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Influences of Stress and Sex on the
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Implications for Motivated Behavior
Sydney A. Rowson and Kristen E. Pleil*

Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, United States

The paraventricular nucleus of the thalamus (PVT) is a critical neural hub for the
regulation of a variety of motivated behaviors, integrating stress and reward information
from environmental stimuli to guide discrete behaviors via several limbic projections.
Neurons in the PVT are activated by acute and chronic stressors, however several roles
of the PVT in behavior modulation emerge only following repeated stress exposure,
pointing to a role for hypothalamic pituitary adrenal (HPA) axis modulation of PVT
function. Further, there may be a reciprocal relationship between the PVT and HPA
axis in which chronic stress-induced recruitment of the PVT elicits an additional role
for the PVT to regulate motivated behavior by modulating HPA physiology and thus the
neuroendocrine response to stress itself. This complex interaction may make the PVT
and its role in influencing motivated behavior particularly susceptible to chronic stress-
induced plasticity in the PVT, especially in females who display increased susceptibility
to stress-induced maladaptive behaviors associated with neuropsychiatric diseases.
Though literature is describing the sex-specific effects of acute and chronic stress
exposure on HPA axis activation and motivated behaviors, the impact of sex on the
role of the PVT in modulating the behavioral and neuroendocrine response to stress
is less well established. Here, we review what is currently known regarding the acute
and chronic stress-induced activation and behavioral role of the PVT in male and female
rodents. We further explore stress hormone and neuropeptide signaling mechanisms by
which the HPA axis and PVT interact and discuss the implications for sex-dependent
effects of chronic stress on the PVT’s role in motivated behaviors.
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INTRODUCTION

The paraventricular nucleus of the thalamus (PVT) is the most dorsal midline thalamic nucleus
that extends across the anterior-posterior axis of the brain (Kirouac, 2015). The PVT sends
projections to several brain regions involved in arousal, the stress response, and motivated
behavior including the nucleus accumbens (NAc; Neumann et al., 2016; Zhu et al., 2016; Beas
et al., 2018; Cheng et al., 2018), bed nucleus of the stria terminalis (BNST; Hua et al., 2018),
central nucleus of the amygdala (CeA; Do-Monte et al., 2015; Penzo et al., 2015; Chen and Bi,
2019; Keyes et al., 2020), basolateral amygdala (BLA; Amir et al., 2019), and the prelimbic and
infralimbic cortex (Gao et al., 2020). The PVT regulates both positively and negatively valenced
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motivated behaviors through its various limbic outputs,
including natural reward and drug-seeking (Neumann et al.,
2016; Zhu et al., 2016; Cheng et al., 2018), feeding (Cheng
et al., 2018), approach-avoidance (Zhu et al., 2016; Cheng et al.,
2018), and fear conditioning (Penzo et al., 2015), and these are
potentially susceptible to the impact of stress. Also, there are
distinct subpopulations of projection neurons and effects of
acute and chronic stress across the anterior-posterior axis of the
PVT (Bhatnagar and Dallman, 1998; Ver Hoeve et al., 2013; Gao
et al., 2020), however, few studies have examined the relationship
between these features (Beas et al., 2018; Gao et al., 2020).

The PVT is also activated by exposure to salient and stressful
stimuli that activate the hypothalamic-pituitary-adrenal (HPA)
axis and may be involved in integrating past experiences with
present stimuli to guide adaptive behavior (Bhatnagar and
Dallman, 1998; Bhatnagar et al., 2003; Choi and McNally,
2017; Beas et al., 2018; Zhu et al., 2018; Gao et al., 2020).
As such, the PVT becomes activated upon each exposure to
an acute stressor (Radley and Sawchenko, 2015), but it can
develop a more robust role in behavior modulation across
repeated stressor exposures (Bhatnagar et al., 2003). Therefore,
this recruited role of the PVT indicates that the PVT is a site of
plasticity in chronic stress-induced behavioral changes. This view
is supported by converging evidence that stress hormones and
neuropeptides, including glucocorticoids released directly as a
result of activation of the HPA axis, contribute to stress-induced
PVT plasticity.

Intriguingly, there is evidence that one stress-recruited role
of the PVT in behavioral control is in modulating the HPA
axis’s response to acute stress, thus affecting the way that the
HPA axis can regulate PVT function in turn (Bhatnagar and
Dallman, 1998; Bhatnagar et al., 2002). However, whether there
is a reciprocal modulatory relationship between the PVT and
HPA axis that emerges as a consequence of repeated stress is not
yet fully clear. Understanding precisely how the PVT and HPA
axis bidirectionally interact is important to understanding how
the PVT can guide motivated behavior following stress exposure.
Furthermore, given the well-established role of sex differences
in HPA axis activity and responsivity to stress, the PVT’s role
in regulating motivated behavior may be particularly susceptible
to the sex-specific effects of stress. In this review, we discuss
the literature detailing the interactions of sex, stress, and the
HPA axis on the PVT and implications for its role in motivated
behavior. This review will provide a framework for future studies
to better clarify these complex interactions, providing essential
information with implications for understanding sex differences
in stress-related neuropsychiatric diseases.

ACUTE STRESS EFFECTS ON THE PVT,
HPA AXIS, AND BEHAVIOR

Acute Stress and PVT Regulation of
Motivated Behavior
While the roles of the PVT in motivated behaviors have been
extensively reviewed elsewhere (Millan et al., 2017), the impact of
and interaction between sex and stress on these roles is less well-

examined. The PVT responds to both positively and negatively
valenced salient stimuli and directly integrates information to
modulate a variety of behaviors via limbic projections (Choi
and McNally, 2017; Beas et al., 2018; Zhu et al., 2018; Gao
et al., 2020). Some of the roles of the PVT are specifically
toward signaling arousal (Gao et al., 2020) and salience (Zhu
et al., 2018) that guide behavioral responses including fear
(Do-Monte et al., 2015; Penzo et al., 2015), approach-avoidance
(Zhu et al., 2016; Cheng et al., 2018), and drug-seeking behavior
(Neumann et al., 2016; Zhu et al., 2016), all of which are sensitive
to acute stress. Chemogenetic and optogenetic manipulation
studies demonstrate that discrete anatomical outputs of the
PVT are involved in these different behaviors. The projection
from the PVT to the lateral division of the CeA is involved
in fear conditioning (Penzo et al., 2015), and arousal is gated
by populations of PVT neurons that project to the infralimbic
cortex (Gao et al., 2020) and BNST (Hua et al., 2018). The
PVT-NAc circuit has been implicated in drug-use behaviors like
cocaine self-administration (Neumann et al., 2016) and aversion
(including morphine withdrawal-induced aversion; Zhu et al.,
2016), as well as feeding behavior in a novel environment
(Cheng et al., 2018). Disrupting NAc-projecting PVT
neurons reduces the acquisition of cocaine self-administration,
indicating a role of the PVT-NAc circuit in early drug-seeking
(Neumann et al., 2016).

The PVT participates in integrating multiple types
of information to modulate behavior, including during
motivational conflict, and the context and experimental
conditions can impact the role of the PVT (Choi and McNally,
2017; Cheng et al., 2018; Choi et al., 2019). Under stressful
conditions (food restriction) and in an anxiogenic context
(novel environment), but not in the home cage, optogenetic
activation of the anterior PVT (aPVT)-NAc circuit increases
food consumption, indicating that this circuit promotes feeding
during an approach-avoidance conflict (Cheng et al., 2018).
BNST-projecting calretinin neurons in the PVT are activated
by starvation to suppress sleep and promote arousal (Hua et al.,
2018), and data from our group show that BNST-projecting PVT
glutamate neurons are sufficient to reduce avoidance behavior in
an anxiogenic context (elevated plus maze), an effect that may be
due to feedforward inhibition of stress-responsive corticotropin-
releasing factor (CRF) neurons in the BNST (Levine et al., 2020).
Associative learning of salient stimuli rely on the PVT (Zhu
et al., 2018), and the PVT is involved in balancing approach or
avoidance behavior during situations of conflicting motivation
following conditioning (Choi and McNally, 2017; Choi et al.,
2019), discussed in ‘‘Chronic Stress and PVT Regulation of
Motivated Behavior’’ section.

An additional layer of complexity in the role of the PVT in
directing motivated behavior is that the PVT has functionally
distinct populations of neurons across the anterior-posterior
axis of the PVT. These different populations may be related to
their differing circuit organization. For example, CeA projections
regulating fear responses are primarily located in the posterior
PVT (pPVT; Penzo et al., 2015). A population of D2 dopamine
receptor (Drd2)-negative neurons, primarily located in the aPVT,
project to the infralimbic region of the medial prefrontal cortex
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and signal arousal (Gao et al., 2020). Conversely, Drd2-positive
neurons primarily in the pPVT, project to the prelimbic region
of the medial prefrontal cortex and the NAc and are responsive
to stimulus valence (Beas et al., 2018; Gao et al., 2020). Due to
the topographical and circuit organization of the PVT’s role in
behavior that is rapidly emerging in the literature, the impact of
various stressors on the PVT’s behavioral roles may also vary.
Further, the PVT’s ability to integrate prior experiences with
the current context set it up to be a hub for stress memories
critical for guiding motivated behaviors. Subsequent sections
will discuss what is currently known regarding the activation of
the aPVT and pPVT by acute and chronic stressors and their
involvement in guiding appropriate behavioral responses. Also,
females generally exhibit increased HPA reactivity to an acute
stressor compared to males (Weinstock et al., 1998; Bangasser
and Valentino, 2014). Given the many known sex differences
in the effects of acute and chronic stressors on the brain and
behavior but the relative dearth of research examining the
female PVT, we will also consider that there may be critical sex
differences in the PVT’s role in motivated behavior and effects of
stress on PVT physiology and function.

The Impact of Acute Stress on PVT
Activation
The PVT is robustly activated upon exposure to acute stressors
and salient stimuli (Zhu et al., 2018; Gao et al., 2020), and
PVT activity is sensitive to stress exposure across different
stress modalities. Exposure to acute stressors induces increased
mRNA expression of the immediate early gene Fos or its
protein product c-Fos in the PVT of rats, including loud
noise (Burow et al., 2005), ether (Emmert and Herman,
1999), cold (Baffi and Palkovits, 2000), open field (Emmert
and Herman, 1999), foot shock (Bubser and Deutch, 1999;
Brown and Shepard, 2013), forced swim (Cullinan et al., 1995),
social defeat (Lkhagvasuren et al., 2014), and physical restraint
(Chastrette et al., 1991). Further, distinct stressors can elicit
common increases in PVT c-Fos expression, suggesting that
the PVT may serve a role of responding to and integrating
salient stressors regardless of the specific modality. For example,
Baisley et al. (2011) found that both predator (ferret) odor
and foot-shock induced similar levels of PVT c-Fos expression.
Other physiological stressors like systemically administered
drugs of abuse, including cocaine and amphetamine, elicit
robust, dose-dependent c-Fos expression in the PVT (Deutch
et al., 1998). Food deprivation also increases Fos gene expression
in both the aPVT and pPVT in obese but not lean Zucker
rats (Timofeeva and Richard, 2001), suggesting that the PVT
is sensitive to the level of perceived or real stress based on
an animal’s prior experience. Collectively, these data suggest
that the PVT is poised to respond to many salient stimuli
upon first exposure regardless of their valence, and they provide
converging evidence for the PVT’s role in motivated behavior
across valence domains.

It is important to note that the majority of the work
examining acute stress and the PVT has used either male
Wistar (Lkhagvasuren et al., 2014; Careaga et al., 2019) or
Sprague–Dawley rats ( Chastrette et al., 1991; Bubser andDeutch,

1999; Emmert and Herman, 1999; Burow et al., 2005; Brown
and Shepard, 2013). However, recent studies show that the
PVT also is impacted similarly by acute stress in mice (Beas
et al., 2018). While acute stress activation of the PVT has been
less well-examined in mice, exposure to a single prolonged
stress paradigm (a model of PTSD), consisting of exposures to
restraint, swim, predator bedding, and diethyl ether in a single
session, increased c-Fos expression in the PVT in C57BL/6 male
mice (Azevedo et al., 2020). Differences in strain also have the
potential to impact the effect of stressors on the PVT. One study
found that acute restraint stress elicited higher PVT c-Fos in
BALB/c mice, a more stress-sensitive strain, than C57BL/6 mice
(O’Mahony et al., 2010).

And, mouse studies have shown that distinct populations
of neurons across the anterior-posterior axis of the PVT may
be differentially activated by stressful stimuli. Foot shock stress
activates a population of pPVT neurons that project to the
NAc (Beas et al., 2018). Multiple aversive stimuli, including
foot shock and tail suspension, increase activity in a population
of Drd2-positive neurons densely expressed in the pPVT, as
measured by fiber photometry monitoring of calcium activity. In
contrast, these same Drd2 neurons are inhibited by positively-
valenced stimuli such as social interaction and exposure to a
thermoneutral zone, suggesting they are specifically activated
by negatively-valenced stressful stimuli. Drd2-negative neurons
that are primarily located in the aPVT, on the other hand, are
inhibited by both positively and negatively-valenced stimuli (Gao
et al., 2020), indicating their activity is suppressed by salient
stimuli regardless of valence. These data are intriguing, as they
suggest differential functions and valence sensitivity of the aPVT
and pPVT. Data from male rats, however, have shown that
exposure to various acute stressors (loud noise, restraint, or
foot shock) increases Fos mRNA or c-Fos protein expression in
both the anterior (Burow et al., 2005) and posterior (Brown and
Shepard, 2013; Radley and Sawchenko, 2015) regions of the PVT
when specifically examined. Whether differences across studies
are due to organizational differences in function between species
and strains, methods for monitoring activity, cell-type specificity,
and/or other factors is currently unknown.

Sex Differences in Acute Stress Activation
of the PVT
Few studies have examined the impact of acute stress exposure
on the PVT and behavior in females, and more work is needed
to better understand potential sex differences in the PVT in
the acute response to stress. Similarly to males, acute stress
exposure increases c-Fos expression in the PVT of females in
response to both shaker stress (C57BL/6 mice; Mantella et al.,
2004) and immobilization stress (Wistar rats; Ueyama et al.,
2006), though direct comparison of c-Fos levels in the PVT
in males and females across different stressors has not been
performed. Following exposure to an acute stressor, an elevated
HPA corticosterone response in females compared to males
(Weinstock et al., 1998; Bangasser and Valentino, 2014) could be
associated with increased activation of the PVT and differences
in PVT-modulated behaviors, though this is not yet established
in the existing literature. Following multiple stressor exposures,
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differences in male and female PVT activation could cause
differential plasticity within the PVT and have implications for
subsequent behavioral or physiological regulatory activities of the
PVT, discussed in ‘‘Chronic Stress Effects on the PVT, HPAAxis,
and Behavior’’ section.

Ovarian hormones may further impact acute stress activation
of the PVT in females and may differ across the anterior-
posterior axis of the PVT, which may be important given that
the aPVT and pPVT have been shown to sometimes regulate
different motivated behaviors or different aspects of the same
motivated behaviors (Ueyama et al., 2006; Do-Monte et al.,
2017; Beas et al., 2018; Gao et al., 2020). In a study comparing
stress-induced activation of the PVT between ovariectomized
(OVX) rats with and without chronic estrogen (estradiol, E2)
pellet replacement, acute immobilization stress increased c-Fos
expression in the aPVT of OVX but not OVX + E2 rats; in
contrast, it increased c-Fos expression in the mid-PVT in OVX +
E2 but not OVX rats. Notably, c-Fos expression was unchanged
in the pPVT in both groups (Ueyama et al., 2006), contrary
to a previously observed immobilization stress-induced c-Fos
activation of the pPVT in male rats (Chastrette et al., 1991). The
impact of acute stress across the anterior-posterior axis in the
PVT is unclear in intact cycling females because this study did
not include a sham OVX control group, but these data highlight
the ability of E2 to influence stress-induced activation of the PVT
in an anatomically distinct manner (Ueyama et al., 2006).

As there are so few studies that include females, it is difficult
to compare how the impact of stress on the PVT may differ
from males. Drawing conclusions from the few studies including
females is especially complicated as species, strain, and type
of stressor may differentially impact the acute stress response
in males and females. While males may universally exhibit
increased PVT activation in response to acute stressor exposure,
females may be prone to exhibit differential responses depending
on the type of stressor or across the anterior-posterior axis of the
PVT. Furthermore, there is evidence from Ueyama et al. (2006)
that estrogen has a modulating role on the PVT response to
stress (Ueyama et al., 2006), a topic that should be the focus of
more extensive future study. Different PVT responses to acute
stress in males and females can have implications for plasticity
in the PVT following exposure to chronic stressors and impact
subsequent stress responsivity in both motivated behaviors and
HPA physiology.

CHRONIC STRESS EFFECTS ON THE PVT,
HPA AXIS, AND BEHAVIOR

Chronic Stress and PVT Regulation of
Motivated Behavior
While some motivated behaviors are regulated by the PVT
in animals that were not previously exposed to chronic stress
(‘‘Acute Stress and PVT Regulation of Motivated Behavior’’
section), and acute stressors activate the PVT (‘‘The Impact of
Acute Stress on PVT Activation’’ and ‘‘Sex Differences in Acute
Stress Activation of the PVT’’ sections), other behavioral roles
of the PVT become engaged only following exposure to chronic

stressors or repeated experiences (Bhatnagar et al., 2003; Penzo
et al., 2015; Zhu et al., 2016; Keyes et al., 2020). The role of the
PVT in using past experiences to guide appropriate behavioral
responses is illustrated by a study showing that inactivation of the
anterior and posterior PVT disrupts appropriate behavior during
situations of motivational conflict following a conditioning
paradigm in which a conditioned stimulus was paired with first
an aversive stimulus and then paired with reward (or vice versa;
Choi et al., 2019).

Because the PVT is activated by stressors across modalities
and valence (‘‘The Impact of Acute Stress on PVT Activation’’
section), it may be altered by chronic stress exposure across
stress modalities, with implications for regulating different
motivated behaviors. For example, creating an association
between morphine reward and context over repeated training
days in a conditioned place preference paradigm requires
the PVT projection to the CeA, while the maintenance of
this drug reward association, aversion during withdrawal, and
morphine-primed relapse following extinction are dependent on
the PVT-NAc pathway (Zhu et al., 2016; Keyes et al., 2020).
These data demonstrate the role of the PVT-NAc circuit in
drug-related behaviors, particularly following the formation of a
drug memory (but see also ‘‘Acute Stress and PVT Regulation
of Motivated Behavior’’ section for discussion regarding the
PVT-NAc pathway participation in the acquisition of cocaine-
seeking behavior). Negatively-valenced learning and memory
also involve the PVT in both forming fear memory and in
the expression of a fear response. Inactivation of PVT neurons
that project to the CeA during either fear conditioning (Penzo
et al., 2015) or retrieval (Do-Monte et al., 2015; Penzo et al.,
2015) reduces freezing during a retrieval test, and activation of
this pathway increases expression of conditioned fear without
altering avoidance behavior in novel anxiogenic contexts (Chen
and Bi, 2019). These findings suggest that repeated exposure to a
stressful or aversive stimulus, such as shock, may be important
for the recruitment of the PVT-CeA projection in controlling
stable behavioral responses to the stimulus.

These roles for PVT outputs in motivated behavior are
likely related to their anatomical location within the PVT.
Several studies have shown that the pPVT may be particularly
involved in controlling responses to conditioned fear. In male
Sprague–Dawley rats trained in a cued fear conditioning
paradigm to expect foot shock following the presentation of
a tone, pPVT lesions reduce fear expression-freezing following
tone presentation (Li et al., 2014). Activating dopamine β-
hydroxylase (Dbh)-positive locus coeruleus terminals in the
pPVT before fear conditioning increases freezing in a retrieval
test 24 h later (Beas et al., 2018), suggesting that biogenic amines
provide important salience information to the pPVT to promote
the consolidation of conditioned fear.

The evidence from the fear literature shows that some chronic
stressors can change the way the PVT is engaged by an acute
stressor and modulate behavioral responses to it. However,
the specific role of the PVT is sensitive to chronic/repeated
stress modality, and this too may be specific for varying PVT
circuits/subpopulations. In some cases, chronic stressmay recruit
the PVT to become a modulatory brake on stress reactivity or
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anxiety-like behavior expression, though the available evidence is
limited. For example, pPVT lesions cause increased anxiety-like
defensive burying time and height in rats previously exposed
to chronic restraint stress compared to non-stressed rats, while
either the lesion or chronic stress alone did not impact these
behaviors (Bhatnagar et al., 2003). Thus, in many instances,
the modulatory role of the PVT in motivated behavior emerges
only following repeated exposure to stress-related behavioral
stimuli in which integration of these prior experiences is key to
appropriate behavioral expression. This recruited engagement of
the PVT in behavioral regulation of the stress response could be
driven by stress-induced plasticity in the activation or function of
the PVT via direct HPA-dependent or independent mechanisms,
and it may result in an altered role of the PVT in regulating
the HPA axis. Whether these lasting effects of chronic stress
exposure are HPA-axis dependent or independent is not clear,
but bidirectional interaction between the PVT and HPA axis has
the potential to impact both behavior and physiology.

The Impact of Chronic Stress on PVT and
HPA Axis Activation
Chronic stress exposure modifies the HPA axis response to
an acute stressor, typically measured by blood concentrations
of pituitary and adrenal stress hormones. The manner of
the alteration depends on the consistency of modality across
the chronic and acute stressors. The HPA axis response is
typically habituated to an acute stressor that is homotypic to
(the same modality as) the chronic paradigm but facilitated
when it is heterotypic (novel or a different modality than the
chronic stressor), detailed in Table 1 (Bhatnagar and Dallman,
1998; Bhatnagar et al., 2002; Gray et al., 2014; Radley and
Sawchenko, 2015). For example, rats exposed to chronic cold
stress (Bhatnagar and Dallman, 1998) or chronic variable stress
(Radley and Sawchenko, 2015) followed by acute heterotypic
restraint stress, exhibit pronounced ACTH and corticosterone
responses. Conversely, rats exposed to chronic restraint exhibit
blunted ACTH and corticosterone responses to acute homotypic
restraint stress (Gray et al., 2014). It is notable, however, that
these effects of chronic stress on HPA adaptations are not
universal andmay be influenced by the type, severity, and pattern
of stressors, as well as the specific neuroendocrine endpoint,
being assessed (ACTH or CORT; Grissom and Bhatnagar, 2009;
Belda et al., 2015).

Intriguingly, there is evidence that the PVT plays a
vital role in this altered HPA axis response, and studies
measuring PVT activation and function during acute stress
exposure after a history of chronic stress or in rodents with
programmed behavioral trait backgrounds provides insight into
the relationship between stress, the PVT, and the HPA axis.
As discussed in ‘‘Acute Stress Effects on the PVT, HPA Axis,
and Behavior’’ section, acute stress activates the PVT, and even
after multiple exposures to the same stressor, c-Fos is typically
still induced in the PVT (Radley and Sawchenko, 2015). This
occurs after chronic restraint (Radley and Sawchenko, 2015)
and chronic intermittent hypoxia (Sica et al., 2000; Table 1).
There is additional evidence for the roles of the PVT in chronic
stress responses from studies that do not specifically measure

responses to an acute stressor. Chronic social isolation increases
PVT c-Fos (Stanisavljevic et al., 2019), and exposure to a flooded
cage increases aPVT activation after chronic exposure, an effect
that is reversed after a period of normal housing (Akazawa et al.,
2010), suggesting these changes in PVT activation may recover
with sufficient time without stress exposure.

However, the level of PVT activation elicited by an acute
stressor is often inversely related to the displayed stress reactivity.
Male rats bred for high trait anxiety exhibit lower c-Fos
expression in the PVT in response to acute exposure to a novel
open field compared to rats bred to exhibit low anxiety (Salome
et al., 2004). Similarly, following fear conditioning, male rats
that exhibit less freezing after context re-exposure 15 days later
have higher PVT c-Fos than high-freezers and controls that did
not go through training after the second re-exposure to the
fear conditioning context (Careaga et al., 2019). Together, these
studies suggest that stress-evoked activation of the PVT may
suppress the behavioral response to the stressor, discussed in
‘‘Chronic Stress and PVT Regulation of Motivated Behavior’’
section, possibly viamodulation of the HPA axis.

PVT Influence on the Neuroendocrine Response to
Stress
The inverse relationship between PVT activation and stress
reactivity hints at a role for the PVT in suppressing HPA axis
activation in response to acute stressors, and interestingly, this
modulatory role of the PVT emerges only following chronic
stress. Lesion studies show that the PVT has inhibitory activity
on the HPA axis whether the acute stressor is homotypic or
heterotypic to the chronic stress paradigm. Table 2 details
the impact of lesion studies across heterotypic and homotypic
stress paradigms. For example, early work characterizing the
impact of chronic stress on PVT activation by a heterotypic
acute stressor in male rats showed that acute restraint stress
elicited a greater HPA axis response in rats with a history of
chronic cold stress exposure compared to those without a stress
history (Bhatnagar and Dallman, 1998); a follow-up experiment
showed that lesioning the pPVT further increased the HPA axis
ACTH response to the heterotypic stressor in rats exposed to
chronic stress but not in stress-naïve controls (Bhatnagar and
Dallman, 1998). These data suggest that acute stressor-induced
activation of the PVT serves to suppress the acute HPA axis
response only after a history of chronic stress, such that removing
this PVT brake disinhibits the HPA axis, leading to an even
more robust stress response than that facilitated by heterotypic
stress exposure.

The PVT serves the same inhibitory function on HPA
axis activation during homotypic chronic stress paradigms,
evidenced by one study showing that lesioning the pPVT
attenuates HPA axis habituation in a homotypic restraint stress
paradigm (Bhatnagar et al., 2002). Together, these lesion studies
show that the pPVT has an inhibitory influence on the HPA
response to both heterotypic (Bhatnagar and Dallman, 1998)
and homotypic (Bhatnagar et al., 2002) stressors, regardless of
the chronic stress paradigm, but only in rats with previous
exposure to chronic stress. Other groups also find support for the
involvement of the aPVT in habituation to homotypic stress. One
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TABLE 1 | The impact of heterotypic and homotypic stress paradigms on the PVT and HPA axis.

Sex Species/
strain

Age/weight Chronic
stressor

Acute
stressor

PVT response
vs. no chronic
stress

PVT response
vs. no acute
stress/baseline

HPA response
vs. no chronic stress
(post-stress
timing)

HPA response
vs. no acute
stress/baseline
(post-stress
timing)

Citation

Heterotypic stress

Male Rat
Sprague–Dawley

200–225 g Cold Restraint aPVT: – c-Fos
mPVT: – c-Fos
pPVT: ↑ c-Fos
(60 min)

- ↑ ACTH (15 min)
↑ CORT (30 min)

- Bhatnagar and Dallman (1998)

Male Rat
Sprague–Dawley
albino

275–325 g Chronic
variable
stress

Restraint Total: ↓ c-Fos
aPVT: ↓ c-Fos
pPVT: – c-Fos

Total: ↑ c-Fos
aPVT: ↑ c-Fos
pPVT: ↑ c-Fos

↑ ACTH (30 min)
↑ CORT (30, 60,
90 min)

↑ ACTH (30, 60 min)
↑ CORT (30, 60,
90 min)

Radley and Sawchenko (2015)

Male Rat
Sprague–Dawley

190–205 g Defeat Restraint - - ↑ACTH (15 min)
↑CORT (30 min)

- Bhatnagar and Vining (2003)

Female Rat
Sprague–Dawley

PND 69–71 Defeat Restraint PVT: –c-Fos - ↓ ACTH (baseline) - Ver Hoeve et al. (2013)

Male Mouse C57BL/6N Adult CORT
(4 weeks,
drinking
water)

Forced
Swim

PVT: ↓ c-Fos - - - Kinlein et al. (2019)

Homotypic/chronic stress

Male Rat
Sprague–Dawley

200–225 g Restraint Restraint - - ↓ ACTH (15 min)
↓ CORT (15, 30 min)

- Bhatnagar et al. (2002)

Male Rat
Sprague–Dawley
albino

275–325 g Restraint Restraint Total: ↓ c-Fos
aPVT: ↓ c-Fos
pPVT: – c-Fos

Total: ↑ c-Fos
aPVT: ↑ c-Fos
pPVT: ↑ c-Fos

– ACTH
– CORT

– ACTH
↑ CORT (30, 60 min)

Radley and Sawchenko (2015)

Male Rat
Sprague–Dawley

54–55 days Restraint Restraint pPVT: ↓ c-Fos
vs. acute stress

- ↓ ACTH (AUC,
0–90 min)
↓ CORT (AUC,
0–90 min)

- Gray et al. (2014)

Male Rat
Sprague–Dawley

70 days Restraint Restraint - pPVT: – c-Fos - - Lui et al. (2012)

Male Rat
Sprague–Dawley

85 days Restraint Restraint - - ↓ CORT (30, 60 min)
↓ CORT (AUC/min,
0–60 min)

- Bhatnagar et al. (2005)
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group showed a partial attenuation of habituation to homotypic
restraint stress with an aPVT lesion (Fernandes et al., 2002).
These studies suggest that the PVT is recruited after chronic
stress to suppress HPA axis activation and potentially influence
motivated behavior.

PVT Activation by Heterotypic and Homotypic
Stressors
The evidence from lesion studies showing a role of the PVT in
mediating the HPA axis effects of chronic stress is supported
by studies assessing c-Fos activation in the PVT in response
to homotypic and heterotypic acute stressors following chronic
stress, detailed in Table 1. Whether an acute stressor is
homotypic or heterotypic to the chronic stress paradigm, PVT
c-Fos is usually induced by the acute stressor, but the level
of this activation can differ from that evoked in no-chronic
stress controls and may depend on subregion within the PVT
(Bhatnagar and Dallman, 1998; Radley and Sawchenko, 2015).
Radley and Sawchenko (2015) showed that in a heterotypic
stress paradigm, the total PVT, driven by the aPVT, displayed
decreased c-Fos expression in response to an acute restraint
stressor in rats with a history of chronic variable stress compared
to rats without. Others have reported that c-Fos expression in
the pPVT (but not aPVT) was instead increased in chronically
stressed rats following an acute heterotypic stressor (Bhatnagar
and Dallman, 1998). However, the same study showed that
a pPVT lesion exacerbated the HPA axis facilitation, so
increased recruitment, in this case, may reflect a homeostatic
upregulation of pPVT control of the HPA axis serving to
buffer hyperexcitation.

Overall, the limited evidence available reinforces the
implication that PVT activation suppresses acute stress
responsivity. This simplistic interpretation suggests that in
the case of homotypic stress, PVT activation would be higher in
response to an acute stressor in subjects with a history of chronic
stress compared to those without. However, many studies find
that acute stress activation of the PVT is reduced compared to
those without chronic stress in homotypic stress paradigms as
it is in heterotypic paradigms. For example, in the same study,
Radley and Sawchenko (2015) observed a similar reduction in
c-Fos expression in the aPVT and total PVT in response to an
acute homotypic restraint stressor following chronic restraint
as they did in their similar, but heterotypic, paradigm discussed
above (Radley and Sawchenko, 2015). Other groups report a
similar decrease in c-Fos expression but in the pPVT (Gray et al.,
2014), or they report no increase from baseline at all (Lui et al.,
2012), while Radley and Sawchenko (2015), find the pPVT c-Fos
expression no different from no-chronic stress control rats in the
homotypic stress paradigm (Radley and Sawchenko, 2015).

Specific findings shed light on the intricacies of the
relationship between the PVT and HPA axis that are defined
by functionally distinct segments of the PVT. Early studies
indicated that the pPVT but not the aPVT may be primarily
involved inmediating the effects of chronic stress (Bhatnagar and
Dallman, 1998; Bhatnagar et al., 2002), and many have focused
on the posterior region of the PVT (Bhatnagar and Dallman,
1998; Bhatnagar et al., 2000, 2002, 2003; Bhatnagar and Vining,
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2003; Jaferi et al., 2003; Jaferi and Bhatnagar, 2006). Lesion
studies have shown that pPVT lesions increase HPA output in
chronically stressed rats in both homotypic and heterotypic stress
paradigms, however, these studies did not examine the effects
of aPVT lesions because their initial experiments uncovered
no effects of chronic stress on c-Fos expression in the aPVT
(Bhatnagar and Dallman, 1998; Bhatnagar et al., 2002). And
as discussed above, Radley and Sawchenko (2015) found that
the aPVT (but not pPVT) showed reduced c-Fos activation
in response to an acute stressor in both homotypic and
heterotypic stress paradigms compared to chronic stress-naïve
controls. Together, these studies suggest that the PVT, across
its anterior-posterior axis, can be impacted by chronic exposure
to stress, but that anatomically distinct populations may be
impacted differently by chronic stress and in turn, alter HPA
responsivity or motivated behavior differently through distinct
PVT circuitry.

While the reduced c-Fos expression in the PVT in homotypic
stress paradigms is seemingly in conflict with a hypothesis that
PVT activation is inversely related to HPA axis activation in
response to acute stress exposure, it reinforces the evidence from
the literature suggesting that the PVT is responsive to acute
stressors across modalities. And as such, its roles in motivated
behaviors may be sensitive to stressors across modalities and
timeframes. Further, the variability in findings from these studies
speaks to the complexity of the PVT’s organization and function,
and they suggest that targeted analysis of specific subpopulations
(including those defined by topographical location, molecular
class, or circuit organization) may provide insight clarifying the
results of studies measuring overall c-Fos activation patterns in
the PVT.

Circuit-Specific Tuning of the PVT
One particularly interesting contrast is that while both the HPA
axis and PVT have altered responses to and roles in acute stress
responsivity following exposure to chronic stress, the HPA axis
response depends on whether the acute stressor is the same
(homotypic, habituation) or a different modality (heterotypic,
facilitation) than the chronic stressor, while the PVT’s role does
not (always inhibitory). These studies suggest that the PVT alone
does not control the HPA axis response but that chronic stress
engages it to somehow interact with the broader stress control
circuity in the brain at the level of the paraventricular nucleus
of the thalamus, where the activation of corticotropin-releasing
factor (CRF) neurons initiates the HPA axis. However, the PVT
has been described to be a hub of stress memory with the
ability to directly integrate information about past and current
stressors and contexts and control adaptive behavior (Bhatnagar
and Dallman, 1998; Hsu et al., 2014). A recent study shows
that the PVT is particularly important for appropriate action
selection when there is a motivational conflict between cues that
previously predicted appetitive (sucrose availability) and aversive
(foot shock) stimuli (Choi et al., 2019). This suggests that the PVT
is not a simple brake on HPA axis activation but that its role in
guiding motivated behavior and stress responses is highly tuned
to the past and present circumstances and the type of stimuli
and stressors presented. Thus, while the general PVT neuron
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population may show similar responses to both homotypic and
heterotypic stress, specific subpopulations of neurons within the
PVT might be sensitive to differences in these stressors.

One potential mechanism through which the PVT may
influence HPA axis activity differentially in homotypic and
heterotypic stress paradigms is through its glutamatergic
(vGlut2-positive) projection to the BNST (Myers et al., 2014), a
key limbic target of the PVT primarily consisting of GABAergic
projection and interneurons. BNST GABA neurons project to
the parvocellular region of the paraventricular nucleus of the
hypothalamus (PVN) and can directly inhibit CRF neurons
(Dong et al., 2001; Bienkowski and Rinaman, 2011; Crestani et al.,
2013; Colmers and Bains, 2018; Song et al., 2020). Therefore,
the PVT may be able to provide indirect inhibitory control
on the HPA axis via the BNST. One study found that in
response to an acute novel restraint stressor, rats previously
exposed to chronic variable stress (CVS) exhibited lower c-Fos
activation in BNST-projecting PVT (PVT-BNST) neurons and
PVN-projecting BNST (BNST-PVN) neurons, as well as a
potentiated HPA axis response (ACTH and corticosterone),
compared to chronic stress-naïve rats (Radley and Sawchenko,
2015). These results suggest that decreased glutamatergic drive
from the PVT onto BNST-PVN GABAergic neurons may
provide a circuit mechanism for disinhibition of the HPA axis
response to heterotypic stress, leading to facilitation of acute
stress responsivity. Further, this study found that PVT-BNST
neurons did not have decreased c-Fos expression in response to
an acute restraint stressor in a homotypic paradigm (even though
the total PVT did show decreased c-Fos expression in both
paradigms); as such, the intact PVT-BNST-PVN inhibitory brake
on the HPA axis may be sufficient to suppress the physiological
response to the acute stressor. The differential response in
BNST-projectors to heterotypic and homotypic stressors may be
one mechanism through which the PVT discriminates between
heterotypic and homotypic stress in tuning HPA axis activity.

This study suggests that specific PVT neuron activity becomes
an important inhibitor of the HPA axis response to acute stress
following chronic stress (Radley and Sawchenko, 2015). Further,
this study implicates the BNST, known to inhibit paraventricular
hypothalamus CRF neurons that initiate the HPA axis stress
response via GABAergic projections, as a key target of the PVT
neurons modulated by chronic stress. As such, chronic stress
may not only recruit the PVT to modulate motivated behavior
but also to indirectly inhibit acute stress responsivity via the
BNST. During homotypic stress, the continued activation of
the BNST projection population, as part of a broader network
modulating HPA axis function, may be sufficient to support
HPA axis habituation. In contrast, reduced activation during
heterotypic acute stress may permit HPA axis sensitization
through disinhibition via the BNST intermediate GABAergic
synapse. Altogether, these findings implicate the PVT as a site
of chronic stress-induced plasticity across stress exposures that
ultimately recruits the PVT to become a modulatory brake
on stress responsivity that is sensitive to stress modality, with
implications for its role in motivated behavior. However, further
characterization of the role of the PVT in modulating motivated
behaviors through HPA axis regulation, as well as the potential

reciprocal relationship between the effects of chronic stress on
the PVT and HPA axis, is necessary.

Hormone and Neuropeptide Modulation of
PVT Function
Overall, following chronic stress, the PVT is activated similarly
by an acute stressor regardless of whether it is the same
as previously experienced (homotypic) or novel (heterotypic)
stressors. The evidence that the PVT is responsive to stressors
across modalities, both acutely and following chronic stress,
suggests that stress hormones released in response to HPA
axis activation broadly across modalities act within the PVT to
shape its function. However, the specific subpopulations of PVT
neurons, such as those that project to the BNST, are somehow
able to tune their responses to homotypic vs. heterotypic
stressors after chronic stress, perhaps a learned function that
allows for discrimination between and integration of past and
new experiences, different threat levels, and other features to
guide adaptive behavioral output. The ability of the PVT to
respond to yet discriminate between stressors across time may
be achieved by either differential stress hormone responses or
recruitment of different endogenous hormone and neuropeptide
signaling systems across various stressors and chronological
presentations. Here we discuss the literature regarding the
effects of stress hormones and neuropeptides on the function of
the PVT.

Stress Hormones
Stress hormones including glucocorticoids such as
corticosterone/cortisol (rodents/primates, CORT) and
mineralocorticoids such as aldosterone may participate in
the HPA axis habituation to chronic stress via their effects
on the PVT. One study found that 4 weeks of chronic CORT
administration through drinking water blunts activation of
the PVT in response to a subsequent acute stressor (Kinlein
et al., 2019), similar to what occurs during habituation to a
homotypic stressor (Gray et al., 2014; Radley and Sawchenko,
2015). In line with this, stress-induced adaptations in the PVT
that modulate future HPA axis activity are mediated through the
glucocorticoid receptors (GR) and mineralocorticoid receptors
(MR) in the PVT. Inhibition of GR and MR in the pPVT before
each exposure to a chronic stressor prevents HPA axis ACTH
habituation to a subsequent acute homotypic restraint stress
(Jaferi and Bhatnagar, 2006), suggesting that stress hormone
signaling directly in the pPVT is necessary for appropriate HPA
axis habituation.

Interestingly, chronic homotypic stress may also elicit a role
of the PVT in tuning HPA axis negative feedback. Following
chronic homotypic stress, lesioning the pPVT disrupts the
ability of the synthetic glucocorticoid dexamethasone to mimic
CORT when exogenously administered and provide appropriate
negative feedback onto the HPA axis 30 min after the start of
acute restraint stress (Jaferi et al., 2003), while this lesion does
not impact normal dexamethasone suppression in rats without
a history of chronic stress. This may reflect a recruited role of
the PVT in the suppression of the HPA axis but only following
chronic stress exposure, in line with the inhibitory role of the
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PVT only following chronic stress observed in earlier lesion
studies (Bhatnagar and Dallman, 1998; Bhatnagar et al., 2002).

Together, these data suggest that repeated activation of the
HPA axis may lead to chronic stress hormone-induced plasticity
in the PVT, causing the structure to be selectively recruited
after chronic stress exposure to play new or altered roles in
stress responsivity. Repeated exposure to CORT may be one
explanation for why the PVT has a similar c-Fos response to both
heterotypic and homotypic acute stressors, as CORT is released
in response to stressors across modality and paradigm. However,
the impact of this repeated exposure to CORT may differ among
different PVT circuits, allowing tuning of the HPA axis and
discrimination between stress modalities. Further, these findings
are particularly intriguing because they suggest that the recruited
ability of the PVT to tune HPA axis activation (and thus stress
hormone release) in response to acute stress is a direct product
of repeated exposure to those same hormones, implicating a
reciprocal relationship between the PVT and HPA axis in stress.

Neuropeptides
Another mechanism through which the PVT can be impacted
by chronic stress exposure is through interactions with
endogenous neuropeptides. Neuropeptide Y (NPY), αMSH,
serotonin, vasopressin, and CRF are all found in PVT (Freedman
and Cassell, 1994; Forcelli et al., 2007), and hypothalamic
neuropeptidergic neurons, including those that express NPY,
cocaine, and amphetamine-regulated transcript (CART), and
orexin, project to the PVT (Lee et al., 2015). The role of
the orexin/hypocretin system in the PVT has been the most
widely studied and extensively reviewed (Martin-Fardon and
Boutrel, 2012; Matzeu et al., 2014), while the involvement
of other neuropeptides’ signaling and PVT subpopulations
have been understudied to date. The literature suggests that
orexin/hypocretin in the PVT is involved in modulating
behavioral responses in anxiogenic contexts (Li et al., 2010).
Specifically, stimulation of hypothalamic orexin neurons in male
rats reduces time spent in a social interaction zone and increases
c-Fos expression and orexin 1 receptor internalization in the PVT
(Heydendael et al., 2014), suggesting that orexin signaling plays
a pro-stress role in guiding motivated behavior via its actions
the PVT. This is supported by direct evidence that site-directed
administration of a dual orexin receptor antagonist to the
PVT reduces latency to enter a social interaction zone (Dong
et al., 2015), and intra-PVT administration of the endogenous
ligands for orexin receptors, orexin A and orexin B, each
increase avoidance of the open arms of the elevated plus-maze
(Li et al., 2010).

There is also a role for the actions of orexin in the PVT in
balancing the behavioral response to natural and drug rewards
(Matzeu et al., 2014, 2018). For example, intra-pPVT orexin-A
delivery reinstates self-administration of cocaine or sweetened
condensed milk following the conditioning and extinction of
this behavior (Matzeu et al., 2018). However, simultaneous
dynorphin A administration to activate endogenous kappa
opioid receptors blocks cocaine but not sweetened condensed
milk reinstatement, indicating a complex interaction between
orexin and dynorphin signaling in the pPVT in the regulation of

drug-related appetitive motivated behavior that is dependent on
prior repeated exposures and learned associations between drug
rewards and the cues that predict them (Matzeu et al., 2018). On
top of its role in motivated behavior, PVT orexin signaling may
be a key component of the PVT’s recruited role in modulating
acute HPA axis stress responses. For example, administration of
an orexin receptor antagonist during each of four daily forced
swim stressors in the pPVT attenuates the facilitation of the HPA
axis response to acute heterotypic restraint stress on the fifth day
(Heydendael et al., 2011).

There is limited evidence about the role of other neuropeptide
systems in the PVT, suggesting that there may be many more
signaling mechanisms for stress-induced changes in the PVT
and its role in motivated behavior and acute stress responsivity.
Acute stress increases nociception/orphanin FQ mRNA in the
PVT (Zambello et al., 2008), but it is unknown whether this
undergoes plasticity with chronic stress or has an impact on
behavior. Whether and how other neuropeptides from the
hypothalamus and other distal and intra-PVT neurons modulate
PVT function acutely and after chronic stress exposure remains
to be examined. And, as previously discussed, current studies
almost exclusively use male rats. Further study of the impact
of these neuropeptidergic systems in the PVT in females is
especially important as sex differences have been found in the
consequences of chronic stress and exercise on orexin neurons
in the hypothalamus (James et al., 2014) and after chronic
stress alone on hypocretin (orexin)-1 receptor gene expression
in the prefrontal cortex (Lu et al., 2017). There are still many
remaining questions about the role of neuropeptides in the PVT
on HPA axis activity and motivated behavior, including whether
neuropeptides interact with stress hormones in the PVT’s
recruited role in heterotypic and homotypic stress responses.
But together, these studies suggest that neuropeptides could
influence the tuning of HPA axis activity through the PVT. These
neuropeptides may be recruited by different stressors depending
on the stress modality, severity, or pattern, allowing the PVT
to tune its function to discriminate among different stress
modalities and behavioral paradigms, potentially impacting
different motivated behaviors.

Sex Differences in Chronic Stress Effects
on the PVT and HPA Axis
The majority of studies examining the role of chronic stress on
PVT and HPA axis activation occur in male Sprague–Dawley
rats (Bhatnagar and Dallman, 1998; Sica et al., 2000; Bhatnagar
et al., 2002, 2003; Bhatnagar and Vining, 2003; Lui et al., 2012;
Gray et al., 2014). It is therefore unclear how these findings of
the effects of homotypic and heterotypic stress paradigms on the
PVT and HPA axis can be extended to females, as well as to other
species and strains. Here we summarize what is known about the
chronic stress impact on the PVT and HPA axis in females and
how they compare to findings in males.

Chronic Stress in Adulthood
Sex differences in the HPA axis response to acute and chronic
stress have been well established in the literature and reviewed
by others (Goel et al., 2011; Bangasser and Valentino, 2014;
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Green and McCormick, 2016), but the role of the PVT in the
sex-specific consequences of stress is less clear. Male rats
exposed to chronic defeat and then heterotypic restraint exhibit
facilitation of their HPA response to the acute restraint compared
to non-stressed controls (Bhatnagar andVining, 2003). However,
adult female rats exposed to a similar paradigm do not exhibit
differences in the CORT response following exposure to an acute
restraint stressor compared to those without a history of chronic
stress, though they do have blunted ACTH at baseline (Ver
Hoeve et al., 2013). These studies suggest that chronic stress has a
sex-dependent effect on future HPA activity that may be related
to more robust stress-induced adaptations in the PVT of males
than females, at least for heterotypic stress. Furthermore, one
group shows that exposure to a homotypic restraint paradigm
results in more robust habituation of the HPA axis response in
males than in females (Bhatnagar et al., 2005), suggesting that
females may not as readily adapt to repeated stress exposure;
however, sex differences in HPA axis habituation across studies
do not always show this exact pattern, as previously reviewed
(Heck and Handa, 2019).

Activation of the PVT in chronic stress paradigms may
also differ between males and females. The c-Fos expression
is increased in the PVT of female mice following exposure to
an acute stressor (Mantella et al., 2004), as has been shown in
males. However, while male rats with a history of chronic stress
exposure subsequently exposed to a heterotypic stressor (chronic
cold exposure followed by acute restraint) exhibit increased PVT
c-Fos expression compared to controls that were not chronically
stressed (Bhatnagar and Dallman, 1998), female rats exposed to
a heterotypic stressor (social defeat followed by restraint) do not
exhibit different acute stress-induced PVT activation compared
to non-stressed control rats (Ver Hoeve et al., 2013). Whether
this difference is due to a sex difference or due to the use of a
chronic defeat paradigm is unclear, but males in a different study
exposed to a chronic variable stress paradigm exhibit reduced
c-Fos expression in the anterior and whole PVT following novel
stressor exposure compared to stress-naïve controls (Radley and
Sawchenko, 2015). These data suggest that plasticity within the
PVT following chronic stress exposure may differ in males and
females. As the PVT is involved in both regulating motivated
behavior and the HPA axis, differences in PVT plasticity could
manifest in sex-specific vulnerability to chronic stress-induced
disruptions in motivated behavior, perhaps more robustly
in males.

Chronic Stress During Development
Research from developmental stress models suggests that stress
affects the activation of the PVT from an early age and that the
female PVT may be more sensitive to developmental stress than
the male PVT, though the evidence is limited. pPVT activity is
observed in newborn rat pups (Gibbs et al., 1990), suggesting
a developmental role of pPVT activity that could be disrupted
with early life stress exposure. One study examining early life
conditions found that female rats raised in large litters with
reduced access to food and maternal care compared to those
raised in smaller litters exhibited higher anxiety-like behavior
in adulthood and reduced PVT activation in response to acute

stress, suggesting a heterotypic-like stress effect on the female
PVT (Spencer and Tilbrook, 2009). On the other hand, males in
this same study did not exhibit differences in acute stress-induced
PVT activation (Spencer and Tilbrook, 2009), suggesting that
females are more susceptible to early life stress. Another study
showed that adolescent male Sprague–Dawley rats exposed to
chronic stress followed by a heterotypic or homotypic stressor
show similar pPVT c-Fos expression in response to the acute
stressors as a cohort of males that underwent the same paradigm
in adulthood (Lui et al., 2012). These data suggest that the
effects of chronic stress on the male PVT and its response to
acute stressors are fairly stable across development, while female
responses are more sensitive to the developmental stage.

In addition to sex- and age-dependent effects of chronic stress,
the reversibility of these effects may also diverge in males and
females. When male and female rats were exposed to early life
stress, males given a running wheel in late adolescence expressed
a more robust PVT c-Fos activation in response to an acute
restraint stressor than controls and those exposed to early life
stress alone; in contrast, females exhibited a less robust c-Fos
response than the other groups, showing that chronic early life
stress can cause sex-dependent PVT plasticity (James et al.,
2014). These male rats also exhibited a behavioral recovery
of early life stress effects when given a running wheel, while
females did not, providing a link between differential PVT
activity and the impact of stress on behavior and suggesting
that the reversal of developmental stress effects on the PVT
is more achievable in males than females (James et al., 2014).
This inability of PVT plasticity to recover hints at a potential
mechanism for females’ increased susceptibility to stress-induced
neuropsychiatric disease phenotypes in humans.

Future studies are necessary to further dissect the role of the
PVT in the intricate, sex-specific HPA axis-PVT relationship
during heterotypic and homotypic stress. Though data about
the impact of chronic stress on the activity of PVT in females
is limited, these studies suggest that PVT adaptations to
chronic stress may differ in males and females, particularly
in their response to novel acute stressors, and depend on the
developmental stage. Bhatnagar and colleagues propose that the
potentiated HPA and PVT response in males exposed to chronic
stress and a heterotypic stressor allows an organism to integrate
previous information to adequately respond to a novel threat
(Bhatnagar and Dallman, 1998; Hsu et al., 2014); it is, therefore,
possible that this adaptation is disrupted or is mechanistically
different in females and has potential implications on the future
stress response. Differential adaptations following chronic stress
in the PVT in males and females that alter the activity of the HPA
axis can have sex-specific consequences on motivated behaviors
through both PVT and HPA axis-driven mechanisms.

CONCLUSIONS

The PVT is an important regulator of motivated behavior,
and additional regulatory roles of the PVT emerge only after
exposure to repeated behaviors or stimuli; this is particularly
pronounced following repeated exposure to stress. PVT activity
is both responsive to acute and chronic stress and has the
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ability, particularly following chronic stress exposure, to regulate
the HPA axis response to acute stress. Furthermore, distinct
neuronal populations within the PVT have independent roles
in guiding future motivated behavior and the neuroendocrine
stress response and may be impacted differently by chronic
stress. Due to the complexity of the PVT’s organization and
its impact on motivated behavior, the potential consequences
of stress on the PVT’s role in behavioral control are equally
complex. Recent studies using fiber photometry have shown
stress-responsive activity of PVT neurons in discrete circuitry,
and optogenetic and chemogenetic studies have shown the
complexity of the PVT’s role in motivated behavior through
modulation of distinct behaviors through projections to different
target regions. However, the impact of chronic stress in these
distinct circuits and the potential impact on behavior is still
understudied. Increased specificity with a future study focusing
on the impact of heterotypic and homotypic stress paradigms
in distinct PVT circuitry will provide more precise insight into
the impact of stress on the PVT’s role in motivated behaviors.
Furthermore, an improved understanding of the impact of stress
hormones and neuropeptides within these circuits in heterotypic
and homotypic stress paradigms is important because signaling
mechanisms are involved in aberrant behavioral responses to

novel or acute stimuli following exposure to stress are relevant
for understanding stress-related neuropsychiatric disease. Future
research on the PVT’s role in heterotypic and homotypic
stress paradigms will have a greater impact on understanding
mechanisms of neuropsychiatric disease than studying these
interacting components independently. This may be particularly
important in females, who have increased susceptibility to
stress-related neuropsychiatric diseases, and a more complete
understanding of sex differences in the impact of heterotypic and
homotypic stress on the PVT and its role in motivated behaviors
is necessary.
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