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The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) has become a global health concern. The
development of vaccines with high immunogenicity and safety is crucial for controlling the
global COVID-19 pandemic and preventing further illness and fatalities. Here, we report the
development of a SARS-CoV-2 vaccine candidate, Nanocovax, based on recombinant
protein production of the extracellular (soluble) portion of the spike (S) protein of
SARS-CoV-2. The results showed that Nanocovax induced high levels of S protein-specific
IgG and neutralizing antibodies in three animalmodels: BALB/cmouse, Syrian hamster, and a
non-human primate (Macaca leonina). In addition, a viral challenge study using the hamster
model showed that Nanocovax protected the upper respiratory tract from SARS-CoV-2
infection.Nanocovaxdidnot induceanyadverseeffects inmice (Musmusculusvar. albino) and
rats (Rattus norvegicus). Thesepreclinical results indicate that Nanocovax is safe and effective.

Keywords: COVID-19, SARS-CoV-2, RBD, ACE2, CHO
1 INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) has become a global health emergency (1). Since it was first reported in
Wuhan, China, at the end of 2019, there have been over 165 million cases worldwide and nearly
3.5 million deaths as of May 2021 (2), with no obvious short-term resolution. Like SARS-CoV
(79% genomic sequence identity) (3), SARS-CoV-2 utilizes the receptor angiotensin-converting
enzyme 2 (ACE2), which is expressed on numerous cells (including lung, heart, kidney, and
Abbreviations: COVID-19, coronavirus disease 2019; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; RBD,
receptor-binding domain; ACE2, angiotensin-converting enzyme 2; CHO, Chinese hamster ovary.
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intestine) as the entry fusion receptor by its viral spike, a
homotrimeric complex of spike (S) proteins (4). The S protein is
a homomeric class I fusion protein with each S monomer
containing the N-terminal S1 subunit, which includes the
receptor-binding domain (RBD) and the C-terminal S2 subunit,
which is anchored to the viral membrane and is required for
trimerization of the spike itself and fusion to the host membrane
(5). During fusion to host cell membranes, the S protein undergoes
extensive conformational changes that cause dissociation of the S1
subunit from the complex and the formation of a stable post-
fusion conformation of the S2 subunit (6). Therefore, the S protein
of SARS-CoV-2 plays a vital role in the invasive process.

Potential vaccines against SARS-CoV-2 have focused on the S
protein and include mRNA-lipid nanoparticles that encode the S
protein, viral vectored DNA-based vaccines (notably recombinant
adenoviruses), and subunit vaccines that contain purified S protein
(7, 8). TheWHO has estimated that 102 and 185 S protein-targeted
vaccines are in the clinical and preclinical development phases,
respectively (10). The vaccine candidates that have been developed
or are under development include recombinant protein vaccines,
inactivated vaccines, viral vector-based vaccines, and DNA vaccines
to prevent virus infection. Currently, three vaccines are approved
by the Food and Drug Administration (FDA): BNT162b2 is a lipid
nanoparticle-formulated, nucleoside-modified mRNA vaccine
(Comirnaty®; Pfizer/BionNtech) (11); the Moderna COVID-19
vaccine is mRNA-based (12); and Janssen (Johnson and
Johnson) (13) is based on an adenovirus vector and is used in
adults aged 18 years and older. Besides vaccines, oligonucleotides,
peptides, interferon, and small-molecule drugs have been suggested
to control SARS-CoV-2 infection (14). According to the FDA
during a public health emergency, three anti-SARS-CoV-2
monoclonal antibody (mAb) therapies have been approved for
the treatment of non-hospitalized patients with mild-to-moderate
COVID-19, including bamlanivimab, etesevimab, or casirivimab
with imdevimab (15).

In this study, we have developed a COVID-19 subunit
vaccine, named Nanocovax, based on recombinant protein
technology to produce the extracellular (soluble) portion of the
S protein of SARS-CoV-2. In brief, a gene encoding the S protein
was constructed using the wild-type sequence of the S protein
extracellular domain. The construct was transfected into Chinese
hamster ovary (CHO) cells—the product was named CHO-spike
cells—with the highest S protein expression selected. The S
protein of SARS-CoV-2 was then absorbed into aluminum
hydroxide gel adjuvant (Alhydrogel®; Croda, Denmark). Here,
we describe the preclinical studies of the Nanocovax vaccine and
illustrate its immunogenicity, efficacy, and safety in mouse,
hamster, non-human primate, and rat models.
2 MATERIALS AND METHODS

2.1 Plasmid Construction, Cell Clone,
and Purification
2.1.1 Plasmid Construction
The pCNeoMEM vector was used as the expression vector. The
pCNeoMEM plasmid contained a G418 resistance gene used as a
Frontiers in Immunology | www.frontiersin.org 2
selection marker, a MoMLV promoter to express the target gene,
a human ubiquitous chromatin opening element (UCOE),
untranslated regions from the Chinese hamster EEF1A1 gene
(eEF1A1), and a synthetic matrix attachment sequence (sMAR).
The gene encoding the spike protein of SARS-CoV-2 (UniProt
P0DTC2), codon-optimized for expression in CHO cells, was
synthesized by GenScript (Piscataway, NJ, USA). The optimized
DNA fragment was cloned into the expression vector to create
pCNeoMEM-S, which was completely sequenced using NextGen
Technology at the Center for Computational and Integrative
Biology, Harvard University.

2.1.2 Cell Culture and Protein Expression
CHO cells (cGMP bank, Thermo Fisher Scientific, Waltham, MA,
USA) were propagated and maintained in the animal component-
free, chemically defined medium, PowerCHO-2 (Lonza,
Walkersville, MD, USA) at 37°C and 5% CO2. Suspension cells
were routinely subcultured every 2–3 days at a cell concentration of
2 × 105 cells/ml. Before transfection, the cells were seeded at 1 × 106

cells/ml in a 6-well plate and cultured for 24 h. For transfection,
Lipofectamine LTX Reagent (Thermo Fisher Scientific) was used
following the manufacturer’s instructions. Under optimized
conditions, 3 µg of plasmids was transfected into 1 × 106 cells
per well in 6-well plates using PowerCHO-2 medium. After 48 h of
transfection, the expression of the S protein was evaluated using the
ELISA. After transient transfection, selection was performed by
culturing the transfected cells in PowerCHO-2 medium
supplemented with 400 µg/ml of Geneticin (G418; Sigma-
Aldrich, St. Louis, MO, USA). The selective medium was
replaced every 2 to 3 days for 3 weeks to obtain stable cell lines.
Single-cell cloning was initiated by limiting dilution. The clones
with higher productivity were selected to create a master cell bank
and a working cell bank. Process development was performed using
the high-throughput multi-parallel bioreactors Ambr 15 and Ambr
250 (Sartorius Stedim Biotech, Göttingen, Germany). Protein
production at the pilot scale for non-clinical trial material was
archived in a 500-L bioreactor (BIOSTAT STR® 500; Sartorius
Stedim Biotech, Göttingen, Germany) using a fed-batch process
with PowerCHO-2 as the basal medium, supplemented with Feed 3
(ExcellGene SA, Monthey, Switzerland), trace elements, and
activated sugars (n = 3).

2.1.3 Protein Purification
S protein was purified from the cell broth using an ÄKTA Pilot
600R system (GE Healthcare, Little Chalfont, UK). After harvest,
the cell supernatant was clarified by depth-filtration (Merck
Millipore, Darmstadt, Germany) to remove cells and purified
using consecutive chromatography steps. First, the sample was
loaded onto a Blue Sepharose column (Cytiva, Marlborough,
MA, USA) to specifically collect S proteins and then treated at a
low pH (3.2–3.5) for 60–70 min to inactivate the virus. Next, the
sample was passed through a Q membrane, and then a phenyl
membrane (Sartorius Stedim Biotech, Göttingen, Germany), to
remove host cell DNA, proteins, and endotoxins. Exotic viruses
were removed by nano-filtration. Purified S proteins were
exchanged with storage buffer and filtered through a 0.22-mm
filter (Sartorius Stedim Biotech, Göttingen, Germany).
December 2021 | Volume 12 | Article 766112
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The concentration of the purified protein was determined using
ELISA. The purity of the protein was determined using size-
exclusion high-performance liquid chromatography (SE-HPLC),
residual host cell DNA assay, and residual host cell protein assay.

2.2 SARS-CoV-2 Spike Protein Analysis
2.2.1 Spike Protein Identification
2.2.1.1 Sodium Dodecyl Sulfate–Polyacrylamide Gel
Electrophoresis and Western Blotting Assay
Purified proteins were mixed with loading buffer and loaded onto
sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-
PAGE) gels. Proteins were electrophoresed for 110 min at 80 V
and 500 mA and visualized using Coomassie Brilliant Blue G250
staining (Sigma-Aldrich) or transferred to a nitrocellulose blotting
membrane (Sigma-Aldrich) at a constant current of 250mA for 90
min. Next, the membranes were blocked in 0.5% bovine serum
albumin (BSA) (Sigma-Aldrich) and incubated with human anti-
S1 antibody (Abcam, Cambridge, UK) for 3 h at room
temperature. After being washed, the membranes were
incubated with horseradish peroxidase (HRP)-linked rabbit anti-
human IgG antibody (Abcam) for 1 h at room temperature.
Membranes were washed three times with PBST [1× phosphate-
buffered saline (PBS), 0.1% Tween® 20 Detergent], and the protein
bands were visualized by enhancing the TMB (3,3′, 5,5′-
tetramethylbenzidine) substrate solution (Sigma-Aldrich).

2.2.1.2 Enzyme-Linked Immunosorbent Assay
The culture supernatant sample or purified S protein was coated
onto each well of the microtiter plate and left overnight at 4°C.
After the wells were blocked with 1% BSA for 1 h, dilutions of
human anti-S1 antibody (Abcam) were added to the wells and
incubated for 3 h at room temperature. After being washed,
HRP-conjugated rabbit anti-human IgG antibody (Abcam) was
added and incubated for 1 h at room temperature. The bound
antibodies were detected using TMB substrate (Sigma-Aldrich).
Absorbance was read at 450 nm using a Multimode Plate Reader
(Promega, Madison, WI, USA).

2.2.2 Structure Analysis
2.2.2.1 Molecular Mass Assay
Themolecular mass of the purified protein was measured by Biofidus
AG Analytical Services (Bielefeld, Germany) using matrix-assisted
laser desorption/ionization–time-of-flight mass spectrometry
(MALDI-TOF/MS). In brief, a recombinant SARS-CoV-2 S protein
was desalted and concentrated with C4 ZipTips (Merck Millipore)
and spotted onto a ground steel target using 2′ ,5′-
dihydroxyacetophenone. The sample was measured using MALDI-
TOF/MS (ultrafleXtreme; Bruker Daltonik GmbH, Bremen,
Germany) in positive ion mode. The recorded MS spectra were
processed using FlexAnalysis software (Bruker Daltonik GmbH).

2.2.2.2 Peptide Mapping Assay
Peptide mapping of the purified protein was performed by
Biofidus AG Analytical Services. Briefly, peptide mapping of a
recombinant SARS-CoV-2 S protein was measured by LC-
electrospray ionization–MS (LC-ESI-MS) using different
digestion strategies. The focus of peptide mapping was
Frontiers in Immunology | www.frontiersin.org 3
sequence verification and analysis of N- and C-terminal
modifications. MS analysis was performed using a compact
quadrupole TOF (Q-TOF) mass spectrometer (Bruker
Daltonik GmbH). The recorded LC-ESI-MS and tandem MS
(MS/MS) spectra were processed, annotated, and searched
against a customized sequence database using the Mascot
search engine (Matrix Science, London, UK). Modified
peptides were identified by their exact mass and retention time
and quantified by their mass spectrometric signal intensity.

2.3 In Vivo Immunogenicity Evaluation of
Nanocovax Vaccine in BALB/c Mouse,
Syrian Hamster, and Non-Human
Primate Models
2.3.1 Animal Vaccination
BALB/c mice (6–10 weeks old), Syrian hamsters (Mesocricetus
auratus: 8–12 weeks old), and northern pig-tailed macaques
(Macaca leonina: 4–5 years old) were used for immunological
studies. They were immunized intramuscularly (IM) with
Nanocovax at doses of 25, 50, 75, and 100 µg; and serum
samples were collected for the quantification of S protein-specific
IgG antibodies by ELISA. Blood samples were collected, allowed to
clot at room temperature for 60 min, and then centrifuged at 1,000
× g for 15 min. The upper serum fraction was collected and heat-
inactivated at 56°C for 30 min before use or kept at –20°C.

2.3.2 In Vitro Surrogate Virus Neutralization Assay
The virus neutralization abilities of antibodies in the sera of
BALB/c mice, hamsters, and macaques were determined using
the Surrogate Virus Neutralization Test (cat# L00847, GenScript,
Singapore). The percentages of neutralized virus in the sera were
determined according to the manufacturer’s protocol.

2.3.3 In Vitro SARS-CoV-2 Virus Neutralization Assay
(Plaque Reduction Neutralization Test)
The plaque reduction neutralization test (PRNT) detects and
quantifies the neutralizing antibody SARS-CoV-2 in serum
samples. Sera were twofold serially diluted in culture medium
with a starting dilution of 1:20. The diluted sera were mixed with
100 plaque-forming units (PFU) of the SARS-CoV-2 virus for 1 h
at 37°C. The virus–serum mixtures were added to Vero E6 cell
monolayers and incubated for 1 h at 37°C in a 5% CO2 incubator.
The plates were then overlaid with 1% agarose in cell culture
medium and incubated for 4 days when the plates were fixed and
stained. Antibody titers were defined as the highest serum
dilution that resulted in a >50% (PRNT50) reduction in the
number of plaques. The PRNT was performed in duplicate using
24-well tissue culture plates in a biosafety level 3 facility at the
National Institute of Hygiene and Epidemiology, Hanoi,
Vietnam, adapted from Okba et al. (16).

2.4 Protective Efficacy Evaluation of
Nanocovax Vaccine in Syrian Hamsters
2.4.1 Viral Challenge Study
The hamsters were assigned to the following groups:
1) vaccinated with Nanocovax on days 0 and 7 and then
December 2021 | Volume 12 | Article 766112
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challenged with a high level of the SARS-CoV-2 virus on day 14
by the intranasal route (TCID50 = 2 × 105); 2) vaccinated with
Nanocovax on days 0 and 7 and then challenged with a low level
of the SARS-CoV-2 virus on day 14 by the intranasal route
(TCID50 = 1 × 103); and 3) injected with placebo (PBS) and
challenged with a high/low level of the SARS-CoV-2 virus on day
14 by the intranasal route (TCID50 = 2 × 105 and 1 × 103). The
baseline body weights were measured before infection. Animals
were monitored for signs of morbidity (such as weight loss,
ruffled hair, and sweating) for 14 days. On day 28, the lungs were
collected for SARS-CoV-2 detection by real-time RT-PCR. The
method for the quantitative detection of SARS-CoV-2 in lung
samples was adapted from the WHO protocol (17). Infection
doses were chosen based on the study by Imai et al. (18).

2.4.2 Real-Time RT-PCR
In this study, real-time RT-PCR was performed to quantify the
SARS-CoV-2 level. This PCR amplified the envelope (E) gene of
SARS-CoV-2 using the forward primer 5′-ACAGGTACG
TTAATAGTTAATAGC-3′; reverse primer: 5′-ATATTGCAGC
AGTACGCA-CAC-3′; and probe: 5′-FAMACACTAGC
CATCCTTACTGCGCTTCGBBQ-3′. Real-time RT-PCR assays
were conducted using a TaqMan One-Step RT-PCR kit (Thermo
Fisher Scientific) on a Real-Time PCR System (Bio-Rad,
Hercules, CA, USA) with the following cycling conditions:
55°C for 10 min for reverse transcription, 95°C for 3 min, and
45 cycles of 95°C for 15 s and 58°C for 30 s. The absolute copy
number of viral loads was determined using serially diluted DNA
control targeting the E gene of SARS-CoV-2.

2.5 Safety Evaluation of
Nanocovax Vaccine
According to the International Council for Harmonisation of
Technical Requirements for Pharmaceuticals for Human Use
(ICH)/Good Laboratory Practices (GLP) guidelines with minor
modifications, single-dose and repeat-dose toxicity studies were
performed on adult male and female mice and rats, with a few
modifications. The animals were carefully examined and
weighed before the start of the experiment. In the single-dose
toxicity test, 60 mice of both sexes were divided into six groups
(n = 10, five females and five males) and IM injected with
Nanocovax at single doses of 25, 50, 75, and 100 µg, or with the
placebo. Untreated mice were used as biological controls. All
animals were regularly monitored continuously within the first 4
h for behavioral and pathological signs and then daily for the
next 14 days for mortality, abnormal behavior, and body weight.
In the repeat-dose toxicity test, a total of 36 rats were divided into
six groups (n = 6; three males and three females). Rats were IM
injected with Nanocovax at daily doses of 25, 50, 75, and 100 µg,
or the placebo, for 28 days. Untreated rats were used as biological
controls. Mortality and clinical signs were observed daily, and
body weight was determined at the indicated time points during
the experimental period. At the end of treatment, all tested rats
were anesthetized to collect blood samples for the analysis of
biochemical and hematological parameters. Following the
sacrifice of the animals, three vital organs (kidneys, spleen, and
Frontiers in Immunology | www.frontiersin.org 4
liver) were immediately isolated, weighed individually, and
examined histologically.

2.6 Animal Ethics Statement
This study was carried out in strict adherence to the guidelines of
the Animal Laboratory of Nanogen Pharmaceutical Company,
the National Institute of Drug Quality Control (NIDQC), and
the laboratory of Hanoi Medical University (HMU). The
processes were designed according to the guidelines of the
ICH–Good Clinical Practice (GCP), Drug Administration of
Vietnam, and Association of Southeast Asian Nations
(ASEAN) Common Technical Dossier (ACTD) and approved
by the Ethics Committee of the Ministry of Health.

2.7 Statistical Analysis
The collected data were statistically analyzed using GraphPad
Prism, version 5 (GraphPad Software Inc., San Diego, CA, USA).
Data are expressed as the mean ± SD. Statistical analysis was
performed using two-way ANOVA with Bonferroni post-hoc
tests and one-way ANOVA followed by the Newman–Keuls
multiple comparison test to assess the differences between the
various groups. Differences described as significant in the text
correspond to *p < 0.05, **p < 0.01, and ***p < 0.001.
3 RESULTS

3.1 Recombinant SAR-CoV-2 S
Protein Production
To generate the SAR-CoV-2 antigen for vaccine development,
we designed an optimized DNA sequence encoding the
extracellular domain sequence of the S protein, which has
some changes in 1) the S1/S2 furin cleavage site to minimize
the cleavage of S1/S2 during protein production, 2) the two
proline residues in the S2 domain (986-987) to enhance
prefusion-stabilized SARS-CoV-2 spikes, and 3) the 9-arginine
residue in the C-terminus (Figure 1). The recombinant SAR-
CoV-2 S protein-encoding clone was selected on the basis of
phenotypic stability, productivity, and key quality properties of
the desired product, named CHO-spike cells. The nucleotide
sequence of the gene integrated into the CHO-spike cell genome
was confirmed by sequencing complementary DNA (data
not shown).

Upstream production of S proteins by CHO-spike cells was
performed in a 500-L bioreactor using a fed-batch process with
Feed 3 supplement. The cells were cultured in 380 L of
PowerCHO-2 medium at an initial concentration of 0.5 × 106

cells/ml and fed with 1.5% of the final volume of Feed 3 daily from
day 3 to day 13. The temperature was initially 37°C and was
changed to 32°C on day 3 of the cell culture. Cell density, cell
viability, and protein titer were determined at the indicated time
points. Figure 2 shows the high performance of CHO-spike cells
at a scale of 500 L using the optimized fed-batch protocol. The
CHO-spike cells obtained a maximum cell density of 9.48 ± 0.13 ×
106 cells/ml (Figure 2A) and survived for 13 days with a cell
viability of 85% (Figure 2B). At the end of cultivation, the culture
December 2021 | Volume 12 | Article 766112
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supernatant was harvested and purified for further analysis. The
data showed that the maximum protein titer was 61.4 ± 1.06 mg/L
(Figure 2C) on the day of harvest. SDS-PAGE of the harvested
sample indicated that the predicted protein was approximately 180
kDa, similar to the molecular weight of the S protein (Figure 2D).
In addition, this protein bound specifically to the anti-S1 protein
Frontiers in Immunology | www.frontiersin.org 5
antibody (Figure 2E). The harvested sample was purified using an
ÄKTA Pilot 600R system. The results of the ELISA assay also
indicated that the purified protein concentration was 21.4 ± 0.18 g
per batch with 96.56% purity (Figure 2F). In addition, residual
host cell proteins and DNA were not detected in the purified S
protein (data not shown).
FIGURE 1 | Recombinant SARS-CoV-2 spike (S) protein construct used for Nanocovax. Recombinant S protein (rSPP) construct containing native S protein
sequence (aa 1–1213) followed by the arginine-9 tag. The S1/S2 furin cleavage sites (RRAR) and two amino acids (Kv) were mutated as noted.
A B

D E F

G

C

FIGURE 2 | High-yield production and characterization of recombinant SARS-CoV-2 spike (S) protein. Viable cell density (A). Viability of cells (B). Protein titer from
day 7 to end of fed-batch culture (C). Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) of harvest sample (D). Western blotting of harvest
sample (E). Purity of S protein (F). N- and C-terminal peptide sequencing and blasting to complete non-redundant database of protein sequence storage at the
National Center for Biotechnology Information (NCBI) (G).
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3.2 Characterization of Recombinant
SARS-CoV-2 S Protein
The intact mass analysis data by MALDI-MS also confirmed that
our S protein mass was 185,668 ± 1,849 Da (Supplementary
Data S1). In contrast, the N- and C-terminal sequence and
peptide mapping of recombinant S protein suggested truncation
of N-terminal serine and complete pyroglutamate formation of
the N-terminal glutamine. In addition, the C-terminus showed
high heterogeneity with a C-terminal peptide, with truncation of
aa 1215–1222 being the most abundant variant (Supplementary
Data S2). Furthermore, the conservation of recombinant S
protein was evaluated by comparing the N- and C-terminal
peptide sequences with a complete non-redundant database
of protein sequences stored at the National Center for
Biotechnology Information (NCBI), using the BLASTP
computer program. The analysis data showed that the N- and
C-terminal peptide sequences matched 100% to published SARS-
CoV-2 spike protein sequences (Figure 2G).
3.3 Immunogenicity of Nanocovax
Vaccine in Animal Models
To assess the immunogenicity of Nanocovax, BALB/c mice were
injected with various dosages (25, 50, 75, and 100 µg) of vaccine
absorbed with 0.5 mg of Al3+ (aluminum hydroxide adjuvant)
twice, with 7 days between injections. The levels of total specific IgG
Frontiers in Immunology | www.frontiersin.org 6
were determined by ELISA on day 14 post priming injection. The
results shown in Figure 3A indicate that the IgG levels significantly
increased in a dose-dependent manner. To further evaluate the
immunogenicity of Nanocovax, Syrian hamsters were vaccinated
with various doses of Nanocovax (25, 50, 75, and 100 µg). The
antibodies were detected on days 28 and 45 post priming. The data
from Figure 3B show that the amounts of S protein-specific IgG in
the 25-, 50-, 75-, and 100-µg-vaccinated hamster groups on day 28
were 171.5-fold, 219.8-fold, 222.6-fold, and 253.0-fold that in the
placebo group, respectively. The level of antibodies was slightly
decreased on day 45 in the experiments, at 144.0-fold, 193.8-fold,
240.5-fold, and 196.6-fold than in the placebo group, respectively.

To confirm the immunogenicity of the Nanocovax vaccine,
northern pig-tailed macaques were studied. Monkeys were
administered twice by IM injection with various concentrations
of Nanocovax (25, 50, 75, and 100 µg), or with PBS as a negative
control. After the booster injection on day 7, blood samples were
collected on days 14, 28, and 45 to detect the level of antibodies.
The data in Figure 3C indicate that the levels of S protein-
specific IgG in the vaccinated groups were significantly increased
in a time-dependent manner. On day 28 post priming injection,
the levels of S protein-specific IgG were slightly increased in all
vaccinated groups, at 39.02-fold, 68.58-fold, 87.82-fold, and
97.37-fold than in the control group in the 25-, 50-, 75-, and
100-µg groups, respectively. Similarly, on day 45, the amounts of
S protein-specific IgG in the sera in all vaccinated groups were
A
B

C

FIGURE 3 | Immunogenicity of Nanocovax vaccine using different animal models. The BALB/c mice were intramuscularly injected twice 7 days apart. Blood was
collected on day 14 to determine SARS-CoV-2 S protein-specific antibody IgG levels by ELISA (A). Syrian hamsters were intramuscularly injected twice 7 days apart.
Blood was collected on day 28 and day 45 to determine SARS-CoV-2 S protein-specific antibody IgG levels by ELISA assay (B). Northern pig-tailed macaques were
intramuscularly injected twice 7 days apart. Blood was collected on days 14, 28, and 45 to determine SARS-CoV-2 S protein-specific antibody IgG levels by ELISA
assay (C). The data represent the mean ± SD, and p-values were determined by one-way ANOVA with the Newman–Keuls multiple comparison test and two-way
ANOVA analysis with Bonferroni post-hoc tests (*p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant).
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significantly higher than those in the control group (IgG levels of
25-, 50-, 75-, and 100-µg-vaccinated monkeys were 126.5-fold,
129.1-fold, 159.95-fold, and 205.12-fold, respectively).

In contrast, sera were collected from vaccinated animal models,
and the percentage of neutralizing antibodies was measured using a
surrogate virus neutralization test (SARS-CoV-2 sVNT Kit). For the
BALB/c mice model, blood was collected from the mice after
immunization on day 14 to detect the percentage of inhibition.
As shown in Figure 4A, the four dosages of Nanocovax (25, 50, 75,
and 100 µg) strongly inhibited SARS-CoV-2 virus compared with
the PBS group (***p < 0.001). The inhibition by Nanocovax 50 µg
was not significantly different from that by Nanocovax 75 µg
(89.60% versus 89.40%). A significant difference was observed
between the 25-µg group and the 50-µg group (77.5% versus
89.60%), as well as between the 75-µg and 100-µg groups (89.40%
versus 97.30%). For the Syrian hamster model, blood was collected
Frontiers in Immunology | www.frontiersin.org 7
on days 28 and 45 post priming injection with the four dosages of
Nanocovax. The percentage inhibition was detected using the
SARS-CoV-2 sVNT Kit. As shown in Figure 4B, no significant
difference (p > 0.05) was observed among all groups on day 28 and
day 45 post priming injection with four dosages of Nanocovax
vaccine (25, 50, 75, and 100 µg). Otherwise, the vaccinated hamster
groups showed significant inhibition by antibodies in sera compared
with that in the non-vaccinated hamster group (***p < 0.001). Next,
we measured the virus neutralization ability of antibodies in a non-
human primate model. The monkeys were immunized twice a week
with Nanocovax at dosages of 25, 50, 75, and 100 µg. Sera were
collected on days 14, 28, and 45 after priming IM injection to
determine the inhibition of the S protein using the virus surrogate
neutralization kit. The results in Figure 4C show that the monkeys
vaccinated with the 25-µg dosage of Nanocovax produced no
significant inhibition on day 14 (the percent of inhibition was
A
B

D E

C

FIGURE 4 | SARS-CoV-2-neutralizing antibodies. BALB/c mice were intramuscularly injected twice 7 days apart. Blood was collected on day 14 to determine
SARS-CoV-2-neutralizing antibodies by in vitro surrogate virus neutralization assay (A). Syrian hamsters were intramuscularly injected twice 7 days apart. Blood was
collected on days 28 and 45 to determine SARS-CoV-2-neutralizing antibodies by in vitro surrogate virus neutralization assay (B). Northern pig-tailed macaques were
intramuscularly injected twice 7 days apart. Blood was collected on days 14, 28, and 45 to determine SARS-CoV-2-neutralizing antibodies by in vitro surrogate virus
neutralization assay (C). The SARS-CoV-2 neutralizing antibodies in the BALB/c (D) and hamster (E) models were also measured by PRNT50 assay. The data
represent the mean ± SD, and p-values were determined by one-way ANOVA with the Newman–Keuls multiple comparison test and two-way ANOVA analysis with
Bonferroni post-hoc tests (***p < 0.001; ns, not significant).
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26.14%, lower than the 30% cutoff value). On days 28 and 45, the
monkey groups immunized with the four dosages of Nanocovax
had positive results (>30% cutoff value) and showed no significant
differences in the percentages of inhibition.

Furthermore, SARS-CoV-2-neutralizing antibodies can be
measured by the PRNT50 viral neutralization assay, which is
used to determine the levels of neutralizing antibodies in the
sera of vaccinated animals. The results in Figure 4D show that the
specimens of BALB/c immunized with Nanocovax had SARS-
CoV-2-neutralizing antibodies (1/PRNT50) titers of 40–640.
Similarly, all specimens of hamsters that received the Nanocovax
vaccine had a SARS-CoV-2-neutralizing (1/PRNT50) titer of
20–320 (Figure 4E).

3.4 Protective Efficacy of Nanocovax
Vaccine in Hamster Model
After challenge with a high or low level of the SARS-CoV-2 virus,
three vaccinated hamsters from each group showed no signs of
weight loss; they showed weight maintenance for 1 to 2 days post
infection, and weight gain continued from day 3 post infection and
day 14 post infection (11.8% to 14.5%). No symptomswere observed
in vaccinated animals; no shortness of breath, ruffled fur, or lethargy
was observed in any vaccinated hamsters that received low and high
doses of SARS-CoV-2. Three control hamsters exhibited ruffled fur,
lethargy, and sweating symptoms on days 1 and 2 after the virus
challenge. Two of the three animals showed severe weight loss by
day 7 or 8 post infection (13.2%–16.4%) and gained weight slowly
from day 8 or 9 after the challenge test (Figures 5A, B).
Frontiers in Immunology | www.frontiersin.org 8
On day 28, the lungs from the vaccinated and non-vaccinated
hamster groups were collected to detect SARS-CoV-2 by real-time
RT-PCR. The results in Figure 5C show that no SARS-CoV-2
virus-specific RNA was detected in lung samples of the vaccinated
group after 14 days of challenge with viral concentrations of 2 ×
105 TCID50 and 1 × 103 TCID50 compared with the non-
vaccinated group [cycle threshold (Ct) = 30.33, and Ct = 31.22].

3.5 Safety Evaluation of Nanocovax
Vaccine
In the single-dose toxicity analysis, the data showed no mortality
and no drug-related toxicity signs in the tested mice at all tested
doses within 14 days. Moreover, there were no significant
differences between the groups in terms of body weight gain.
Macroscopic examination revealed no differences in the physical
appearance of the liver, heart, kidneys, spleen, lungs, and
intestines between the treated groups and the control group
(data not shown). In the repeat-dose toxicity analysis, the treated
rats and the controls appeared uniformly healthy, and no
lethality was recorded in the rats during the 28-day treatment
period. There were no clinically abnormal symptoms in the
general behavior between the treatment and control groups. In
comparison with the control rats, the body weights of the female
and male rats gradually increased during the test period.
However, there was no statistically significant difference in
body weight gain between the treated and control groups
(Figure 6A). Similarly, no significant differences in the organ
weights of rats (both males and females) were observed between
A

B

C

FIGURE 5 | Challenge of Syrian hamsters with live SARS-CoV-2. Syrian hamsters were vaccinated twice 7 days apart. After vaccination, the hamsters were
challenged with low and high levels of the SARS-CoV-2 virus on day 14. The weight gain in hamsters was monitored after challenge with high (A) and low levels of
SARS-CoV-2 (B). SARS-CoV-2 load [envelope (E) gene] in lung samples 14 days post challenge was determined by real-time RT-PCR (C).
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A

B

D

E

F

C

FIGURE 6 | Repeat-dose toxicity study. The repeat-dose toxicity assay was performed on Rattus norvegicus by intramuscular injection once a week for 4 weeks.
Pathological signals and weight changes were observed. Body weight gain (A). Relative organ weights (B). Indicators of hematological parameters (C). Biochemical
parameters (D). Anatomical structure of the organs (E) and histological analysis of the liver, spleen, and kidneys (F) in repeat-dose test (magnification ×40). The data
represent the mean ± SD, and p-values were determined by two-way ANOVA with Bonferroni post-hoc tests and one-way ANOVA with the Newman–Keuls multiple
comparison test.
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the treated groups and the control group (Figure 6B). The
indicators of the hematological and biochemical parameters of
rats, which were not found to be significantly different between
the vaccinated and control groups, are shown in Figures 6C, D,
respectively. The macroscopic observations showed that there
were no lesions or abnormalities in the physical appearance of
the liver, kidneys, and spleen in any of the groups. As illustrated
in Figure 6E, no significant macroscopic changes, such as color,
size, shape, and texture, in the liver, spleen, and kidneys were
observed between the groups. Similarly, the histopathological
analysis results revealed that none of the kidney, liver, and spleen
tissues of rats (both male and female) that received Nanocovax
daily at all doses showed any damage or pathological alterations
under microscopic observation (Figure 6F). These results
indicate that both single- and repeat-dose toxicity studies in
animals with all of the Nanocovax testing doses were safe.
4 DISCUSSION

The development of vaccines with high immunogenicity and
safety is a major concern for the control of the global COVID-
19 pandemic and protection against further illness and fatalities.
Vaccine candidates are currently under development using
different platforms, such as inactivated vaccines, live-attenuated
vaccines, viral vector (adenovirus) vaccines, DNA vaccines, and
mRNA vaccines. In other platforms, recombinant protein vaccines
were used together with adjuvants to enhance adaptive immunity.
Aluminum salt-based adjuvants are approved for many human
vaccines, such as those against hepatitis A, hepatitis B,
Haemophilus influenzae type b (Hib), and diphtheria–tetanus–
pertussis (DtaP, Tdap) (19). Currently, aluminum adjuvants have
been applied in SARS-CoV-2 vaccines, such as RBD vaccines, S
protein vaccines, inactivated virus vaccines, and virus-like particle
(VLP)-based vaccines (20). For the Nanocovax vaccine, the S
protein was designed (Figure 1) and first harvested at the final
concentration (21.06 g/batch) after purification with 96.56%
purity (Figure 2). Second, the S protein was formulated with an
aluminum hydroxide adjuvant for preclinical research.

To evaluate the immunogenicity of the Nanocovax vaccine,
three animal models (BALB/c mouse, Syrian hamster, and non-
human primate) were utilized. The levels of S protein-specific
IgG titer in the sera from vaccinated BALB/c mouse groups with
various doses of Nanocovax (25, 50, 75, and 100 µg) significantly
increased in a dose-dependent manner on day 14 post priming
injection (Figure 3A). However, the levels of S protein-specific
IgG titer were similar on days 28 and 45 in the hamster model
(Figure 3B). In addition, the amounts of S protein-specific IgG
in the sera of monkeys in all vaccinated groups were significant
in a time-dependent manner (Figure 3C).

Neutralizing antibodies against SARS-CoV-2 are urgently
needed to determine not only the infection rate and immunity
but also the vaccine efficacy during clinical trials (21). Sera were
collected from all vaccinated animal models to measure the
percentage of neutralizing antibodies by a surrogate virus
neutralization test. The results shown in Figure 4 indicate that
the antibodies in the sera can neutralize the SARS-CoV-2 virus with
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a high percentage of inhibition. In agreement with the results of
Bosňjak et al. (9), a strong positive correlation between the surrogate
virus neutralization test and the levels of S-specific IgG was
observed. Our animal models indicated that IgG levels in the sera
from animals vaccinated with Nanocovax showed increased high-
affinity viral neutralizing antibodies. Furthermore, SARS-CoV-2-
neutralizing antibodies can be measured using PRNT50. Here, sera
from the BALB/c mice and hamster models had neutralizing
antibody titers of 80–640 and 20–320, respectively (Figure 4).

The protective efficacy of the Nanocovax vaccine on hamsters
was observed in this study. After challenge with SARS-CoV-2 virus,
no symptoms, such as shortness of breath, ruffled fur, or lethargy,
were observed. In addition, the weight loss was greater in the control
hamster groups than in all vaccinated mice groups. On day 28,
SARS-CoV-2 virus-specific RNA was detected in the lung samples
of the non-vaccinated groups by real-time RT-PCR (Figure 5).

The safety of the Nanocovax vaccine was investigated based
on single- and repeat-dose toxicity studies. The results showed
that the Nanocovax vaccine has no single- or repeat-dose toxicity
effects in mouse (Mus musculus var. albino) and rat (Rattus
norvegicus) at four doses (25, 50, 75, and 100 µg).

Taken together, the Nanocovax vaccine demonstrated
immunogenicity and safety based on animal models, including
a non-human primate model. These results support the clinical
phase I and phase II development of the Nanocovax vaccine.
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