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Apicomplexan parasites are the causative agents of diseases that

include malaria, toxoplasmosis, and coccidiosis. These obligate

intracellular parasites have evolved to use a conserved mechanism

for host-cell invasion. The apicomplexan phylum is defined by the

presence of micronemes and rhoptries, which are distinct

organelles located at the apical end of the parasite. These

organelles secrete molecules necessary for host-cell invasion [1].

Apicomplexan parasites can invade disparate cell types, including

hepatocytes, erythrocytes, lymphocytes, macrophages, and cells

lining the digestive tract. Unlike viruses and intracellular bacteria,

apicomplexans actively invade host cells without relying on host

uptake pathways. As such, host-cell sensing and subsequent

invasion are driven entirely by the parasite in a dynamic and

rapid process. Intracellular residence protects the parasite from

immune attack and enables parasite replication prior to host-cell

lysis and subsequent invasion of neighboring host cells.

The repertoire of ligand-receptor complexes utilized by

parasites for entry into host cells is diverse. Some interactions

occur through cell-specific receptors resulting in high-affinity

interactions, while others occur through multiple lower-affinity

interactions via surface moieties found on several cell types.

Receptor-specific and general cell binding may explain host-cell

tropism of different pathogens, although additional factors are

important. There is growing evidence that multimeric assembly of

parasite ligands and host surface molecules strengthens the host-

pathogen interactions necessary for invasion. We discuss recent

work that has advanced our knowledge of the assembly of adhesive

complexes from two critical apicomplexan pathogens and

highlight areas of research that require further investigation.

Concepts That Define Multimeric Assembly of
Complexes

Affinity, avidity, and valency are necessary concepts to define

receptor-ligand interactions. The strength of attachment for two

binding partners is determined by the affinity of individual binding

sites and the number of interacting binding sites (valency). Avidity

is the accumulated strength of multiple affinities from multivalent

binding sites. The avidity of a multivalent complex is typically far

greater than the sum of the individual affinities because of

synergism between independent sites: dissociation at one site will

be compensated by a bound second site, leading to rapid

reassociation at the first site. Parasite ligands have evolved to

increase both affinity and valency, resulting in high avidity that is

necessary to create strong interactions that anchor parasites to host

cells. Further adhesion strengthening is achieved through

increased local surface concentration of ligands resulting in

multiple focused interactions. In this review, we highlight parasite

protein ligands that have evolved diverse methods to form high-

avidity complexes for invasion. Specific mechanisms include

utilizing repeat units, tandem duplication of adhesive domains,

and homo- or hetero-oligomerizing with multimeric host receptors

upon engagement.

Plasmodium Sporozoite Motility and Invasion

Plasmodium falciparum sporozoites invade the cells of the mosquito

salivary glands prior to injection into the human host. Once

injected, sporozoites migrate through the dermis, enter capillaries,

traverse Kupffer cells that form the endothelial lining of the liver,

and finally invade hepatocytes. The best-characterized invasion

complexes with roles during these processes are mediated by

thrombospondin-related anonymous protein (TRAP) and circum-

sporozoite protein (CSP).

P. falciparum TRAP (PfTRAP) has a role in sporozoite gliding

motility, salivary gland invasion, and sporozoite infectivity [2].

This adhesin is stored within micronemes and is released onto the

cell surface at the anterior tip upon contact with a host cell.

PfTRAP contains two adhesive domains: a von Willebrand factor

type A (VWA) domain and a thrombospondin type-I repeat

(TSR) domain. Attachment to host cells occurs through both the

VWA domain, which is similar to the I-domains of integrins that

are important for magnesium cation coordination, and the TSR

domain that binds to abundantly expressed heparan sulphate

proteoglycans (HSPGs) on the hepatocyte surface [3,4]. Individ-

ually, each domain or repeat binds to its respective interacting

molecule, and the overall avidity of binding is likely increased by

the tandem clustering of multiple repeats and domains

(Figure 1A).

P. falciparum CSP (PfCSP) is the most abundant antigen

expressed on the surface of sporozoites and is the major antigen

of a pre-erythrocytic malaria vaccine that confers limited

protection [5]. PfCSP is anchored to the surface via a glycosylpho-

sphatidylinositol (GPI) moiety and is crucial for sporozoite

infection of hepatocytes [6]. PfCSP shares with PfTRAP the

presence of TSR repeats [7]. The seven degenerate sulphatide

binding motifs in the PfCSP TSR repeats bind the abundantly

expressed HSPGs on host cells, resulting in high-avidity binding

driven by the tandem duplication of individual repeats.
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Plasmodium Merozoite Invasion of Red Blood Cells

The P. falciparum erythrocytic cycle begins with merozoite

recognition and invasion of red blood cells (RBCs). Initial binding

to the RBC is mediated by merozoite surface proteins (MSPs). The

most abundant of the merozoite surface proteins is the complex of

GPI-anchored MSP1 noncovalently attached to MSP6 and MSP7

[8]. MSP1 is proteolytically processed upon merozoite egress from

a previously infected host cell. The multipartite MSP1 complex

resides on the surface of the free merozoite and is shed at the time

of RBC invasion to expose the C-terminal GPI-anchored MSP119

in complex with MSP9 for RBC entry. The MSP119/MSP9

multimer likely stabilizes and enhances the avidity of binding to

the most abundant RBC membrane protein, the band 3

homodimer [9]. Engagement of band 3 is thought to be mediated

by two epidermal growth factor (EGF)-like domains in MSP119

(Figure 1B).

The erythrocyte binding like (EBL) family has a defined role in

recognition of and attachment to erythrocytes by engaging specific

erythrocyte receptors [10–12]. EBL ligands are released from

Figure 1. Multimeric assembly, clustered interactions, and molecular complexes between parasite ligands and host-cell receptors
for invasion. (A) PfTRAP engagement with heparan sulphate proteoglycans (HSPGs) on the hepatocyte surface; (B) proteolytic processing and
shedding of PfMSP1 exposes the 19 kDa fragment (MSP119) that forms an invasion complex with MSP9 and the band 3 homodimer; (C) assembly of
two PfEBA-175 monomers around dimeric glycophorin A of erythrocytes; (D) stepwise multimeric assembly of two PvDBP with two Duffy antigen/
receptor for chemokines on reticulocyte surface; (E) monomeric interaction between PfEBA-140 and glycophorin C on erythrocytes; (F) proposed
complexes of TgMIC2 and TgM2AP and of TgMIC1, TgMIC4, and TgMIC6 on the parasite surface; (G) variations in oligomeric states of GPI-anchored
surface antigens (SAGs) create distinct interaction sites.
doi:10.1371/journal.ppat.1004120.g001
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micronemes onto the apical surface of merozoites during invasion

[13]. These proteins contain one or two conserved Duffy binding

like (DBL) receptor-binding domains (Region II), a cysteine-rich

domain (Region VI), and a transmembrane domain [14]. The

EBL ligands in P. falciparum contain two DBL domains in Region

II and include PfEBA-175, PfEBA-140/BAEBL, PfEBL-1, and

PfEBA-181/JESEBL. Structural and biophysical studies have

elucidated mechanisms of receptor engagement for members of

this family.

The first member of the family to be structurally characterized

was PfEBA-175 (Figure 1C). Two PfEBA-175 monomers dimerize

around the glycosylated extracellular domains of glycophorin A

dimers [15,16], resulting in a high-avidity interaction [17,18]. The

sialylated glycans of glycophorin A are recognized by sialic acid-

binding pockets created at the interface between Region II of each

monomer [16]. The complex assembly requires both DBL

domains of each monomer and is enhanced by additional regions

of PfEBA-175 [17,18].

In P. vivax, the Duffy-binding protein (PvDBP) contains a single

DBL domain that binds to the Duffy antigen/receptor for

chemokines (DARC) (Figure 1D), a nonsignaling G-protein-

coupled receptor on reticulocytes [19–21]. Even though the

DBL domain architectures of PvDBP and PfEBA-175 are

different, these ligands have a similar mechanism of receptor

engagement. PvDBP is monomeric in the absence of DARC, and

DARC binding drives dimerization of PvDBP [22]. Examination

of multimeric assembly in solution and capture of PvDBP:DARC

complexes by crystallography revealed the formation of a

heterotrimer of two PvDBPs bound to one DARC, followed by

a heterotetramer of two PvDBPs engaging two DARCs [23].

These complexes suggest stepwise assembly, which is likely to be

cooperative, leading to a high-avidity PvDBP:DARC interaction.

The two DBL domains of PfEBA-140 Region II independently

bind to sialylated glycans of glycophorin C on erythrocytes [24–

26]. While PfEBA-175 and PvDBP dimerize upon receptor

engagement, PfEBA-140 may contact glycophorin C as a

monomer (Figure 1E) [25,26]. Additional studies are necessary

to examine if multimeric assembly occurs upon receptor binding

or if oligomerization is an important determinant of receptor

specificity. PfEBA-140 Region II has also evolved novel glycan-

binding pockets, distinct from those in PfEBA-175, and these do

not require dimerization [25,26].

Disruption of multimeric assembly is an effective method for

antibody neutralization of parasite growth. An antibody that binds

to the PfEBA-175 dimer interface and receptor-binding sites

effectively disrupts binding to glycophorin A and blocks P.

falciparum invasion [27–29]. Similarly, the residues at the dimer

interface and DARC-binding groove are targeted by naturally

acquired antibodies correlated with disruption of PvDBP binding

[22,23,30]. These studies suggest that assembly of ligands around

receptors leading to high-avidity interactions is an important

determinant of receptor binding and that immune targeting of

oligomeric interfaces in addition to receptor-binding pockets leads

to protection.

Multimeric Micronemal Protein Complexes of
Toxoplasma gondii

The microneme proteins (MICs) in Toxoplasma gondii preassem-

ble in the endoplasmic reticulum and form complexes prior to

transiting to the micronemes. The propensity to form oligomers

with different combinations of partners likely allows the parasite to

expand the receptor repertoire or fine-tune the specificity of

receptor binding. To date, three major complexes have been

identified and functionally characterized in T. gondii attachment to

host cells. First, microneme protein 2 (TgMIC2), a member of the

conserved TRAP family, is found in a heterohexameric complex

with MIC2-associated protein (TgM2AP) (Figure 1F) and plays a

fundamental role in gliding motility and host-cell attachment

[31,32]. Each TgMIC2 monomer binds one TgM2AP monomer

via the TSR repeats in TgMIC2 [33]. Second, TgMIC8, which

complexes with the lectin-like TgMIC3, is essential for rhoptry

secretion and invasion [34]. Third, TgMIC6 forms a multimeric

complex with two adhesins, TgMIC1 and TgMIC4, and

contributes to invasion in vitro and virulence in vivo [35–37].

The TgMIC1:4:6 complex has been the most characterized

structurally (Figure 1F). Although TgMIC1 was classified as a

TRAP family member, structural studies of the N-terminal repeat

units and C-terminal domain have revealed novel adhesion

modules [36,38]. The C-terminal galectin-like domain of TgMIC1

stabilizes the interaction with the EGF domains of TgMIC6,

which in turn anchors the complex via a transmembrane domain

[37,38]. The N-terminus of TgMIC1 contains two micronemal

adhesive repeats (MAR) that bind sialic acid [39]. TgMIC1 forms

a disulfide-linked trimer, and each TgMIC1 monomer further

engages a TgMIC4 monomer, creating a heterohexamer. The two

tandem apple domains of TgMIC4 bind galactose-containing

glycans [39]. The duplication of MAR repeats and apple domains,

coupled with heterohexamerization, likely results in high avidity

by increased valency for sialic acid and galactose.

Toxoplasma Surface Antigens

Surface antigen glycoproteins (SAGs) and SAG-related se-

quence proteins (SRS) are abundant and widely distributed GPI-

anchored adhesins on the T. gondii surface at multiple stages of the

life cycle [40–43]. They are optimally positioned for low-affinity,

lateral interactions with the host-surface glycosaminoglycans,

which act as receptors for Toxoplasma invasion [44,45]. Crystal

structures of SAGs revealed varying levels of dimerization: SAG1

forms a parallel homodimer with an extensive dimer interface

[46], Bradyzoite-specific surface antigen (BRS4) exhibits a smaller

dimer interface [47], while the SAG expressed in sporozoite stage

(SporoSAG) is monomeric (Figure 1G) [48]. Variation in

oligomeric state may impact receptor binding as the SAG1 and

BRS4 dimers create basic pockets implicated in glycosaminogly-

can engagement. The basic pocket is replaced by an acidic cap in

SporoSAG, and the receptor moiety engaged is unclear. It is

plausible that, like EBL-ligands, receptor binding induces or

stabilizes dimerization of SAGs, although further structural studies

in solution are necessary.

In summary, the organization of parasite ligands at the site of

invasion is promoted by multivalent, high-avidity interactions with

host-cell receptors and surface moieties. The strength of attach-

ment can be further increased by clustering of adhesive complexes.

This combination of clustered interactions and multimeric

complexes not only ensures the parasite’s successful entry into

the host cell but also likely promotes evasion from the host’s

immune response by burying potentially protective antigenic

epitopes. Increased avidity has been demonstrated for some but

not all multivalent complexes, and future studies are necessary to

clearly identify the effect of multimeric assembly on binding and

avidity in cases in which this information is lacking. Assembly can

also activate or enhance downstream signaling processes in other

systems, and further studies are needed to decipher whether

signaling is triggered by multimeric assembly during invasion. The

structural determination of critical interfaces in ligand-receptor

binding and the biochemical and biophysical elucidation of
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multimeric assembly mechanisms will provide novel perspectives

on how the invasion process is manifested and regulated. This

information will identify novel ways to block pathogen entry into

host cells.
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