction of a

reversible BCSC phenotype preferentially at the tumor-stromal

interface (49).
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In addition, CAFs are involved in regulating the biological

behavior of BCSCs through their association with other signaling

pathways. Activation of WNT/b-catenin and HGF/Met

signaling in the mammary gland tumors accelerates the

secretion of the Hedgehog ligand SHH in BCSCs, which

regulates CAFs via a paracrine pathway, and in turn CAFs

further secrete factors (99). Accordingly, the Hedgehog

inhibitor vismodegib was able to reduce the activity of

fibroblasts and breast cancer-forming cells, mechanistically

indicating that Hedgehog signaling to CAFs is a potential

mediator of CSC plasticity and an intriguing new therapeutic

target in breast cancer (49). MSCs and CAFs express high levels

of PEAK1 protein in a PEAK1-dependent manner, which

activates p-AKT, enhancing tumorigenesis (100). In addition,

when MSCs were co-cultured with breast cancer cells, they were

able to induce aberrant expression of microRNAs, such as mir-

199a upregulation, providing breast cancer cells with enhanced

BCSC properties (101). Collectively, these findings identify a

potential mechanism of crosstalk between stromal cells and

BCSCs and aberrant signaling pathway perturbations, and

therefore the development of targeted inhibitors may offer a

novel therapy strategy for the management of breast cancer.

Macrophages are a group of plastic and heterogeneous cells

that are involved in the innate immune response as another

major component of the TME and are capable of regulating the

formation and maintenance of BCSCs through the modulating

the M1/M2 phenotype. It has been shown that tumor-associated

macrophages (TAMs) can activate Src and NF-kB via EphA4,

which in turn induce the secretion of a variety of cytokines such

as IL-6, IL-8 and GM-CSF, thereby establishing a BCSC niche

(102). Consistently, in breast cancer, the reduction of

macrophages reduced the number of BCSC population (103).

In addition, TME-derived endothelial cells provided Jag1 to

neighboring BCSCs, increasing the upregulation of zeb1,

which in turn increased VEGFA production by ectopic zeb1,

inducing endothelial cells to express jag1 in a paracrine manner

(29). Similarly, the cell-cell interaction of BCSCs with CD8+ T

lymphocytes in TME can establish immune tolerance, mainly

due to the ability of BCSCs highly expressing PD-L1 to bind to

the PD-1 receptor on the surface of T cells, which in turn exerts

an inhibitory effect and leads to T cell exhaustion (104). In

addition, ECM, a major component of TME, is a niche that

determines the behavior of BCSCs, such as hydroxylated

collagen, hyaluronic acid, integrates the intra-/extra- cellular

environment signals and activates multiple signaling pathways

leading to BCSC metastatic growth (105, 106).

In a nutshell, the TME provides a niche for BCSCs and

governs their biological behavior. Importantly, the TME varies

markedly between patients, so an exhaustive understanding of

the interactivity of the components of the TME on tumor

progression is paramount. It has been revealed that TME is

potentially of a complex character (107). In parallel, the

heterogeneity of TME has been shown to be a potential
Frontiers in Oncology 08
prognostic factor in identifying different subtypes of breast

cancer (108). Building on this, further refinement of breast

cancer types and understanding of the specificity of BCSCs

offers the potential to accurately predict tumor prognosis and

develop new personalized treatment strategies (Figure 3).
Signaling pathways

BCSCs are usually quiescent and are able to transforming

their phenotype through EMT, metabolic plasticity, and

microenvironment, resulting in limited specific markers.

Therefore, more researches have focused on defining the

mechanisms of relevant signaling pathways regulating the

tumor initiating ability of CSCs. Exhilaratingly, insightful

investigations have verified that many key signaling pathways

are implicated in modulating the lineage commitment and

biological processes of BCSCs.
Wnt

The Wnt family consists of a large number of secreted

glycoproteins with both paracrine and autocrine functions

(109). Wnt is participating in many important biological

processes (109–111). Wnt ligands bind to the seven

transmembrane structural domains of the frizzled receptor,

FZD) and LRP5/6 co-receptors and stabilizes b-catenin by

preventing its phosphorylation (112). The Wnt pathway plays

a key role in BCSC fate.

Abnormal WNT/b-catenin signals are more prevalent in

breast cancer, and clinical evidence indicates that increased

WNT/b-catenin signals are correlated with higher tumor grade

and poorer prognosis (98, 113). In BCSCs, WNT/b-catenin is

relevant to stemness, plasticity and microsphere formation

(114). Canonical and noncanonical Wnt signaling pathways by

promoting the expression CD44 and ALDH1, which in turn

increase the stemness of BCSCs. Canonical Wnt signaling

through b-catenin stabilization and subsequent nuclear

translocation leads to transcriptional activation of b-catenin-
TCF/LEF target genes. Inhibition of b-catenin reduces BCSC

population, tumor size and resistance to doxorubicin (Dox) in

TNBC cells (115). Non-canonical WNT/Ca2+ signaling regulates

the biological behavior of BCSCs through the activation of RTKs

such as ROR1/2 and PI3K/AKT. Just as, Wnt plays an important

role in BCSC, so targeting the canonical and/or noncanonical

Wnt signaling pathway may be an effective marker for

eliminating BCSCs. Recent studies showed that DKK1

inhibited lung metastasis by inhibiting PTGS2-induced

macrophage and neutrophil recruitment and thereby

antagonizing non-classical WNT/PCP-RAC1-JNK signaling.

Conversely, DKK1 promotes bone metastasis by regulating

canonical Wnt signaling of osteoblasts (114). These results
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reveal that amplified Wnt signaling is instrumental in the self-

renewal, apoptosis inhibition and metastasis of BCSCs, and

therefore inhibition of wnt is essential for the elimination of

BCSCs (Table 2). A growing number of preclinical researches are

treating breast cancer by targeting inhibition of Wnt signaling in

BCSCs including OMP-18R5 (Vantictumab) (123), NSC668036

(124) and Pyrvinium pamoate (PP) (122).
Notch

The Notch signaling pathway enables ligand-receptor

interactions through direct cell-to-cell contact. In mammals,
Frontiers in Oncology 09
the Notch signaling pathway involves the Notch receptor

(Notch1-4) and Notch ligand, which is divided into two

classes (Jagged1-2 and Delta-like 1,3,4) that differ due to the

presence of a cysteine-rich structural domain in the Jagged

ligand (125). Notch receptors are activated by ligands on their

neighboring cells, which trigger signals regulating various

cellular differentiation processes.

Notch signaling plays a variety of roles in cancer, including

oncogenesis, carcinogenesis or both. Concurrently, notch

pathway is associated with many aspects of cancer biology,

including metabolism, metastasis, drug resistance and the

maintenance of CSCs. Multiple discoveries have confirmed

that Notch signaling is associated with CSC activity in various
FIGURE 3

Schematic representation of interactions between TME and BCSCs. The microenvironment regulates the biological behavior of BCSCs through
direct contact or ECM and paracrine factors. CAFs secrete cytokines such as IL-6, IL-8 and IL-1b to promote BCSC stemness and plasticity.
MSCs secrete VEGF to feed BCSCs, leading to abnormal vessel growth. Macrophages likewise secrete various cytokines that establish the BCSC
niche and lead to immune tolerance. ECM offers protection to BCSCs from treatment pressure and safeguards their metastatic growth.
TABLE 2 Antagonist of WNT signaling and their effects on BCSCs.

Antagonist Target Functional effects Ref.

PF-06647020 PTK7-ADC Tumor regressions and outperforming standard-of-care chemotherapy in PDX model (116)

OMP-18R5
(Vantictumab)

FZD1/2/5/7/8 Synergistic activity with standard-of-care chemotherapeutic agents (117)

XAV93 Tankyrase 1/2 Combination paclitaxel for TNBC and external carcinogen-induced breast cancer (118)

LGK974 PORCN Inhibition of MMTV-Wnt1-driven mechanistic breast cancer models in mice and rats (119)

Celecoxib Wnt/b-catenin Inhibition of the Wnt/b-catenin pathway to eradicate BCSCs (120)

Sulforaphane Wnt/b-catenin Inhibition of BCSCs and the Wnt/b-catenin self-renewal pathways (121)

Pyrvinium pamoate Unknown Inhibition of stemness regulator expression and tumor regressions in NOD/SCID mice (122)

IONP Wnt/b-catenin Inhibition the expression of Wnt/b-catenin, CD44 and uPAR (115)
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forms of breast cancer. A meta-analysis of tumor molecular

landscapes and several pathological studies have shown that

Notch1 activity is associated with the risk of recurrence in ER+

breast cancer (126). Endocrine resistant BCSCs, most of which

are Notch4-dependent, are a major factor in tumor recurrence

and death (127). Interestingly, unlike Notch4, which is

predominantly located in the basal cell population, Notch1 is

predominantly expressed in the luminal cells of normal breast

epithelium, indirectly suggesting that both may play this specific

role in different subpopulations of BCSCs (127, 128). In patients

with trastuzumab-resistant and HER2+ breast cancer, Notch1

expression was associated with poorer prognosis (129). Under

the circumstances, abrogation of Notch1 expression resulted in a

significant reduction of cancer proliferation in vivo (130). In

particular, Notch3 was capable to act as a mediator of PD-L1

overexpression in BCSCs, activating mTOR and maintaining the

self-renewal and invasive capacity of BCSCs (131). What’s more,

it has been reported that Notch3 does effectively downregulate

Notch1 signaling by repressing the expression of the

downstream genes Hes1 and Hes5 (132). Interestingly, In ER-

human breast cancer samples, survival advantage of Notch2High

over Notch2Low patients in primary and bone metastatic breast

cancer (133). Taken together, these observations suggest a

common theme: deciphering the variation in the expression of

Notch family members in different breast cancer types is

necessary to develop effective treatments for the eradication

of BCSCs.
Eph

Eph receptors are the largest family of RTKs in mammals

and are activated by membrane-linked Ephrin ligands (134–

136). The Eph receptor and its Ephrin ligand have been

implicated as cell-cell communication complexes that

influence the behavior of epithelial cells (137). The function of

the Eph/Ephrin in the initiation of breast cancer has been

analyzed in detail. In the Eph/ephrin system, chromosomal

abnormalities, gene methylation, and alterations in

transcription regulators induce dysregulation of the Eph/

ephrin expression and tumorigenesis (136). It was

demonstrated that EPHB6, an intrinsically catalytically inactive

member of the Eph group, partially inhibits EMT, synergistically

activates RAS-ERK signaling and promotes the expression of

OCT4 in BCSCs, thus exhibiting higher stemness (138). PF-

06647263 was a humanized monoclonal antibody that selected

Ephrin-A4 as a pharmacological target to inhibit the activity of

Ephrin-A4, which was highly expressed in BCSCs, in order to

alleviate the clinical symptoms of TNBC (139). Importantly,

understanding the complexity of the Eph/Ephrin system will

help to elucidate the mechanisms of breast cancer.
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Hedgehogs

Hedgehogs signaling includes SHH, IHH and DHH. The

precursors can be cleaved to produce an active 19kd N-terminal

fragment which binds to the membrane protein Patched gene

(Ptc) and Smoothened gene (Smo). As Hedgehog genes are

linked, Smo is released, leading to the activation of transcription

factors (Gli1-3). In BCSCs, tetraspanin-8 (TSPAN8) was

significantly upregulated, recruiting the deubiquitinating

enzyme ATXN3 to inhibit the degradation of the SHH/

PTCH1 complex, leading to SMO translocation to cilia,

causing resistance to chemotherapeutic agents in CSCs and

enhancing tumorigenesis in mice (140). Dehydrocholesterol

reductase (DHCR24), a key enzyme in cholesterol synthesis,

could promote breast cancer development by enhancing the

Hedgehog and BCSC populations (141). While, Neuropilin-2

(NRP2) had the ability to activate Gli-1 and a6b1 integrins to

induce BCSC initiation (142). Further in depth, Gli-1 and a6b1
integrins mediated the self-renewal and progression of BCSC by

promoting angiogenesis and triggering focal adhesion kinase

(FAK) signaling, respectively (143, 144). Consequently, targeting

the SHH, a6b1, TSPAN8, and FAK can represent an attractive

strategy for breast cancer treatment. Curcumin, a polyphenolic

compound from the rhizome of Curcuma longa, has been

reported to inhibit the proliferation and metastasis of TNBC

cells, EMT and BCSC characteristics via the Hedgehog/Gli1

pathway (145). Similarly, genistein reduced the population of

BCSCs by inhibiting Hedgehog (146). In summary, the search

for integrated interventions in Hedgehog signaling and targeted

inhibition of BCSC biological behavior could provide a new

direction for breast cancer treatment.
PI3K/AKT

PI3K is an intracellular phosphatidylinositol kinase (147).

AKT is composed of three main isoforms (AKT1-3), which are

key effectors of PI3K and can be directly activated by PI3K (148).

PI3K/AKT is involved in regulating BCSC self-renewal, EMT

and invasion (149, 150). PI3K/AKT also induced the of

activation WNT signaling, which in turn increased the

stemness and metastasis of BCSCs. HER2 dysregulation leads

to aberrant activation of (PI3K)-Akt and/or WNT signaling and

enhanced activity of the BCSC population, resulting in

trastuzumab treatment resistance (151). Reciprocally, the role

of the HER2 signaling in BCSCs can be enhanced by the PI3K/

Akt pathway (152). Therefore, an open-label phase II study

demonstrated that trastuzumab and lapatinib, which targeted

HER2, inhibited the expression of FOXO, STAT5 and PI3K/

AKT and suppress BCSC subpopulations (153).

Mammalian target of rapamycin (mTOR) is a serine/

threonine kinase consisting mainly of two distinct protein
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complexes, mTORC1 and mTORC2, which are key target genes

downstream of AKT (154). Activation of PI3K promotes

activation of mTORC1 and mTORC2, while the mTOR

activity is frequently upregulated in human cancers (155).

What’s more, the mTOR pathway is generally considered to be

over-activated in CSCs. The inhibitory effect of some mTOR

inhibitors on CSCs has been demonstrated (156). Rapamycin,

everolimus and PF-04691502 inhibit tamoxifen-induced

activation of BCSCs (157). Inhibition of mTOR restores AKT/

mTOR-induced resistance to radiotherapy in BCSCs (158).

Although mTOR has a role in suppressing BCSCs, a study

showed that treatment of TNBC cells with mTOR inhibitors

upregulated FGF1-FGFR-Notch1 signaling, leading to an

increase in BCSC population (159). In this case, combined

blockade of FGFR or Notch1 may prevent resistance to

mTORC1/2 inhibitors by eliminating BCSCs (160).

Mechanistically, adaptation or resistance to mTOR inhibition

in BCSCs is manifested mainly by transcript ional

reprogramming of the EVI1 and SOX9 to upregulate REHB

and RAPTOR and metastasis-associated mediators (FSCN1 and

SPARC) (161). Corporately, a link between PI3K-Akt-mTOR

and BCSCs is evident.
Intertwining of signaling pathways
in BCSCs

As described previously, these intricate signal transduction

pathways are not linear. The crosstalk among multiple pathways

is also common in breast cancer, for instance, a discovery has
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revealed that Syndecan-1 promoted the activation of IL-6/

STAT3 and EGFR via Notch to regulate inflammation and

phenotype of BCSCs (162). The Hippo transducer TAZ

confers BCSC-related features, including self-renew and

tumor-initiation capacities, through MET (42). FAK can

regulate YAP/TAZ activation (163). Aberrant regulation of

signaling pathways, such as ERa, Notch and Hedgehog, can

lead to abnormal activation of Hippo, resulting in BCSC fate

perturbations (164–166). The cumulative effect of aberrant

regulation of these pathways in breast cancer maintains and

enhances the characteristics of BCSCs, ultimately culminating in

malignant tumor progression. Consequently, a thorough insight

into the perturbations of different pathways in individual

patients is necessary to optimize personalized therapeutic

strategies. Importantly, fully assessing the characteristics and

subpopulation distribution of BCSCs and developing novel

vehicles to eliminate them (Figure 4).
Therapeutic strategies to target
BCSCs: an adventurous voyage

From a clinical perspective, deciphering the relevance of

BCSCs in therapy resistance, including chemotherapy,

radiotherapy, immunotherapy and endocrinotherapy, is one of

the major challenges in the clinical translation of anti-CSC

therapies. Actually, CSCs are involved in tumor recurrence,

metastasis and drug resistance, therefore targeting CSCs may

be helpful and complementary to the treatment of breast cancer,

combating concerns about safety and treatment failure.
FIGURE 4

Schematic representation of different strategies used to target BCSCs. Specific pathways have been implicated in the fate of BCSCs. A select set
of inhibitors have been developed to inhibit specific pathways.
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Excitingly, researchers have recently explored targeted

therapeutic strategies for BCSC quiescence, maintenance

pathways and specific markers.

The availability of BCSC-specific markers has facilitated

researchers to effectively identify them, and commonly markers

used to isolate BCSC include CD44+CD24-, CD133 and ALDH1.

The high expression of these phenotypically and functionally

significant markers in BCSCs compared to normal tissue could

allow novel drugs to identify and block relevant BCSC signaling

pathways, making them more susceptible to elimination by

therapeutic strategies. CD44 is a cell surface receptor that binds

to its ligand hyaluronic acid (HA) and that activates a variety of

intracellular signals, and the interaction between them is used as a

drug target. A study has demonstrated that lapatinib nanocrystals

coated with HA have better therapeutic efficacy than uncoated HA

in TNBC (167). Comparably, CD133, a membrane glycoprotein,

has a demonstrated association with tumor resistance and

recurrence. Polymeric nanoparticles loaded with paclitaxel

targeting CD133 can markedly reinforce CD133+ cell

internalization while significantly suppressing tumor regrowth

in a xenograft model (168). Going further, conjugation anti-

CD133 mAbs with saporin causes CD133+ BCSC proliferation

arrest followed by cell death (169). However, unlike the traditional

membrane proteins, ALDH1 is an enzyme with an activity that is

intimately associated with the ability of BCSCs to self-renewal.

Therefore, targeting ALDH1 is an effective therapeutic agent to

eliminate BCSCs.

In fact, the surface phenotype of BCSCs is constantly in flux

during cancer progression, differentiating or evolving into

different cancer cells and thus obtaining distinct phenotypic

recurrences. As a consequence, this will be the most prominent

challenge in the design of targeted BCSC therapeutic

interventions. Mechanistically, BCSCs undergo cell fate shifts

in response to therapeutic pressure or metastasis, leading to

malignant progression, which is mainly driven by their inherent

genomic and epigenetic instability. Consequently, the strategy

applied in clinical trials should take adequate consideration of

the comprehensive range of elements leading to selective cell fate

decisions, including the tumor microenvironment, intratumor
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heterogeneous cells and signaling cascades. The TME supports

the self-renewal and differentiation of BCSCs, providing a niche

to regulate their cell fate in the form of secreted factors and

intercellular communication. The xenograft NOD/SCID mice

model demonstrated that by affecting the expression of IL-6 in

the local microenvironment of BCSCs, it was possible to regain

ER expression and subsequently CD133hi cells were able to

respond to hormone therapy (170). Inevitably, the damage to

a single local microenvironment established through these

animal models alone cannot fully replicate the reality of

human breast cancer progression, but these adventurous

research methods provide an important theoretical and

temporal basis for extending preclinical studies. With

technological advances, methods such as primary cell culture,

organoid culture and microfluidic 3D biomimetic model allow

for an improved mimicking of the normal t issue

microenvironment, thus providing a new voyage to target the

variable traits of BCSCs (171, 172).

Of vital note, signaling pathways are one of the key factors

regulating the maintenance and evolution of BCSCs, and

therefore targeting these key signals has proven to be an

invaluable vehicle for the elimination of BCSCs. The major

signaling pathways include Wnt, Notch, Eph, Hedgehogs and

PI3K/AKT, which often interact with together in breast cancer

stem cells during the development of breast cancer. Equally

excitingly, with intensive research into cellular immunity, an

additional option for oncology treatments has been developed

with novel anti-BCSC immunotherapies such as immunologic

checkpoint blocking or CAR-T cell therapies. PD-L1 is detected

in 20% of TNBC (173). Deletion of RBMS1 expression by

specific shRNA activates PD-L1 immune checkpoint receptor

blockade to promote anti-tumor immunity in TNBC (174). In a

phase I clinical study of 54 TNBC patients, Atezolizumab

showed an objective response rate of 19% as an inhibitor of

PD-L1 (175). For CAR-T cell therapy, TEM8 (176) and NKG2D

(177) have been used for BCSC-targeted immunotherapy.

Collaboratively, these discoveries shed new perspective on the

preparation of clinically feasible therapeutic strategies for

targeting BCSCs (Table 3).
TABLE 3 Targeting BCSCs with different agents in clinical trials.

Agents Target Sample size Phase Status NCT Number

Bevacizumab ALDH1 75 II Completed NCT01190345

MK-0752 Notch 30 I/II Completed NCT00645333

LDE225 Hh 30 I Completed NCT01954355

AZD8055 PI3K 64 I Completed NCT00731263

OMP-54F28 Wnt/b-catenin 26 I Completed NCT01608867

Reparixin CXCR-1 33 I Completed NCT02001974

LY2157299 TGFBR1 12 I Completed NCT01722825

Lutetium Lu 177 Dotatate SSTR2 10 II Not yet recruiting NCT04529044

GSK3326595 PRMT5 60 II Not yet recruiting NCT04676516
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Conclusion and prospect

To date, we recognize that BCSCs are a small population of

cancer cells with self-renewal and differentiation potential that are

involved in mediating tumor heterogeneity, recurrence, metastasis

and treatment resistance. There is current research indicating that

BCSCs are an attractive target for tackling resistance and

recurrence in the clinical therapy of breast cancer. Fortunately,

BCSCs have the expression of their own specific markers that can

provide post-therapeutic local biopsies with timely information on

treatable targets for the remaining tumor tissue on the basis of

variable biomarkers, thus allowing the selection of targets for the

use of personalized and precise second-line therapy (178, 179).

Especially, it is the introduction of the breast cancer stem cell

concept, which focuses on biomarkers of BCSCs in the post-

treatment period, that offers a new alternative to combating tumor

recurrence. However, further attention needs to be given to the

fact that normal stem cells in the tissue may also express the

overlapping biomarkers and signaling pathways as BCSCs. This

therefore requires that the possible side effects of targeting BCSCs

for the treatment of breast cancer be fully considered, which in

turn requires the rigorous elaboration of identity markers and

signaling patterns that are specific or even unique to the targeted

BCSCs. Meanwhile, BCSCs tend to have quiescent properties

during response therapy, so therapeutic strategies to inhibit

tumor progression do not fully prove to be due to the efficacy of

targeted inhibition of BCSCs. In addition, BCSCs exist in a specific

niche surrounded by heterogeneous cells such as TAMs, MSCs

and CAFs that maintain their long-term survival. However, most

current researches deficient a microenvironment have used

isolated BCSCs and the relationship between BCSCs and their

niches is currently ambiguous. Finally, it is undeniable that the

immunodeficient animal models lacking adaptive immunity used

in the current studies on BCSCs are not capable of recapitulating

the biological complexity of tumors in the clinic (180).

Collectively, there are still many obstacles to cross in achieving

efficient and safe elimination of BCSCs.

In conclusion, the discovery of BCSCs has well revealed that

individual cancer cells from the same tumor exhibit essential

heterogeneity in terms of mutations, transcriptional programs,

immune characteristics and functional properties. Indeed,

BCSCs exist in a dynamic state, with multiple pools in

individual tumors, so combining multiple treatment strategies

to eradicate the pools of therapy-resistant BCSCs on the top of

the heterogeneity is clinically important for preventing cancer
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recurrence. Deeply, cellular plasticity that mediates stemness,

fueling cancer heterogeneity and responding to therapeutic

pressure, further leading to the limitations of anti-CSC

therapeutic strategies. Importantly, the BCSC concept not only

has broad and profound implications for our understanding of

cancer origins and progression, but also has significant clinical

value for the design of more effective and personalized treatment

options in the future. Therefore, a combination of conventional

cytotoxic drugs, immunotherapy agents, endocrine therapy and

eradication of BCSC therapy is a future direction of great

significance for improving the clinical prognosis of

breast cancer.
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