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Abstract: Global energy demand is increasing; thus, emerging renewable energy sources, such as
organic solar cells (OSCs), are fundamental to mitigate the negative effects of fuel consumption.
Within OSC’s advancements, the development of efficient and stable interface materials is essential to
achieve high performance, long-term stability, low costs, and broader applicability. Inorganic and
nanocarbon-based materials show a suitable work function, tunable optical/electronic properties,
stability to the presence of moisture, and facile solution processing, while organic conducting poly-
mers and small molecules have some advantages such as fast and low-cost production, solution
process, low energy payback time, light weight, and less adverse environmental impact, making them
attractive as hole transporting layers (HTLs) for OSCs. This review looked at the recent progress
in metal oxides, metal sulfides, nanocarbon materials, conducting polymers, and small organic
molecules as HTLs in OSCs over the past five years. The endeavors in research and technology have
optimized the preparation and deposition methods of HTLs. Strategies of doping, composite/hybrid
formation, and modifications have also tuned the optical/electrical properties of these materials as
HTLs to obtain efficient and stable OSCs. We highlighted the impact of structure, composition, and
processing conditions of inorganic and organic materials as HTLs in conventional and inverted OSCs.

Keywords: hole transporting layer; organic solar cells; photoconversion efficiency; stability; metal
oxides; metal sulfides; nanocarbon materials; conducting polymers; conjugated polyelectrolyte; small
organic molecules

1. Introduction

Solar energy has enough power capacity to satisfy the whole world’s demand [1,2]. Ac-
cording to Luqman et al. [3], the amount of solar energy irradiated at the Earth’s atmosphere
ranges from 200 to 250 Wm−2 per day, of which ca. 70% is available for conversion into
power generation [4,5]. Research on solar energy technology, which aims to convert sunlight
directly into electrical energy, is vital to switch into low-carbon energy systems [6,7]. The
intense developments concerning solar energy have boosted the investigations to optimize
the efficiency and stability of emerging photovoltaic technology, such as dye-sensitized
solar cells, organic solar cells (OSCs), perovskite solar cells, quantum dot solar cells, and so
on, of which OSCs are one of the most promising technologies [8–14]. Since Kearns and
Calvin’s pioneering work on OSCs in 1958, one significant breakthrough in solar energy
technology has been the efficient electron transfer between a conjugated polymer and
fullerene derivative [15,16]. It encouraged the interest in the light-harvesting of OSCs from
the structure device into the materials used for their construction [16–19]. OSCs are based
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on organic semiconductors as active layers with unique advantages to achieve low-cost
renewable energy harvesting, owing to their material and manufacturing advances [20,21].
OSCs have some advantages: low-cost fabrication, solution processes, light weight, flexi-
bility, a great opportunity for large-scale roll-to-roll production, and a low environmental
disposable impact. Furthermore, OSCs showed shortened energy payback time, that is,
the time needed to recover the device fabrication energy [22]. OSCs’ record efficiency is
over 18.2% in single cells [23,24] and over 18.6% in tandem cells [25]. In the last ten years,
extensive research and development have been conducted in OSCs to improve lifetimes
(7–10 years) and the power conversion efficiency (PCE) over 10% in roll-to-roll industrial
manufacturing [23,26–28]. Some companies have developed OSCs commercially, such as
Heliatek, infinityPV, and OPVIUS GmbH, which manufacture flexible OSC modules [29]
representing 5% of the market [30]. OSCs have been used in small-scale applications as
building integrated photovoltaics, e.g., incorporated on roofs and walls of storage buildings
and solar parks [31].

The core of the OSCs is a blend of electron-donor materials (e.g., conjugated polymers)
and fullerene-based or non-fullerene-based electron-acceptor materials [32]. This central
layer is called the photoactive layer and absorbs solar radiation. A typical OSC has a bulk
heterojunction (BHJ) structure that is a mixed-blend of donor and acceptor materials, which
constitute the photoactive layer [33]. When the solar cell is irradiated, the photoactive
layer absorbs photons to generate excitons (bound electron-hole pairs), which dissociate
into free charge carriers in the donor-acceptor interface, producing separated holes and
electrons. These free charges are then extracted and transported to the corresponding
electrodes [34,35]. Interfacial layers are generally utilized to tailor the work function (WF)
of electrodes for the maximization of charge carrier (e.g., electrons and holes) collection.
They modify the interface to alter the photoactive layer morphology and minimize charge
carrier recombination (improving the charge selectivity) at the interface between the active
layer and transport layer [36]. Moreover, the interfacial layers help to form an ohmic
contact between electrodes and active layers as well as tune the energy level alignment to
facilitate the charge extraction [37,38]. Hole-transporting layers (HTLs), also called anode
interfacial layers (AILs), facilitate hole extraction and transportation while blocking electron
flux. Hole-transport materials are deposited between the photoactive layer and the anode,
improving the device performance. HTLs, used in conventional polymer solar cells (PSCs),
were first reported in the late 1990s after a similarly reported experimentation in organic
light-emitting diodes (OLEDs) [39,40]. Some important characteristics are required for
hole-transport materials such as a high conductivity, high transparency (since the sunlight
is absorbed by the photoactive layer through the HTL on anode), solution processability
and favorable stability, high WF (since the energy level of materials should be appropriate
for charge collection), and predominantly good hole mobility [39].

Over the past five years, the research community has been working on achieving high
efficiency and stability and low cost of production on emerging clean energy sources, such
as OSCs, with a priority on interfacial layer engineering. Tian et al. analyzed the diverse
molecular structures employed as HTL and electron transporting layers (ETLs) to minimize
energy losses in non-fullerene OSCs [41]. Palilis et al. discussed the relationship between
the optoelectronic and physical properties of inorganic materials and their functionality
at the interface [42]. Gusain et al. showed the physical mechanisms involved with the
interfacial issues and the routes adopted to address them [43]. Amollo et al. explored the
physical and optical properties of polymers and metal oxides together with their hybrids
and graphene to guide the choice of suitable interfacial materials [44]. Wu et al. showed the
impact of nanotechnology and nanomaterials in manufacturing multifunctional interfacial
layers to enhance OSCs’ performance [45]. Huang et al. reviewed the feasibility of tuning
the optical and electrical properties of solution-processed ternary oxides, as potential carrier
transports layers, from the large range of crystal structures and adjustable atomic ratio [46].
Herein, we presented an extensive state-of-the-art review about the advances in HTLs
that show great potential for enhancing the efficiency (e.g., PCE) and stability of OSCs.
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The progress made on improving HTL properties of inorganic (metal oxides and sulfides),
nanocarbon materials, conjugated polymers, and small organic molecules as HTLs in OSCs
was discussed, focusing on solution-processing conditions, deposition methods, doping,
composite/hybrid formation, and chemical modifications. Considering the numerous and
highly dispersed literature, we tried to include relevant information reported in scientific
journals. This review included a short section on the structure and characterization of
OSCs and some remarks on HTLs followed by reports of the last five years in the use of
hole-transporting materials as HTLs in OSCs. Summary tables of the photovoltaic device
architecture and their performance are presented at the end of Sections 4.3 and 4.5.

2. Structure and Characterization of Organic Solar Cells

A conventional OSC consists of an active layer sandwiched between two electrodes
with their respective extracting layers to ensure mobility, collection, and transport of
the charge carriers [47]. At the bottom, the anode electrode is a transparent conductive
oxide, such as indium tin oxide (ITO), and at the top, the cathode is a low WF metal,
such as Ca and Al (see Figure 1) [48]. The OSCs based on two organic semiconductors in
the active layer can have two architectures: the bilayer and the BHJ devices. Tang et al.
presented the sequential stacking of donor and acceptor semiconductors to form the bilayer
planar heterojunction in 1986 [17]. However, it has limitations, such as the small surface
area between the donor/acceptor interface and the poor excitons’ dissociation. Then, the
introduction of BHJ devices in 1990 solved bilayer devices’ issues [19]. They involve mixing
donor and acceptor materials in the bulk body of an OSC to reduce phase separation.
Donor and acceptor domains are twice the size of the exciton diffusion length (~10 nm).
To expand the active layer’s absorption range, tandem OSCs have been proposed to stack
two single-junctions with different absorption ranges [49,50]. According to the charge flow
direction, OSCs can be divided into conventional and inverted devices (see Figure 1) [51].
Under light irradiation, photons are absorbed by the donor material in the active layer to
form excited states, called excitons, which are bound electron-hole pairs. Excitons diffuse
towards the donor/acceptor material interface and separate into free charge carriers. Holes
and electrons move apart in the highest occupied molecular orbital (HOMO) and the
lowest unoccupied molecular orbital (LUMO) levels, respectively (see Figure 1). Then,
the separated charge carriers are transported and collected at the electrodes supplying a
photocurrent [52].

Figure 1. Schematic structure of conventional and inverted OSCs, and a simplified view of the
operating principle in the active layer.

The current-voltage (J-V) curve of an OSC is characterized under 1000 W/m2 light
of AM 1.5 solar spectrum [53]. Figure 2a shows a J-V curve of an OSC under darkness
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(dashed line) and illumination (solid line) conditions. Photocurrent is not flowing through
the electrodes under dark conditions, just the current by the forward bias of contacts as a
diode. Under irradiation, photocurrent is generated. PCE is determined by the product
of three parameters: short-circuit current density (Jsc), open-circuit voltage (Voc), and fill
factor (FF) over the incident light power density (Pin) as follows [54]:

PCE =
Voc × Jsc × FF

Pin
(1)

Figure 2. (a) Typical J-V curve and (b) schematic representation of the VOC in a conventional OSC.

The ratio of collected photogenerated charges and the number of incident photons is
related to the external quantum efficiency (EQE) of the OSC. Voc is the main driving force
for charge separation once the exciton reaches the donor/acceptor interface [55,56]. Voc is
the difference of WFs between the quasi-Fermi levels of holes (EF.h) in the HOMO level of
the donor and the quasi-Fermi levels of electrons (EF,e) in the LUMO level of the acceptor
in a BHJ under the formation of ohmic contacts with the cathode and anode (depicted as
Voc−1 in Figure 2b). If a Schottky contact appears in both BHJ/electrode interfaces, the Voc
would decrease and would depend on the difference between the WFs of the two metal
contacts (depicted as Voc−2 in Figure 2b) [57,58]. FF is the ratio between the maximum
power output (Pmax) and the maximum attainable power output (Jsc Voc). Pmax describes
the maximum power drawn from the device and is the product of the maximum current
(Jm) and voltage (Vm) (see Figure 2a) [59], as follows:

FF =
Pmax

Jsc Voc
=

Jm Vm

Jsc Voc
(2)

The main factors that influence the FF are the series resistance (Rs) and the shunt
resistance (Rsh). Their interaction determines the current flow. Rs is attributed to the
conductivity of electrodes, BHJ and extracting interface layers, as well as the contact
resistance between them [60]. A small Rs increases the mobility of the charge carriers and
the performance of OSCs. Rsh reflects the current losses from the pinholes and traps in the
film. Established relationships describing J-V behavior in OSCs and directly accounting for
resistance effects on cell performance are the following [61–64]:

J = Jd + Jsh − Jph = J0

{
exp

[
e(V− JRs)

nkBT
− 1

]}
+

V – J Rs
Rsh

− Jph (3)

where, Jd is the diode current density, Jsh is the leakage current density, Jph is the photogen-
erated current density, J0 is the reverse saturation current, e is the elementary charge, n is the
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diode ideality factor, kB is Boltzmann’s constant, and T is temperature. Jsh is an undesirable
current injected from the electrodes in the opposite direction to Jsc. A suitable interface
morphology decreases Jsh and increases Rsh independently of the light intensities [65].
Thus, the contact quality at the active layer/electrode interface is critical to optimize FF,
Voc, and Jsc. Interface transporting layers enhance all these parameters because they tune
the energy level alignment at the active layer and electrodes, the surface morphology, and
the contact to boost the efficiency and stability of the OSCs [66].

3. Hole-Transporting Layers

Interfacial layers are critical components of OSCs to enhance the collection efficiency
of holes and electrons toward the anode and cathode electrodes. In photovoltaic devices,
including OSCs, there are barriers to charge extraction by the non-ideal contact between
the active layer and the electrodes [39]. This limited interfacial energy alignment inhibits
the spontaneous charge transport, resulting in charge accumulation at the interface, thus
decreasing Voc, FF, and PCE [67]. Interfacial layers with suitable WFs contribute to match
the energy levels of donor and acceptor materials with the electrodes, favoring the charge
transport and stability [38]. The interfacial layers must be charged selectively to avoid
charge recombination at the electrodes in addition to the tuning of the energy levels. HTLs
and ETLs increase the hole and electron mobility in the opposite direction to collect only
one type of charge on each electrode [68]. In the 1990s, HTLs were introduced to the
organic electronics field by Tokito et al., who showed that hole-injection increased from
inserting vanadium, molybdenum, and ruthenium oxides layers into OLEDs [69]. HTL’s
central role is the efficient hole extraction and transport from the HTL/active interface to
the anode/HTL interface, increasing power generation [70]. To achieve high-performance
OSCs, the materials used for HTLs need to show (i) high WF that matches with the
HOMO energy level of the donor material and the anode energy level, (ii) transparency
to increase the light absorption by the active layer, (iii) high hole mobility to lower the
charge accumulation and recombination, (iv) a large band gap to block electron carriers,
and (v) chemical resistance to external factors [38,71,72]. The first materials used as HTLs
in OSCs were inorganic p-type transition metal oxides (MoO3, WO3, NiO, Fe3O4) or metal
sulfides (MoS2), which showed high stability and performance [73–77]. Most of them
required high vacuum for deposition, which, compared with organic materials, might be
costly for industrial and large-scale processing [78]. Poly(3,4-ethylenedioxythiophene)-
poly(styrene sulfonate) (PEDOT:PSS) is still the standard conducting polymer used as HTL
in OSCs because of the low costs, minimal toxicity, facile solution processing, and high
WF. However, it is not stable at standard conditions owing to its hygroscopic and acidic
nature [79]. Currently, there is an excellent development of cost-effective low-temperature
deposition strategies for industrial scaling to avoid the traditional vacuum method used in
the manufacture of HTLs. Casting process deposits the material dissolved in liquid form
in a solvent on the underlying substrate, followed by drying. Spray casting solves the
lack of control in film morphology and uniformity [80]. Spin coating is the most common
deposition method of PEDOT:PSS due to its high reproducibility in film thickness and
morphology. It applies the spinning at a certain rotation speed of the substrate to dry the
deposited liquid material. However, neither large area applicability nor film patterning
are achievable by this technique [81]. Electrochemical deposition or electrodeposition
allows depositing polymers and inorganic materials through an electric field [82]. The
control on deposition has broader applicability for the formation of composites [83]. The
roll-to-roll technique is usually utilized in flexible OSCs because the flexible substrate
is unwound to pass through printing or coating machines, followed by being rewound
on a roll. It opens the applicability for large-area production because substrates are not
handled individually but instead in rolls [84,85]. Compared with the vacuum method,
these deposition techniques offer the advantage of a continuous and large-area process at
mild conditions, avoiding wasting raw materials.
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4. Hole-Transporting Materials as HTLs in OSCs
4.1. Metal Oxides
4.1.1. Molybdenum Oxide

MoOx is an n-type material with a valence band edge around 2.5–3 eV below the Fermi
level and a conduction band closer to the Fermi level [70]. MoO3 has a high WF (6.9 eV)
and conductivity of 1.2 × 10−7 Sm−1 due to the different states of O and the multivalence
of Mo in its three crystal phases (α-MoO3, β-MoO3, h-MoO3) [86–88]. MoO3 is a promising
HTL due to its electronic structure, transparency, conductivity, and stability, enhancing the
hole extraction and thus the efficiency of OSCs, compared with PEDOT:PSS [89]. Lee et al.
reported that MoOx HTL-based OSCs are more stable at a high operating temperature near
300–420 K than PEDOT:PSS [90]. Therefore, there is much research in strategies to optimize
the solution-processing methods and the film properties of MoO3 [91–93]. Bortoti et al. ob-
tained the orthorhombic phase of MoO3 (α-MoO3) by refluxing MoS2 in HNO3 and H2SO4
as the oxidant media, followed by heating at 120 ◦C for 10 min to evaporate the solvent [94].
The energy level of α-MoO3 well-matched with that of the P3HT. A PCE of 1.55% was
obtained in a FTO/ZnO/P3HT:PC60BM/MoO3/Ag cell structure. Ji et al. used ammo-
nium heptamolybdate (AHM) as the precursor solution to prepare a solution-processed
MoO3 array on P3HT:PC61BM by the ultrasonic spray-coating method at 80 ◦C [95]. The
solution-processed MoO3 micro arrays improved the charge transport between the active
layer and the anode. Thus, the Voc and FF increased to 0.59 V and 59.2%, and a higher
PCE of 3.40% was achieved. MoO3 is adequate to attain a high built-in potential and Voc
because it can suppress interfacial reactions at the HTL/BHJ interface. MoO3 nanoparti-
cles (NPs) can be added at the interface between the active layer and the PEDOT:PSS to
take advantage of the localized surface-resonance plasmon (LSRP) effect of NPs and the
electronic structure of MoO3 [96]. MoO3 NPs increased the path length of the absorbed
light and blocked the electrons flow to the anode, resulting in a higher Jsc and FF, and thus
a PCE of 4.11% was reached over a long period of 30 days [97]. The high transparency of
MoOx allows an enhanced back-reflected light into the active layer to enhance the photocur-
rent, as shown in the EQE curves (see Figure 3a) [98]. At low temperatures of 80–200 ◦C,
Jagadamma et al. prepared an alcohol-based MoOx nanocrystalline suspension processed
directly over temperature-sensitive active layers (see Figure 3b) [99]. The water-free solvent
and the fine MoOx nanocrystal diameter (<5 nm) resulted in a compact and smooth film
with a thickness around ~5–10 nm. All inverted OSCs reached a PCE above 9%, retaining
90% of their efficiency after five months of aging. MoO3 nanocrystals (NCs) with a size
greater than 5 nm can form a composite of MoOx with Ag nanowires (NWs) to lower the
nanowire junction resistance by close packing Ag NWs. The Ag NWs/MoOx composite
also served as a barrier for Ag diffusion into the active layer’s bulk. Wang et al. added
AgAl NPs into MoOx HTL to prevent the Ag diffusion by forming AlOx [100]. The PTB7-
Th:PC71BM cell retained 60% of the initial PCE (9.28%) over 120 days. Cong et al. used
ammonium molybdate and citric acid in 2-methoxyethanol as the precursor to prepare
MoOx, followed by 10 vol.% of H2O2 to form a stable conductive film [101]. The presence of
H2O2 induced oxygen vacancies to help in the polyvalence and conductivity of the MoOx
film. Jung et al. prepared a solution-processed MoOx from the dissolution of MoOx powder
in ammonium hydroxide (NH4OH) and isopropanol solvent [102]. The Mo5+-OH bonds
induced by hydroxyl radicals facilitated the charge transport with higher hole mobilities,
of 2.3 × 10−6 cm2V−1s−1, than PEDOT:PSS, of 2.1 × 10−6 cm2V−1s−1. The gap states
induced in the bandgap by the oxygen defects tuned the Fermi level of MoOx with the
HOMO of PBDB-T as the donor material, showing overall improvement in FF and Jsc
with a PCE of 10.86%. The excess of oxygen vacancies during the film formation results
in recombination sites which compromise the performance and stability of the OSC [37].
Kobori et al. improved the Jsc and FF when the as-deposited solution-processed MoOx film
was annealed at 160 ◦C for 2 min [103]. The enhancement in the efficiency from 1.40% to
6.57% is because of surface passivation of MoOx HTL by annealing treatment, resulting in
a reduction of oxygen vacancies in the MoOx film (see Figure 3c). It helps the fabrication
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of OSCs with temperature-sensitive low-bandgap polymers, such as PTB7-Th:PC71BM
and PCPDTBT:PC71BM. Li et al. reported that low-temperature annealing treatment could
also enhance the preparation of solution-processed MoOx films from peroxomolybdic acid
organosol precursor solution at 150 ◦C, while also achieving passivation of the surface [104].

Figure 3. (a) External quantum efficiency of inverted OSCs with MoO3 and PEDOT:PSS HTLs.
Adapted with permission from [98]. (b) Energy level diagram of inverted OSCs with different donor
polymers. Adapted with permission from [99]. Copyright 2016, Elsevier. (c) Reduction of oxygen
vacancies by annealing treatment. Adapted with permission from [103]. Copyright 2016, Elsevier.

Ultraviolet (UV) annealing can retain a higher PCE over a longer period if compared
with OSCs’ efficiency under no annealing or under thermal annealing (100 ◦C) [105]. UV
annealing removed the adhered organic contaminants on the MoO3 film surface by two
short wave UV lights at 185 nm and 285 nm. This radiation decomposed O3 into O2 and
active O, which oxidized and removed any organic contaminant by transformation into
volatile gases. Cai et al. achieved a PCE of 9.27% in the PBDB-T:ITIC BHJ cell using an
ultraviolet-deposited MoO3 film [106]. Tan et al. developed a solution-processed, annealing-
free aqueous MoOx for non-fullerene OSCs [107]. By adding a small amount of water to
MoO2(acac)2, the ligand of MoO2(acac)2 was removed from the MoOx film, avoiding
thermal treatments, and enhancing the PCE of PBDB-T-2F:Y6 cell up to 17.0%. In addition
to the impurities in the precursor solution, external factors, such as air, create oxygen defects
in the MoOx film lattice, which change the electric properties (e.g., WF, energy levels) and
the performance of the OSC [108,109]. Soultati et al. reported the microwave (MW) air
annealing approach for recovering the WF in stoichiometric MoOx and the efficiency of the
FTO/MW-MoOx/P3HT:PC71BM/Al cell up to 5.0% [110]. The WF recovery resulted in the
formation of a large interfacial dipole at the FTO/MW-MoOx/P3HT:PC71BM interfaces,
favoring hole extraction via gap states.
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In addition to post-treatments, the film properties of the MoO3 HTL in OSCs also
improve through strategies involving doping, composite/hybrid formation, multilayers,
and deposition techniques. Chang et al. reported vanadium-doped MoOx films at different
ammonium metavanadate concentrations. The smallest band offset (1.13 eV) between
the valence band edge of V0.05MoOx and P3HT HOMO level favored the hole transport
due to having the lowest resistance among all V-MoOx films [111]. Marchal et al. re-
ported a decrease of 3 nm in the surface roughness of MoOx HTL by adding 0.5 mol%
of Zr and Sn via a combustion chemical deposition method at low temperatures [112].
The Zr and Sn atoms also covered the surface defects of MoOx, forming a uniform and
well-covered HTL film on the ITO electrode (see Figure 4a). Bai et al. employed a small
amount of p-type NiOx into n-type MoO3 in one step [113]. Since MoO3:NiOx was highly
transparent and had a conduction band of 3.25 eV and a WF of 5.10 eV (see Figure 4b),
the MoO3:NiOx film was able to block electrons while enhancing the contact to charge
transport toward the anode, achieving a PCE of 10.81% in PBDB-T:IT-M BHJ OSCs. Li et al.
showed the feasibility of the work function tuning of MoOx to use as both HTL and ETL
through the Cs intercalation approach [114]. MoOx and the intercalated mole ratio MoOx:Cs
(1:0.5) tested in P3HT-based conventional and inverted OSCs as HTL and ETL achieved
PCEs of 3.50% and 3.20%. Besides, high PCEs of 7.35% and 6% were obtained in the
PBDTDTTT-S-T-based conventional and inverted OSCs. The Cs-intercalation within the
MoOx acts as an n-type semiconductor [115] to tune the work function from 5.30 to 4.16,
which favors the energy alignment at the interface and the reduction in the charge carrier
losses. Yoon et al. synthesized a dual-HTL by mixing solution-processed copper iodide
(CuI) and thermally evaporated MoO3 [116]. The interaction between MoO3 and the CuI
increased the forbidden gap states in the MoO3 layer for the hole transport by forming
small oxygen vacancies and Mo5+ defect states. Zhiqui et al. reported a composite of
copper bromide (CuBr2) and molybdenum trioxide (MoO3) as the HTL for OSCs [117].
CuBr optimized interfacial contact to increase charge carriers, and MoO3 blocked electron
transport, resulting in improved FF (65.20%), Jsc (19.65 mAcm2), and an increase in the PCE
from 7.30 to 9.56%. Li et al. prepared CTAB-modified MoO3 nanocomposites by adding
a small amount of cetyltrimethylammonium bromide (CTAB) solution into ammonium
molybdate and annealing it at 200 ◦C in a glovebox [118]. CTAB passivated the surface
traps of MoO3 films to avoid the recombination sites, resulting in a film with PCEs of
5.80 ± 0.13% in P3HT:ICBA and 8.34 ± 0.13% in PTB7:PC71BM OSCs. The formation of
polynuclear metal-oxo clusters (PMC) of tungsten/molybdenum as HTLs showed PCEs of
14.3% and higher stability than PEDOT:PSS [119]. The variation in the W/Mo ratio allowed
the increase of the hole transport from the polymer donor (PBDBT-2F) toward the anode
due to the formation of an inorganic-organic charge transfer complex with a barrier-free
interface. This unique characteristic of PCM clusters in OSCs might promote new insights
for its utility in high-performance optoelectronic devices. Kwon et al. also boosted the
efficiency by developing an alloy of molybdenum-tungsten disulfides films as HTL to
replace PEDOT:PSS efficiently [120]. As was mentioned before, Ag NPs can be incorporated
into MoO3 to enhance the electrical and optical properties of the HTL. Indeed, it can form a
MoO3/AgNPs/MoO3 structure as HTL to improve the Jsc and reduce the recombination
by the backscattering and surface plasmon effects of AgNPs [121]. Zhang et al. prepared a
solution-processed MoO3/AgNPs/MoO3 (MAM) HTL in PTB7:PC70BM cells [122]. The
MAM multilayer enabled an enhanced charge collection by suppressing charge recom-
bination. The efficiency of the OSC was superior (7.68%) to that of the s-MoO3 (6.72%).
The manufacture of OSCs has also been limited by the material’s finite availability, such
as the transparent anode electrode, ITO [123,124]. An ITO-free flexible OSC obtained by
Chen et al. used multiple layers of molybdenum oxide MoO3/LiF/MoO3/Ag/MoO3
as transparent electrodes, facilitating the transmittance and charge transport [125]. Lee
et al. reported a reduced atomic percentage of In and Sn at the surface of ITO electrodes
by graded sputtering of MoO3 HTLs (see Figure 4c) [126]. The MoO3-graded ITO (MGI)
electrode formed three regions: (i) the bottom ITO region, providing high transparency
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(83.8%), (ii) the Mo-In-Sn-O graded interlayer, and (iii) the MoO3 region, which served as
the HTL. For thin HTLs, the deposition method might cause defects or form compacted
layers depending on the working conditions. Uniform s-MoOx HTLs prepared by direct
current (DC) magnetron sputtering showed enhanced charge transport with a FF of 50%,
as the s-MoOx film’s surface was smoother and controlled by DC in comparison with the
conventional evaporated approach [127]. Chaturvedi et al. applied a DC voltage of 1 kV
during the spray deposition of MoO3 HTL, obtaining a PCE of 2.71% [128]. The applied
electric field controlled both the optical and electrical properties of the thin MoO3 film.
Dong et al. used a laser-assisted method to obtain a hydrogenated molybdenum oxide
HyMoO3−x film for flexible OSCs (see Figure 4d) [129]. By controlling the energy of the KrF
laser (λ = 248 nm) during the irradiation of photons on the AHM precursor solution, the WF
(5.6 eV) and the hole transport of HyMoO3−x film increased, allowing higher PTB7:PC70BM
cell performance. The laser processing time lasts only 30 ns, so it is suitable in time and
economically compared with the thermal evaporation method.

Figure 4. (a) AFM and SEM images of unmodified and modified MoOx HTL. Adapted with permis-
sion from [112]. (b) Energy levels of pristine and doped MoO3 with a NiOx layer. Adapted with
permission from [113]. Copyright 2019, Elsevier. (c) XPS depth profile of MGI electrode. Adapted
with permission from [126]. Copyright 2016, Elsevier. (d) Scheme of laser-assisted synthesis of
HyMO3-x. Adapted with permission from [129]. Copyright 2016, Royal Society of Chemistry.

4.1.2. Tungsten Oxide

Tungsten oxide is an n-type material with a WF ranging from 4.7 to 6.4 eV depend-
ing on the film preparation [130–133]. Tungsten oxide is a hole extracting layer that can
work efficiently in conventional and inverted OSCs using vacuum and solution-processing
methods [74,134]. WOx is an amorphous structure that (i) forms smooth surface morpholo-
gies, (ii) increases the charge mobility in the active layer, and (iii) enhances the charge
collection because Voc depends linearly on the anodic WF when there is not ohmic con-
tact at the anode/donor interface [135]. Thus, the enhancement in solution-processing
WOx-based OSCs is particularly focused on increased light absorption. Lee et al. de-
signed an Au@SiO2-WO3 nanocomposite (NC) which works as a photon antenna for high
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light absorption [136]. The localized surface-plasmon resonance (LSPR) effect of AgNPs
enhances the intensity of photon absorption in the P3HT:PC61BM BHJ cell, resulting in
increased Jsc. The favorable plasmonic effect is comparable to some reported literature
for plasmonic nanomaterials-based optoelectronic devices [137–139]. Moreover, high hole
mobility of WOx NPs boosted the device PCE by up to 1.6%. The surface morphology
of the Au@SiO2-WO3 NC film was kept uniform due to the SiO2 shell avoiding the ag-
gregation effect of the Au NPs. Instead of SiO2, the aggregation effect can be avoided by
controlling the concentration of Au NPs. Using 10 wt% of Au NPs, the Au-WO3 NC HTL
decreased the surface morphology’s roughness, achieving a PCE of 60.37% [140]. Shen et al.
enhanced the light absorption and the PCE of OSCs based on the LSRP effect of structure-
differentiated silver nano-dopants in solution-processed WOx HTL [141]. Three silver
nano-dopants, (i) naked Ag NPs (nAgp), (ii) SiO2-covered Ag NPs (SiAgp), and (iii) naked
Ag nanoplates (nAgPI), were synthesized. The triangular nAgPl reached the highest PCE
of 4.6% while spherical nAgp reached the lowest. The spherical nAgp surface decreased
the PCE because its surface can directly contact the donor/acceptor material of the active
layer, resulting in excitons quenching and thus weakening LSRP effects (see Figure 5). The
shape of NPs affects the overall performance of OSCs by tuning plasmon-electrical [142],
plasmon-optical [143,144], and charge-storage effects [145]. Ren et al. reported the high
efficiency of OSCs by incorporating gold nanostars (Au NSs) between HTL and the active
layer [146]. The plasmonic asymmetric modes of Au NSs enhanced the optical absorption
of the active layer and the balance of photogenerated charges by shortening transport path
length in the HTL. The localized plasmonic effect of NPs manipulates transport paths of
photogenerated carriers in bulk heterojunction OSCs and thus reduces the charge recom-
bination sites and the space-charge-limit effect [147,148]. Li et al. reported comparable
results by applying Ag nanoprisms to achieve higher PCE through the improvement in
the broadband absorption [149]. Remya et al. performed a study between dehydrated and
di-hydrated WO3 films as HTL in the inverted P3HT:PC61BM and PTB7:PC71BM cells [150].
The hydrated phase of WO3 enabled a suitable energy level alignment with the active layer
by tuning the water coordination, resulting in a higher PCE of 5.1% and 7.8%, respectively.

Figure 5. Schematic representation of different silver nanoparticles structures/WO3 layers by spin
coating. Adapted with permission from [141]. Copyright 2016, Elsevier.

4.1.3. Vanadium Oxide

V2O5 is a hole-transporting/electron-blocking layer that acts as a protecting layer [151]
avoiding surface reactions by the moisture from the working conditions, resulting in
improved efficiency and stability [152]. The electronic structure of V2O5 corresponds
to an n-type material with deep electronic states and WF ranging from 4.7 eV to 7.0 eV,
depending on the processing method [73,153]. Li et al. reported the Cs-intercalation
method to tune the work function of V2Ox and used Cs-intercalated V2Ox and V2Ox as
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both ETLs and HTLs in organic optoelectronic devices [114]. The work function tuning
and the reduction in the interfacial barrier of Cs-intercalated V2Ox allowed for obtaining
PCEs in P3HT and PBDTDTTT-S-T-based conventional and inverted OSCs up to 3.59% and
7.44%. Xu et al. reported a low-temperature solution-processed V2O5 by dissolving V2O5
powder into water at room temperature [154]. V2O5-based HTLs showed a PCE of 8.05%
in ITO/V2O5/PTB7:PC70BM/LiF/Al OSCs compared with PEDOT:PSS-based HTLs with a
PCE of 7.46%. V2O5 served as an optical spacer that increased light absorption, leading to a
higher photocurrent. V2O5 powder can also be treated directly from the melting-quenching
sol-gel method to obtain an easy tunable V2O5·nH2O HTL [155]. The energy positioning of
the V2O5·nH2O HTL (with n = 1) was closer to PEDOT:PSS [67], allowing an ohmic contact
with the novel conjugated polymer donor (PBDSe-DT2PyT) and the acceptor of P71CBM;
thus, a large Voc and a PCE of 5.87% were obtained. The layered and hydrated phase of
V2O5 is an affordable and tunable charge transport material. Although V2O5·H2O-based
HTLs exhibit better performance than PEDOT:PSS-based HTLs, the melting–quenching sol-
gel method might be an expensive method owing to the high melting temperature of V2O5
(~800◦C). Cong et al. applied a green method to prepare vanadium oxide hydrate layers
(VOx·nH2O) to enhance the PCE in organic PTB7-Th:PC71BM- and P3HT:PC61BM-based
polymer solar cells up to 8.11% and 3.24% [156]. The combined H2O2 and ultraviolet ozone
(UVO) in-situ treatments allowed for a smooth surface and improved wettability with the
presence of dangling bonds on the HTL surface to enhance interfacial contact. The presence
of V4+ in the composition analysis of VOx·nH2O accounted for a small amount of oxygen
vacancies, causing n-type doping, which is essential to hole transport by extracting electrons
through its conduction band [157]. Vishnumurthy et al. reported that V2O5 HTL optimized
the efficiency of thienothiophene-diketopyrrolopyrole-based OSCs by up to 1.02% [158].
Remya et al. prepared an efficient hole-transport/electron-blocking hydrated vanadium
oxide (HVO) from V2O5 powder with hydrogen peroxide [159]. In the P3HT:PC61BM
and PBDTT-FTTE:PC71BM BHJ cells, HVO HTL performance was superior to PEDOT:PSS,
obtaining 56% enhancement (7.12–11.14%) in the PCE for the PBDTT-FTTE:PC71BM-based
inverted OSC with a lower degradation of 1.4% over 20 weeks. In addition to the V2O5
powder, V2O5 HTLs can be prepared by other precursors. Xu et al. reported an ammonium
metavanadate ammonal water solution for processing VOx HTLs in PTB7:PC71BM BHJ
cells with a PCE of 7.7% [160]. This HTL showed a WF of 5.3 eV and high conductivity by
air-annealing treatment at 210 ◦C for 5 min. The thermal treatment smoothed the surface
film to reduce the leakage current, obtaining a higher Jsc. Although the stability was
better than PEDOT:PSS with a remaining 83% efficiency after four days, it was still low
compared with other inorganic HTLs. Shafeeq et al. reported the formation of uniform
and crystalline V2O5 nanorods by thermal decomposition of ammonium metavanadate
NH4VO3 to enhance surface morphology and efficiency of OSCs [161]. Alsulami et al.
obtained a stable V2Ox HTL by using vanadium (V) oxytriisopropoxide as the precursor,
which converted into V2Ox by hydrolysis in air [162]. The PCE of the V2Ox HTL was
insensitive to thermal annealing at 100 ◦C and 200 ◦C because its optical and electronic
properties were comparable to the vacuum-deposited V2O5. Besides, the highly tunable
V2O5 thin films prepared by the solution-processing method boost inverted OSCs because
of their higher stability under air conditions [163]. To optimize the interface properties and
OSC performance, VOx NP can efficiently be mixed with PEDOT:PSS solution, resulting
in a stable VOx:PEDOT:PSS HTL by the uniform molecular distribution of VOx with
PEDOT:PSS as reported by Teng et al. [164]. They achieved a PCE, of 10.2%, compared
with PEDOT:PSS, of 5.27%, when VOx:PEDOT:PSS was used as HTL in the TPD-3F:IT-
4F cells. Xia et al. reported a nanoparticulate compact V2O5 film as HTL using a facile
metal-organic decomposition method to replace the traditional HTLs [165]. By adding
polyethylene glycol (PEG) as an additive in the precursor, a uniform and compact film of
V2O5 served as HTL in the PTB7:PC70BM, improving the interface contact, Jsc, and the FF.
Compared with the spin coating, the spray coating of V2O5 HTL has allowed the large-scale
production of flexible OSCs in a roll coater [166]. Using a precursor solution of vanadium
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oxytriisopropoxide (VTIP) diluted in ethanol (1:100), V2O5 HTLs exhibited improved
electrical properties. The mechanical stress on V2O5 HTL was mitigated by introducing
a PEDOT:PSS binding-interfacial layer between V2O5 HTL and the Ag electrode in the
inverted P3HT:PC60BM and PBDTTTz-4:PC60BM BHJ cells. Arbab and Mola also explored
electrochemical deposition that resulted in 80% enhancement in PCE (2.43%) compared
with PEDOT:PSS-based OSCs [167]. Kavuri et al. reported electrospray deposition (ESD)
for V2O5 HTL in PTB7:PC71BM-based OSCs with a PCE of 7.61% [168]. Compared to
the spin-coating, the ESD allowed more control in the deposition conditions and reduced
the manufacturing costs of V2O5-based OSCs. Surface morphology, charge mobility, and
interfacial contact were adjusted as a function of the solvent evaporation rate. V2O5 HTL
has also been effective in ITO-free polymer solar cells with an optimized precursor solution
(VTIP) of 0.005% [169]. The deposition of V2O5 HTL on PEDOT:PSS, as the anode, led to
increase Rsh and conductivity with the active layer of P3HT:PC61BM by the hydrophobic
surface of V2O5, resulting in an uniform and compact HTL with a PCE of 3.33%. V2O5
is also a potential material that increases the anode’s WF of indium zinc oxide (IZO),
exhibiting a higher PCE of 2.8% than that flexible OSCs with only IZO [170].

4.1.4. Nickel Oxide

Non-stoichiometric NiOx is a wide bandgap p-type semiconductor [171]. NiOx is an
efficient electron-blocking layer to the anode due to its conduction band minimum, 1.8 eV,
which is above the LUMO of the organic donor P3HT (3.0 eV) [75]. Due to the conduction
band of NiOx being closer to the vacuum level, it is able to suppress electron recombination
at the anode [172]. The ohmic contact between NiO and P3HT allows holes to freely trans-
port from the active layer to the anode through the Ni2+ vacancy-based hole-conducting
anode band [173]. Parthiban et al. demonstrated an enhancement in OSC performance with
a NiO HTL deposited via spin coating [174]. Using the precursor solution of nickel acetate
and a simple post-annealing process (>300 ◦C) to reduce roughness, NiO HTL achieved
a FF of 63.0% and a corresponding PCE of 4.45% in RP(BDT-PDBT):PC70BM solar cells.
Although NiO-based HTLs exhibit better performance and stability than PEDOT:PSS, the
high annealing temperature required to convert the nickel precursors into the NiO thin
films make it expensive and not compatible with flexible substrates. Chavhan et al. reported
a room-temperature approach to manufacture NiOx films from a nickel formate precursor
solution via UV-ozone treatment [175]. In terms of efficiency, the UV-ozone treatment
results were ideal for increasing the WF by creating hydroxides at the surface, avoiding
high processing temperatures. A high PCE of 6.1% in NiOx HTL treated with UV-ozone
was related to increased presence of NiO(OH) at the surface. Besides the precursor method,
Jiang et al. used chemical precipitation to obtain non-stoichiometric NiOx NPs at room
temperature without any post-treatment [176]. The atomic ratio between Ni and O (1:1.14)
reduced the Rs of the opto-electronic device as the p-type conductivity was enhanced by
the presence of two oxidation states (Ni2+ and Ni3+) that favor Ni2+ vacancies. Thus, the
FF and the Jsc increased up to 67.20% and 9.67 mAcm−2 to yield a PCE of 3.81% in P3HT-
based conventional OSCs. The high performance of NiOx NPs HTL-based OSCs was also
demonstrated for low-bandgap polymers. Alternatively, p-type ternary metal oxides are
promising candidates for enhancing electron-blocking ability due to their tunable electronic
and optical properties through the hypocrystalline hydroxide-based method [177]. To date,
the high surface roughness of fluorine-doped tin oxide (FTO) has limited its application in
OSCs; however, the surface roughness can be decreased from 10.36 nm to 6.74 nm by fully
covering it with an optimized NiO layer (see Figure 6) [178]. A polyethylene glycol (PEG)
assisted sol-gel process altered the c-NiO/FTO surface because it has a stabilizing effect
on NiO NPs, so it allowed the crystallization of a close-packed structure of NiO film. The
further deposition of PEDOT:PSS led to the formation of a free-pinhole layer with an RMS
roughness of 2.44 nm and selective hole transport, increasing the PCE from 5.68% to 7.93%.
Although organic devices based on spin-coated NiO HTLs have emerged successfully in
the photo-electronic field, it is vital to focus research efforts for printing technologies for



Nanomaterials 2022, 12, 443 13 of 54

large-area roll-to-roll production. Printing technology usually results in thick NiO films,
increasing the interfacing between the active and HTL layers and shortening hole carriers’
migration due to its short lifetime [179]. Singh et al. obtained a thin film of NiOx by
controlling substrate-processing conditions and inkjet printing [180]. Optimal conditions
of UVO pretreatment, drop spacing, and substrate temperature at 25 ◦C resulted in a PCE
of 2.60% in the P3HT:PC60BM cell with superior environmental stability. Huang et al. used
copper (5.0 at.%) as a dopant to increase the electrical conductivity of NiOx film, resulting
in a reduction of Rs from 11.25 to 9.98 Ωcm2 [181]. The Cu-doped NiOx (Cu:NiOx) also
improved the interface contact with the active layer and facilitated the charge transport,
resulting in a higher PCE of 7.1% in PCDTBT:PC71BM-based cells. The enhancement in
the optoelectronic properties, surface morphology, and stability of NiOx HTL by doping
is comparable with reported literature, as observed in the co-doping of NiOx NPs with Li
and Cu [182]. The co-doping favored the conductivity by increasing the Ni3+/Ni2+ ratio
and kept the high transparency in the well-dispersed solution based on NiOx NPs.

Figure 6. AFM and SEM images of bare nickel oxide on FTO (without PEG) and compact nickel oxide
(c-NiO) on FTO (with PEG). Adapted with permission from [178].

4.1.5. Other Oxides

CuOx are p-type semiconductors with narrow band gaps of 1.3–2.0 eV for CuO and
2.1–2.3 eV for Cu2O [183–186]. HTLs of CuOx spin-coated on ITO decreased the interfacial
barrier using a green solvent of copper acetylacetonate (Cu(C5H7O2)2), improving cell
efficiency of PTB7:PC71BM cell up to 8.68% [187]. After H2O2 and UVO treatment, CuOx
HTLs increased the WF to 5.45 eV, forming an excellent ohmic contact, while the Voc
increased to 0.74 V. Furthermore, the oxidation of CuOx by UVO treatment enhanced
the interfacial contact and the light absorption in the visible range, obtaining a high
transmittance of 88%, low Rs of 2 Ωcm2, and higher hole transport to the anode. The OSCs’
initial performance (8.68%) dropped down to 47% over 50 h of storage in the air. The p-type
CuCrO2 is a semiconductor that belongs to the delafossite compounds [188]. CuCrO2
HTLs are of great interest in optoelectronic applications due to their high transparency,
large hole diffusion coefficient, high WF, and ionization energy, which are essential in the
manufacture of OSCs [189–191]. Other strategies to boost the potential of CuCrO2 HTL
involve In doping, in which optical transmittance and hole conductivity are increased [192].
New alternative techniques to produce efficient and cost-effective CuCrO2 HTLs for roll-
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to-roll manufacturing are developing, such as microwave assisted-heating to produce
CuCrO2 nanocrystals with an efficient PCE of 4.9% [193], or the combustion synthesis
to produce CuCrO2 thin films by low-temperature processing at 180 ◦C with a PCE of
4.6% (see Figure 7) [194]. Both methods are highly efficient and represent advances for
lowering fabrication costs. UV-ozone post-treatment or annealing increases the metallic
copper oxidation to Cu+2 to promote the electronic conduction by the hopping mechanism
between Cu1+ and Cu+2 species. The higher oxidation state of Cu2+ enhanced the electronic
properties, exhibiting deeper ionization energy (IE) and Fermi energy (EF). The Cu doping
favored the surface-roughness reduction, resulting in an improved interfacial contact, and
thus favored Jsc, FF, and PCE.

Figure 7. Schematic representation of the combustion synthesis. Adapted with permission from [194].
Copyright 2018, American Chemical Society.

Wahl et al. reported the first HTL based on ITO NPs in inverted OSCs [195]. The
addition of ethylenediamine into ITO NPs stabilized it to deposit uniform HTLs on the
underlying absorber layer. The deposition of the ITO NPs HTLs by doctor blading allowed
controlling the thickness between 15 and 20 nm. Post-treatments of thermal annealing
and plasma were beneficial for the film’s electronic properties, achieving a PCE of 3%.
However, plasma application needs to be mild to avoid OSCs’ detrimental performance.
The doping method using high-WF metals might be a good alternative over plasma treat-
ments to develop high-quality films in OSCs. The solubility of metal oxides in common
solvents such as DMF or water is another main factor for its application in the roll-to-roll
manufacturing of OSCs. Bhargav et al. reported the suitability of DMF-soluble Co3O4
as HTLs in PCDTBT:PC71BM BHJ [196]. Co3O4 HTLs showed transparency around 81%
and a smooth surface, allowing for a remarkably high FF of 49.1% and higher PCE (3.21%)
compared with PEDOT: PSS-based OPVs.

4.2. Metal Sulfides
4.2.1. Molybdenum Disulfide

MoS2 with a layered structure is a metal dichalcogenide (TMD) semiconductor that
can display two phases under normal conditions, the traditional trigonal prismatic H-MoS2
phase and the distorted octahedral ZT-MoS2 phase with hole mobilities of 3.8 × 102 cm2V−1s−1

and 5.7 × 104 cm2V−1s−1, respectively [197]. Instead of using a vacuum or temperature-
dependent process to prepare the traditional MoS2 HTL, Barrera et al. prepared suspensions
of MoS2 via liquid exfoliation at room temperature [198]. The high WF of MoS2 resulted in
enhanced charge mobility; however, the low transmittance of the film affected the Jsc. An
effective way to address films’ low transmittance is by using composites or hybrid layers
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with tunable transparency. Martinez-Rojas et al. reported a hybrid layer of MoSx:MoO3
on FTO substrates with high transmittance by a pulsed electrochemical method [199].
After 150 cycles of depositing MoSx on the MoO3, the percentage of transmitted light de-
creased significantly due to the agglomeration of MoSx (see Figure 8a). A hybrid layer with
100 cycles of deposition resulted in 10% higher PCE than the one obtained using MoO3 or
MoSx HTL. MoSx was an efficient electron-blocking layer, while MoO3 increased conductiv-
ity, resulting in enhanced hole-transporting properties. The effectiveness of UVO treatment
to form homogeneous films and increase the WF was tested in a layer of MoS2 quantum
dots (QDs), showing a PCE of 2.62% and 8.7% for P3HT and PTB7-Th donor systems [200].
The solar cell efficiency increased after 30 min of UVO exposure, but longer UVO treatment
periods degraded the HTL, resulting in decreased PCEs (see Figure 8b). The UVO-MoS2
QDs showed compact and uniform layers with a lower surface roughness of 1.19 nm than
UVO-MoS2 nanosheets of 2.03 nm. The OSC achieved long-term durability due to the
improved interfacial contact, showing 64% of its initial PCE after 47 days (see Figure 8c).
Annealing treatments can also decrease the surface roughness and favor the optoelectronic
properties of the film. At 300 ◦C, MoSx flatted the surface morphology, enhancing the PCE
by up to 7.5%, 52% of which was retained after two months [201]. However, an annealing
treatment is not as efficient as a UVO treatment for temperature-sensitive devices.

Figure 8. (a) Transmission spectra of FTO/MoS2 at various numbers of scan cycles. Adapted with
permission from [199]. Copyright 2017, Elsevier. (b) Dependence of PCE on the duration of the UVO
treatment and (c) stability of devices using UVO-MoS2 QDs compared with PEDOT:PSS. Adapted
with permission from [200]. Copyright 2016, American Chemical Society.

4.2.2. Tungsten Disulfide

Adilbekova et al. used a liquid-phase exfoliation technique to manufacture WS2 HTL
using aqueous ammonia that does not require high-temperature post-treatments [202].
Stabilizers or post-processing treatments were excluded from obtaining WS2 nanosheets
since stoichiometric quality and structural properties were unchanged after performing
the top-down method. Due to the p-type character of the 2D nanosheets, the HTLs were
selective to hole transport toward the anode, achieving a PCE of 15.6% in the PBDBT-
2F:PC71BM BHJ cells. Following the same line, Lin et al. fabricated uniform WS2 layers on
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ITO [203]. WS2 flakes were wider and thinner than MoS2, covering the whole surface of
ITO. The surface coverage was dependent on the shape and size of the selected material
obtained by the exfoliation procedure and its interaction with the substrate. WS2-based
HTL in ternary BHJ OSCs (PBDB-T-2F:Y6:PC71BM) increased PCE by up to 17%. Ram et al.
demonstrated that the use of WS2 as HTL increased the PCE of PBDB-T-2F:Y6:SF(BR)4
ternary cells by 20.87% [204]. The low hygroscopic nature and low acidity of WS2 reduced
the contact resistance between the active layer and the ITO.

4.2.3. Nickel Sulfide

Taking advantage of the dependence of the phase diagrams of NiS with the sulfur
content, Hilal and Han synthesized the hexagonal phase of NiS as HTL in OSCs processed
by the simple solvothermal method at room temperature [205]. The surface morphology of
NiS was smoothened by increasing the sulfur content to 2 g, forming a globular flower-like
NiS morphology with increased surface area (see Figure 9). In addition to the enhancement
in the hole transport, NiS stabilized the OSC; hence, P3HT:PCBM-based cells retained 26%
of their initial efficiency value after 15 days.

Figure 9. FE-SEM images of globular flower-shaped NiS at magnifications of (a) 10 µm and (b,c)
1 µm. Adapted with permission from [205]. Copyright 2019, Elsevier.

4.2.4. Other Sulfides

An efficient OSC was achieved by Bhargav et al. using an inorganic HTL made of CuS
by a low-cost and efficient manufacturing process [206]. CuS thin films were deposited onto
ITO by a solution process instead of vacuum deposition, resulting in a high transparency of
84%. Due to the decreased ohmic resistance, the device structure ITO/CuS/PTB7:P71BM/Al
reached a high PCE of 4.32% due to the improved FF of 50.1%. A new room-temperature
method known as Successive Ionic Layer Adsorption and Reaction (SILAR) was reported
by Jose et al. to produce efficient p-type Zn-doped CuS HTLs [207]. Due to the high
conductivity and low light absorption in the visible region, a PCE of 1.87% was obtained
with enhanced charge mobility of 1.5 cm2 V−1s−1. The use of 2D materials like antimonene
quantum dots (AMQS) in HTLs has emerged in OSCs production due to their facile
synthesis and unique properties [208]. Wang et al. reached an enhanced PCE of 8.8% by the
surface passivation of copper(I) thiocyanate (CuSCN) HTL with AMQSs [209]. The AMQSs
smoothened the film surface of CuSCN, tuned the WF, and raised the exciton generation
rate from 8.79 × 1027 m−3S−1 to 9.95 × 1027 m−3S−1. Compared with PEDOT:PSS HTLs,
CuSCN/AMQSs HTLs were more stable at room temperature, retaining 68% of the initial
PCE over 1 month not only in fullerene systems such as PTB7- Th:PC71BM, but also
in non-fullerene systems. Other strategies involving triple-interface passivation [210],
multifunctional interface layer using lead sulfide quantum dots (QDs) [211], and self-
polymerization of the monomer have been also reported to passivate surface roughness
and interface defects [212]. The surface passivation is key in the construction of OSCs to
reduce non-radiative recombination losses which in turns affect the charge separation rate
once excitons achieve the donor/acceptor interface, resulting in a low Voc and FF. The p-
doping of CuSCN with C60F48, an electron acceptor, is an effective method to obtain highly
conductive HTLs for its application in OSC devices [213]. By adding 0.5 mol% of C60F48 that
also acts as a nucleating agent, the CuSCN:C60F48 film was more dense than the pristine
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CuSCN surface. Moreover, reduced surface roughness, leakage current (see Figure 10a), and
improved hole mobility of 0.18 cm2V−1s−1 were attributed to the percolation conduction
mechanism, resulting in a PCE of 6.6% in the PCDTBT:PC70BM-based OSCs. Wang et al.
achieved a PCE of 15.28% in OSCs based on the non-fullerene PM6:Y6 blend by doping
CuSCN film with 1% of TFB (see Figure 10b) [214]. Worakajit et al. increased the hole
mobility in CuSCN from 0.01 to 0.05 cm2V−1s−1 by passivating surface morphology and the
crystallinity with diethyl sulfide (DES) molecules and acetone as antisolvent treatment [215].
Suresh Kumar et al. succeeded in fabricating Cu2CdSnS4 (CCTS) HTLs over ITO substrates
deposited by spin coating at room temperature [216]. A PCE of 3.63% in the P3HT:PC71BM
blend was achieved by controlling the distribution particle size. The bandgap decreases
with an increase in the size of CCTS and layer thickness. Minimum surface roughness of
11.07 nm was found after deposition of three layers of CCTS thin films, improving the thin
film’s compactness, hole-transport efficiency, and stability in environmental conditions.

Figure 10. (a) J-V curves of CuSCN:C60F48 under dark conditions. Adapted with permission
from [213]. Copyright 2018, John Wiley and Sons. (b) Energy level alignment of ITO/CuSCN,
CuSCN:TFB(1.0%)/PM6:Y6/BCP/Al OSCs. Adapted with permission from [214]. Copyright 2020,
American Chemical Society.

4.3. Nanocarbons
4.3.1. Graphene Oxide

Nanocarbon materials like graphene have been applied as HTLs in OSCs due to their
unique electrical, optical, and structural properties [217]. Due to the low water dispersibility
caused by the nonpolar sp2 hybridized carbon structure, the oxidized form of graphene,
graphene oxide (GO), has also been used in OSCs by the high solubility in eco-friendly
water solvents [218]. The hydroxyl groups and epoxy groups located in the basal plane of
the graphene sheet and carboxylic acids at the edge limit the conductivity of GO [219]. In
fact, an excess of 25% of oxygen atoms on the GO sheet’s surface reduced its conductivity
until it became an insulator material [220]. Thus, it is crucial to control the concentration and
thickness of GO for suitable performance as HTLs. Rafique et al. tested the thickness and
concentrations of spin-coated GO, selecting 1 mg/mL to form thin conductive films in BHJ
OSCs with a PCE of 2.73% [221]. The reduction process is another feasible way to increase
the conductivity of GO layers. The reduction removes the excess of oxygen atoms from the
GO surface and recovers the conjugated honeycomb structure [222]. Huang et al. succeeded
in synthesizing eco-friendly reduced graphene oxide (rGO) by using a modified Hummer’s
method to produce GO and thermal treatment to reduce it [223]. A mild temperature of
280 ◦C was used to obtain rGO and enhance OSCs’ conductivity based on P3HT:PC71BM
and PTB7:PC71BM with a PCE of 3.39% and 7.62%, respectively. The dispersibility must be
controlled to ensure good coverage of the underlying substrate. Lee et al. mixed highly
dispersible semiconducting fullerenol surfactant with GO, obtaining water-dispersible and
conductive films [224]. The conductivity increased from 5× 10−4 Scm−1 for the pristine GO
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layer to 1 × 10−2 Scm−1 for the fullerenol-GO layer, resulting in a PCE of 3.15%. Chemical
and physical methods involving the reduction of GO seek to tune the WF, improve electrical
properties, reduce absorption, and increase hole mobility and charge collection capability.
Kwon et al. obtained rGO by electron-beam irradiation with shorter processing times
than reported gamma (γ)-rays [225]. Following the same line, Fakharan et al. applied
a YAG-pulsed laser to produce rGO in formic acid for OPVs with a PCE of 4.02% [226].
They also highlighted the solvent’s role in manufacturing devices to achieve an rGO with
superior physical and electrical features. Unlike the traditional chemical-reduction methods,
pulsed laser or electron-beam allowed the reduction of graphene over the in-situ formation
of reducing species selectively. Dericiler et al. reported graphene nanosheets prepared
from the electrochemical exfoliation of graphene powder followed by dispersion in DMF
solvent [227]. They used the graphene nanosheets suspension as an additive to PEDOT:PSS
HTLs to enhance the stability and charge mobility in the P3HT:PC60BM, achieving 66%
enhancement in the PCE compared with the reference cell based on pure PEDOT:PSS HTLs.

The application of UVO irradiation has shown excellent efficiency in reducing GO in
large-scale OSCs manufacturing. Xia et al. [228] and Rafique et al. [229] exposed GO to UVO
treatment, resulting in optimized performance in P3HT:PC71BM and PCDTBT:PC71BM
blend systems. UVO oxidizes the surface of GO and removes CO2 molecules, leaving a uni-
form, smoothed, and conductive film. Ultraviolet irradiation was controlled to remove only
C-O bonds from the GO surface. UVO-treated GO films allowed for exceeding the value of
FF and Jsc obtained from PEDOT: PSS. Taking advantage of graphene’s chemical structure,
the functionalization is very promising for obtaining desirable properties in HTLs, such
as high hole mobility, charge collection, transparency, and stability, among others. Zhao
et al. fabricated highly stable P3HT:PC71BM-based OSCs with a PCE of 3.56% by forming
covalent bonds between graphene and sulfanilic acid through C-N linkers [230]. The cova-
lent functionalization increased the WF that enhance the interface’s charge transport and
the overall photovoltaic characteristics (see Figure 11a). Ali et al. confirmed the potential
for tuning the bandgap and electrical properties when reduced and sulfonated GO films
were applied as HTLs for a wide range of donor-acceptor systems [231]. Other approaches
like non-covalent phosphorylation and fluorination have been remarkably effective in
enhancing the charge collection and transport via inducing low ohmic contact [232,233].
The presence of the phosphate ester or fluor in the surface of GO increased the WF of
ITO/GO and tuned the HOMO level of the donor by the p-doping effect. Fluorinated
GO (F5-GO) was reported to work as an interlayer between ITO and PEDOT:PSS [234].
This material improved hole transport, resulting in a low Rs of 2 Ωcm2 and a PCE of
7.67% for PTB7:PC71BM-based OSCs. Park et al. reported an orthogonal printable HTL by
spray casting a highly stable dispersion of fluorine-functionalized reduced graphene oxide
(FrGO) [235]. By decreasing the sheet size to 0.3 µm, the PCE increased to 9.27 and 9.02%
for PTB7-Th:EH-IDTBR and PTB7-Th:PC71BM-based OSCs, respectively. This improve-
ment was attributed to the hole-transport efficiency, decreased leakage current, and higher
conductivity of the FrGO layers. Zhen et al. reported graphene-MoS2 hybrid thin films via
liquid-phase graphene exfoliation, improving the charge transportation as an interlayer
to achieve a PCE 9.5% [236]. This interlayer increased the device stability by retaining
93% of the initial PCE after 1000 h at room temperature. Shoyiga et al. reported reduced
graphene oxide-anatase titania (RGOT) nanocomposites by hydrothermal synthesis [237].
RGOT HTL is an efficient charge-transport channel whose higher conductivity and exciton
dissociation efficiency decreased the rates of electron-hole recombination (see Figure 11b),
resulting in a high Jsc, low Rs, and, thus, improved photovoltaic performance.
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Figure 11. (a) J-V curve of the OSCs with G–SO3H films as HTL. Adapted with permission from [230].
Copyright 2018, American Chemical Society. (b) Energy level diagram of an OSC with RGOT-
modified HTL. Adapted with permission from [237]. Copyright 2020, John Wiley and Sons.

Lee et al. improved the performance of rGO by chemical doping with tetrafluorote-
tracyanoquino-dimethane (F4TCNQ) [238]. The p-doping of rGO with F4TCNQ increased
the WF by 0.2 eV and the conductivity by inducing charge transfer between the F4TCNQ
and the graphene layer. F4TCNQ enhanced the interchain interaction and crystalliza-
tion of the P3HT film to improve the hole mobility from the active layer to the anode.
Lee et al. [239] and Sun et al. [240] reported that GO modified with alkali chlorides such as
AuCl3 or CuCl2 dopants in a conventional architecture exhibited an average PCE of 3.77%
and 7.68%, respectively. The AuCl3-doped graphene increased the electrical conductivity
(~2.0 × 105 Sm−1) compared with the reported fullerenol-rGO layer (1 × 10−2 Scm−1).
GO:CuCl2 layers formed a uniform and continuous film. Although the efficiency achieved
by the dopants is even comparable to that of the control devices with PEDOT:PSS, the sta-
bility was superior. Graphene-based derivatives (GBD) do not corrode the metal substrate
as PEDOT:PSS, to leading the development of OSCs’ efficient performance by controlling
the properties and deposition conditions of GBD as reported by Capasso et al. [241]. Sarkar
et al. embedded Au NPs into GO for increasing the light trapping in the active layer [242].
The exerted plasmonic effect and the plasmon-exciton interaction of NPs increased the light
harvested by the active layer, resulting in enhanced Jsc and PCE. Besides, the enhanced
conductivity of GO helped to reduce the leakage current, thereby improving the photogen-
erated current, Rs, and FF of the device. A composite of 1 wt% of graphene nanosheet and
water-dispersible polyaniline-poly(2-acrylamido-2-methyl-1-propanesulfonic acid) com-
plex was used as HTL in OSCs [243]. The graphene nanostacks (GN) from the composite
penetrated the BHJ of the OSC and facilitated the charge transport by forming additional
pathways (see Figure 12a). The electric field generated from the edges of the GN increased
the exciton dissociation. As a result, the composite performance raised the PCE from 2.12%
(PANI) to 2.92% (G-PANI) in the P3HT:PC70BM cells. Aatif et al. also reported the surface
morphology’s planarization after applying GO/molybdenum composite, resulting in a PCE
of 5.1% with the PCDTBT:PC71BM-based OSCs [244]. Quasi-3D GO:NiOx nanocomposites
are potential p-type HTLs in ITO/ZnO/PTB7-Th:PC71BM/HTL/Ag architectures [245].
Using the solvothermal method, NiOx NPs interacted with the low oxidized form of GO by
hydrogen bonds to form the quasi 3-D arrangement (see Figure 12b). The high performance
of these nanocomposite HTLs is due to the enhanced vertical conductivity with low recom-
bination rates and enhanced electron-blocking ability by the small conduction band of NiOx
NPs (1.55 eV) (see Figure 12c). The metallic nature of NiOx NPs improved the stability by
retaining half of the initial PCE (12.3%) in environmental conditions. Dang et al. reported a
solution-processed hybrid graphene-MoO3 (G-MoO3), via the hydrothermal method, to
apply as HTL in OSCs [246]. The G-MoO3 exhibited higher transparency in the visible
region compared with the thermal-evaporated MoO3. Moreover, the low injection barrier
(0.2 eV) and the higher hole mobility in G-MoO3 (4.16 × 10−5 cm2V−1s−1) than in MoO3
(1.25 × 10−5 cm2V−1s−1) were beneficial to achieve a PCE of 7.07%. The rGO and pery-
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lene derivative 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) nanohybrid HTL
showed an increased cell performance up 4.70% in PBDTTT-CT:PC71BM-based cells [247].
The rGO:PTCDA nanohybrid HTL formed permanent dipoles by the PTCDA_rGO bond
formation, increasing the hole extraction, electrical conductivity, and tuning the WF.

Figure 12. (a) Topography AFM-images of G/PANI–PAMPSA nanocomposite layer. Adapted with
permission from [243]. Copyright 2018, Elsevier. (b) Schematic representation of the preparation
at room temperature of self-assembled quasi-3D GO:NiOx nanocomposite and (c) hole extraction
properties and dynamics at the interface. Adapted with permission from [245]. Copyright 2018, John
Wiley and Sons.

4.3.2. Other Nanocarbons

The production efficiency of graphene quantum dots (GQDs) in the photovoltaic field
has been limited by the expensive manufacturing methods, materials availability, and
the time-consuming manufacturing [248,249]. However, the development of green and
low-cost methods, such as the synthesis of GQDs from carbon fibers by acid treatment
and chemical exfoliation or doping with nitrogen, has boosted its potential application
in the fabrication of large-area OSCs [250]. Hoang et al. succeeded in the green syn-
thesis of GQDs from graphene using the microwave-assisted hydrothermal method for
10 min [251]. An enhancement of 44% in PCE was achieved by doping the active layer
with 2 mg of GQDs. The GQDs filled the interstitial positions between P3HT and PC60BM
to increase the charge transport of holes and electrons and the photocurrent generation.
Zhang et al. reported amino-functionalized multi-walled carbon nanotubes (a-MWNTs),
via hydrothermal synthesis, as HTLs in conventional OSCs with the configuration ITO/a-
MWNTs/PCDTBT/PC71BM/LiF/Al [252]. Compared with the carboxylic acids, the amino
functionalization reduced the defects and the resistivity of a-MWNTs (see Figure 13a). The
a-MWNTs enhanced the device’s charge mobility, collection, and performance by 6.9%.
Single-walled carbon nanotubes (SWCNTs) are promising p-type transparent conductors
owing to their superior hole mobility, conductivity, and facile tuning of the WF by doping
method [253]. A highly-conductive composite of unzipped single-walled carbon nanotubes
(u-SWNTs) and PEDOT:PSS was synthesized by a facile solution processing method as re-
ported by Zhang et al. (see Figure 13b) [254]. The hybrid PEDOT:PSS doped with u-SWNTs
decreased the surface roughness. Oxygen-containing groups of u-SWNTs improved the
compatibility between u-SWNTs and PEDOT:PSS to block electrons and increase the hole
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transport. Using 0.1 mg mL−1 of u-SWNTs, the conductivity of the uSWNTs/PEDOT:PSS
increased to 2.08 Scm−1. The Rs was insensitive to the layer thickness, resulting in improved
charge-carrier transport through the gap of u-SWNTs (see Figure 13c). Thus, PBDB-T-2F:IT-
4F devices with u-SWNTs/PEDOT:PSS HTLs exhibited an enhancement in the PCE from
13.72% to 14.60% (see Figure 13d).

Figure 13. (a) Impedance spectra of OSCs with c-MWNTs and af-MWNTs HTLs. Adapted with
permission from [252]. Copyright 2019, Elsevier. (b) Schematic representation of u-SWNTs and u-
MWNTs synthesis, (c) EQE of u-SWNTs, SWNTs, and PEDOT:PSS, and (d) J-V curves of the OSCs with
u-SWNTs HTLs. Adapted with permission from [254]. Copyright 2020, Royal Society of Chemistry.

Table 1 enlists a series of HTLs reviewed up to this point. The anode configuration
with its work function, deposition technique for the HTL, active layer composition, and the
OSCs performance parameter such as VOC, JSC, FF, and PCE are provided as well as the
reference where the information is available.

Table 1. Performance parameters of OSCs with inorganic films as HTLs.

Anode Configuration
and WF (eV)

Deposition
Technique Active Layer VOC

(V)
JSC

(mA cm−2)
FF
(%)

PCE
(%) Ref.

Metallic oxides

ITO/s-MoO3 (4.92) spin coating PBDB-T-2F:Y6 0.84 27.53 73.10 17.00 [107]
ITO/PCM4 (5.4) blade coating PBDB-T-2F:Y6 0.83 16.06 68.28 14.30 [119]
HVO/Ag (6.7) spin coating PBDTT-FTTE:PC71BM 0.82 22.51 60.19 11.14 [159]

ITO/MoO3 (5.3) spin coating PBDB-T:PC71BM 0.88 17.48 71.00 10.86 [102]
MoO3:NiOx (5.1) spin coating PBDB-T:IT-M 0.94 17.26 66.63 10.81 [113]
e-MoOx/Ag (5.4) spin coating PTB7-Th:PC71BM 0.79 18.70 69.20 10.42 [99]

VOx:PEDOT:PSS/Ag (5.28) spin coating TPD-3F:IT-4F 0.87 16.80 69.10 10.10 [164]
MoO3/AgAl/MoO3/AgAl thermal evaporation PTB7-Th:PC71BM 0.78 19.60 61.90 9.79 [100]

CuBr-MoO3/Ag (5.03) thermal evaporation PTB7:PC71BM 0.75 19.65 65.20 9.56 [117]
MoOx NPs/Ag (5.40) spin coating PTB7- Th:PC 71 BM 0.79 18.05 65.20 9.50 [99]

ITO/MoO3 (5.29) spin coating PBDB-T:ITIC 0.91 15.19 66.59 9.17 [106]
ITO/NiOx NPs(5.25) spin coating PTB7-Th:PC71BM 0.79 18.32 63.10 9.16 [176]
ITO/s-MoO3 (4.92) spin coating PTB7-Th:PC71BM 0.79 16.69 67.10 8.90 [107]
ITO/CuOx (5.06) spin coating PTB7:PC71BM 0.74 16.44 71.00 8.68 [187]
MoO3/Ag (5.52) thermal evaporation PTB7-Th:PC70BM 0.81 15.90 67.80 8.67 [98]
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Table 1. Cont.

Anode Configuration
and WF (eV)

Deposition
Technique Active Layer VOC

(V)
JSC

(mA cm−2)
FF
(%)

PCE
(%) Ref.

ITO/p-MoO3 (5.26) spin coating PTB7:PC71BM 0.73 17.02 68.10 8.46 [104]
ITO/CTAB-MoO3 (5.18) spin coating PTB7:PC71BM 0.72 16.88 68.10 8.34 [118]

ITO/VOx·nH2O (5.0) spin coating PTB7-th:PC71BM 0.78 15.76 64.62 8.11 [156]
ITO/V2O5 spin coating PTB7:PC70BM 0.71 17.35 65.00 8.05 [154]

ITO/NiOx NPs(5.25) spin coating PTB7:PC71BM 0.74 16.10 66.42 7.96 [176]
ITO/NP-V2O5 (4.7) spin coating PTB7:PC70BM 0.72 15.81 69.01 7.89 [165]

WOx nanosheets/Ag spin coating PTB7: PC71BM 0.81 16.42 58.19 7.76 [150]
ITO/s-VOx (5.3) spin coating PTB7:PC71BM 0.73 15.79 66.82 7.70 [160]

ITO/MoO3/AuNPs/MoO3 (5.6) spin coating PTB7:PC70BM 0.73 14.40 73.00 7.68 [122]
ITO/ESD-VOx (5.6) spray casting PTB7:PC71BM 0.74 15.30 67.00 7.61 [168]

ITO/V2Ox (5.42) spin coating PBDTDTTT-S-T:PC71BM 0.68 16.29 67.21 7.44 [114]
ITO/MoOx (5.30) spin coating PBDTDTTT-S-T:PC71BM 0.69 16.14 66.02 7.35 [114]

ITO/sMoOx spin coating PV10:PC70BM 0.73 13.57 72.55 7.19 [101]
FTO/Cu:NiOx spin coating PCDTBT:PC71BM 0.89 12.40 63.85 7.05 [181]

FTO/c-NiO (5.0) spin coating PTB7:PC71BM 0.72 14.28 66.98 6.91 [178]
ITO/MoOx thermal evaporation PTB7:PC71BM 0.67 14.00 67.00 6.57 [103]

ITO/HyMoO3-x (5.6) spin coating PTB7:PC70BM 0.77 13.90 61.20 6.55 [129]
ITO/NiOx NPs(5.25) spin coating PCDTBT:PC71BM 0.90 11.36 62.35 6.42 [176]

ITO/NiOx (5.6) spin coating TQ1:PC70BM 0.87 10.30 71.30 6.39 [175]
ITO/s-V2Ox (5.25) spin coating PFDT2BT-8:PC70BM 0.87 10.20 67.10 6.30 [162]

V2Ox/Ag (5.42) spin coating PBDTDTTT-S-T:PC71BM 0.63 15.81 61.02 6.08 [114]
MoOx/Ag (5.30) spin coating PBDTDTTT-S-T:PC71BM 0.61 15.68 62.78 6.00 [114]

ITO/V2O5·H2O (5.04) spin coating PBDSe-DT2PyT:PC71BM 0.72 13.96 59.00 5.87 [155]
ITO/CTAB-MoO3 (5.18) spin coating P3HT:ICBA 0.82 10.40 67.40 5.80 [118]

ITO/MoOx thermal evaporation PTB7-Th:PC71BM 0.74 14.50 44.80 5.52 [103]
FTO/s-MoO3 (5.3) spin coating P3HT:ICBA 0.82 11.50 58.00 5.40 [105]
FTO/MoOx (5.6) spin coating P3HT:PC71BM 0.65 12.72 61.00 5.00 [110]

Metallic sulfides

ITO/WS2 (5.3) spin coating PBDB-T-2F:Y6:SF(BR)4 0.89 29.31 80.00 20.87 [204]
ITO/WS2 (5.5) spin coating PBDB-T-2F: Y6: PC71BM 0.84 26.00 78.00 17.00 [203]
ITO/WS2 (5.1) spin coating PBDB-T-2F:Y6:PC71BM 0.83 26.00 72.00 15.60 [202]

ITO/CuSCN:TFB (1.0%) (5.50) spin coating PM6:Y6 0.85 24.35 73.84 15.28 [214]
ITO/MoS2 (5.04) spin coating PBDB-T-2F:Y6:PC71BM 0.81 25.30 71.00 14.90 [202]

ITO/CuSCN:AMQS spin coating PBDBT-2F:IT-4F 0.80 18.70 67.80 10.14 [209]
ITO/CuSCN:AMQS spin coating PTB7-Th:PC71BM 0.79 17.10 65.20 8.80 [209]

ITO/O-MoS2 QDs (5.2) spin coating PTB7-Th: PC71BM 0.79 16.90 65.00 8.66 [200]
ITO/MoSx (5.10) spin coating PTB7-Th: PC71BM 0.77 18.16 53.56 7.50 [201]

ITO/CuSCN:AMQSs spin coating PTB7-Th:ITIC 0.82 15.07 59.06 7.15 [209]
ITO/CuSCN:C60F48 (5.40) spin coating PCDTBT:PC70BM 0.92 11.50 61.00 6.60 [213]

Nanocarbon materials

ITO/uSWNTs/PEDOT:PSS spin coating PBDB-T-2F:IT-4F 0.85 23.39 73.17 14.60 [254]
ITO/FrGO (4.9) spray casting PM6:Y6 PSC. 0.77 24.64 69.60 13.26 [235]
L-GO:NiO/Ag spin coating PBDB-T:IT-M 0.91 17.81 71.00 12.13 [245]

G-MoS2/Ag (4.42) spin coating PTB7-Th:PC71BM 0.80 17.10 67.70 9.50 [236]
ITO/G-MoS2/PEDOT:PSS (5.0) spin coating PTB7-Th:PC71BM 0.77 17.20 72.00 9.40 [236]

ITO/FrGO (4.9) spray casting PTB7-Th:EH-IDTBR 1.00 14.86 61.80 9.22 [236]
ITO/FrGO (5.1) spin coating PTB7-Th:PC71BM 0.79 16.89 64.80 8.60 [233]
ITO/P-GO (4.70) spin coating PTB7:PC71BM 0.71 16.12 68.40 7.90 [232]

ITO/GO:CuCl2 (5.1) spin coating PTB7-Th:PC71BM 0.79 15.52 63.00 7.74 [240]
ITO/G-MoO3 (5.32) spin coating PCDTBT:PC71BM 0.86 12.83 63.67 7.07 [246]

af-MWNTs (5.22) spin coating PCDTBT:PC71BM 0.87 12.65 63.50 6.97 [252]
ITO/GO:NPs (4.9) spin coating PTB7:PC71BM 0.75 11.55 67.91 5.88 [242]
ITO/F5-rGO (5.1) spin coating PTB7:PC71BM 0.68 14.78 57.30 5.82 [234]

ITO/GBD (4.9) spin coating PBDTTT-C-T:PC70BM 0.71 13.38 52.54 5.01 [241]
ITO/GO:MoO3 (5.3) spin coating PCDTBT:PC71BM 0.66 16.16 47.11 5.10 [244]

4.4. Conducting Polymers and Their Composites
4.4.1. PEDOT

PEDOT:PSS is the most common conducting polymer used as hole-transporting mate-
rial in OSCs due to its easy solution processing, suitable WF around 5.1 eV, high conductiv-
ity, good transparency, good mechanical properties, and adapted wettability on the BHJ
layer [255]. For instance, a patterning interfacial PEDOT:PSS layer formed by a nanoimprint-



Nanomaterials 2022, 12, 443 23 of 54

ing technique using poly(dimethylsiloxane) (PDMS) stamp was employed on OSCs based
on poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM), showing
an increased PCE of 1.53% [256]. PEDOT:PSS was incorporated on an inverted OSC based
on P3HT:O-IDTBR with an evaporated Ag back electrode, showing an enhanced device
performance [257]. The incorporation of PEDOT:PSS into P3HTN:PEG-C60 based OSCs
increased the Voc to 1.3 V, attributed to the large collection barrier [258]. PEDOT:PSS has
strong acidic nature due to the polystyrene sulfonate (PSS, pH~2), which deteriorates the
anode material and the photoactive layer, affecting the performance and stability of the
device. Besides, this polyelectrolyte has high affinity for environmental water (hygroscopic),
making it necessary to encapsulate the OSC’s before the durability test. Humidity is a major
problem in this type of device. Accordingly, different modifications to the PEDOT:PSS
layer have been developed to overcome these issues. Some post-treatments to the PE-
DOT:PSS layer have been tested using solvents, surfactants, and by exchange of PSS with
less acidic dopants as well as the addition of small molecules. These modifications aim
to reach a uniform morphology, increase the interface contact, and produce a neutral pH
hole-transporting polymer to improve the stability and cell performance. The use of a layer
composed of PEDOT and grafted sulfonated-acetone-formaldehyde lignin (GSL) instead
of PSS resulted in a better photovoltaic performance than conventional PEDOT:PSS [259].
GSL is a less acidic copolymer of lignin. A homogeneous surface of the PEDOT:GSL
HTL in a PTB7-Th:PC71BM/poly[(9,9bis(3′-(N,N-dimethylamino)propyl)-2,7-fluorene)-
alt-2,7-(9,9dioctylfluorene)] (PFN)-based OSC resulted in a PCE of 8.47%. PEDOT:PSS
treatment with solvents as isopropanol (IPA) also shows a better performance, mainly
due to more uniform morphology, increased JSC, and improved cell-light absorption [260].
2-Methoxyethanol (EGME) and dimethyl sulfoxide (DMSO) solvents were added to a PE-
DOT:PSS solution [261]. The conductivity after doping was about seven times higher and
the OSCs based on P3HT:PCBM improved the PCE from 2.8% to 3.9% owing to increased
Jsc 16.5 mA cm−2 and FF of 38.0%. Another approach includes the addition of commercial
surfactants such as Zonyl FS-31, which improves the wettability of the interface between
the hydrophobic photoactive layer and the PEDOT:PSS HTL [262]. The fluorination of PE-
DOT:PSS HTL by fluorinated molecules showed an increased device efficiency [263]. On the
other hand, a PSS-free, stable PEDOT HTL was obtained by using solid-state polymerization
resulting in robust, stable, and solution-processable OSCs based on PCDTBT:PC71BM [264].
Water-soluble polyelectrolyte poly(4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl-methoxy)-1-
butanesulfonic acid) (PEDOT-S), which shows the same PEDOT backbone containing an
ethoxyalkylsulfonate branch, showed better performance than conventional PEDOT:PSS
layers [265]. PEDOT-sulfonated polyelectrolyte complexes were also tested as an anode
buffer layer [266]. Different commercial grades of PEDOT:PSS and additive solvent EG were
used to form a hybrid PEDOT:PSS (PH 1000:Al 4083) layer tested as an HTL and anode elec-
trode for inverted OSCs based on P3HT:PCBM [267]. An OSCs based on PTB7-Th:PC71BM
was built using a hole-transport double layer made of pyridine-based tetrathiafulvalene
derivative (TTF-py) on PEDOT:PSS [268]. This modification resulted in an increased short
circuit current (Jsc) of 17.19 mA cm−2 and a PCE of 9.37%. The anode configuration showed
a WF of 5.28 eV for the TTF-py layer, resulting in a closer valence band toward the donor
material (see Figure 14). PEDOT:PSS/TTF-py had better wettability and enhanced hole
mobility, resulting in charge-loss reduction and charge-recombination suppression. Fur-
thermore, TTF-py’s molecular structure allowed molecular π-π stacking and formed an
orderly molecular arrangement for hole transfer. TTF-py modification also improved the
device stability, retaining 96% of the initial PCE after storing for 28 days by the suppression
PEDOT:PSS permeation.
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Figure 14. (a) Schematic illustration of device structure of ITO/PEDOT.PSS/TTF-py/PTB7-
Th:PC71BM/ZnO/Al and (b) energy level diagram of an OSC with the TTF-py modified PEDOT:PSS
as HTL. Adapted with permission from [268]. Copyright 2019, American Chemical Society.

Other modifications on PEDOT:PSS have introduced an inorganic transition metal
salt, such as nickel formate dihydrate (NFD), to tune the surface free energy (γs) and
control the molecular orientation in the BHJ [269]. An enhanced PCE of 10.76% was
achieved for the PM6:PC71BM-based OSCs. The NFD:PEDOT:PSS HTL had a WF of
5.01 eV that well-matched the donor material and an increased γs of 68.96 mN m−1,
which led to increased FF and Jsc. Polymeric donor material PM6 preferred a face-on
molecular orientation. Enhanced molecular stacking was promoted with an increased
γs of PEDOT:PSS induced by NFD. This modification improved the molecular orienta-
tion along the charge-transport direction; thus, carrier mobility was enhanced, and the
charge recombination was suppressed. The modified HTL was also tested in non-fullerene
OSCs based on PM6: IT-4F, obtaining an enhanced PCE of 14.08% with FF of 78.75%.
Oxoammonium salts (TEMPO+ Br-, 2,2,6,6-tetramethylpiperidine-1-oxoammonium) were
tested as a p-type dopant of PEDOT:PSS layers, resulting in an enhanced PCE of 16.1%
in OSCs based on PM6:Y6 [270]. PEDOT:PSS was further oxidized by oxoammonium
salt, improving the doping level of PEDOT:PSS. Doped PEDOT:PSS (TEMPO+ Br-) pos-
sess higher conductivity and better energy alignment. Metallo phthalocyanines (PC)
such as vapor-deposited vanadylphthalocyanine (VoPC), NiPC, and SnPC were tested as
buffer layers with PEDOT:PSS, enhancing the efficiency of P3HT:PCBM-based OSCs [271].
PEDOT:PSS:In2S3 was also employed as HTL material for OSCs based on PBDB-T:ITIC
and PM6:Y6; these showed an enhanced PCE of 11.22% and 15.89%, respectively [272].
Improved device performance was observed because of increased Jsc and FF, and re-
duced Rs with bimolecular recombination suppression due to partial removal of PSS
from the surface. PEDOT also suffered a benzoic-quinoid transition (coil-linear struc-
ture) which delocalized charge carriers, enhancing the layer conductivity. Furthermore,
device performance stability showed a retained 36% PCE for modified HTLs after 48 h
compared with a non-modified PEDOT:PSS HTL, which showed a retained 10% PCE. OSCs
based on ITO/PEDOT:PSS-Dopamine (DA)/PM6:Y6/poly[[2,7-bis(2-ethylhexyl)-1,2,3,6,7,8-
hexahydro-1,3,6,8-tetraoxobenzo[lmn] [3,8]phenanthroline-4,9-diyl]-2,5-thiophenediyl[9,9-
bis[3′((N,N-dimethyl)-N-ethylammonium)]propyl]-9H-fluorene-2,7-diyl]-2,5-thiophenediyl]
(PNDIT-F3N)/Ag showed an increased PCE from 16.01% to 16.55% [273]. The DA-doped
PEDOT:PSS layer showed an enhanced conductivity ascribed to (i) a more regular stack
by the enhanced intermolecular packing of DA:PSS, (ii) an increased WF of 5.14 eV com-
patible with HOMO level of PM6 donor polymer, and (iii) enhanced film uniformity.
PEDOT:PSS-DA was also tested for devices based on different active layers such as PBDB-
T:ITIC, PM6: IDIC, and P3HT:PCBM, resulting in improved performances as well. PE-
DOT:PSS was also used together with various polymers as HTLs, such as nanoimprinted
poly(methylmethacrylate) (PMMA) [274], and conjugated polyelectrolytes (CPEs), e.g.,
poly[(9,9-bis(4-sulfonatobutyl sodium) fluorene-alt-phenylene)-ran-(4,7-di-2-thienyl-2,1,3-
benzothiadiazole-alt-phenylene)] (PSFP-DTBTP), that resulted in a PCE improvement of
13% for PCDTBT:PC71BM-based OSCs [275]. Microporous polymer networks are a class
of conjugated material that shows high specific surface areas and porosity with potential
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application in various fields including organic photovoltaics [276–283]. For instance, a
porous organic polymer, poly(carbazolyl triphenylethylene) derivative (PTPCz), obtained
by electropolymerization was used in the HTL PEDOT:PSS/PTPCz for OSCs based on
PTB7:PC71BM, resulting in an smooth surface morphology, increased WF of 5.23 eV, Jsc, and
FF, reduced Rs, and increased Rsh, reaching an improved PCE of 8.54% [284]. Electropoly-
merized polytriphenylcarbazole fluoranthene (p-TPCF) and PEDOT:PSS were used for
OSCs based on PTB7-Th:PC71BM, obtaining enhanced Jsc, FF, Voc, and a PCE of 8.99% [285].
Modification of PEDOT:PSS with a neutral conjugated polymer electrolyte poly[9,9-bis(4′-
sulfonatobutyl)fluorene-alt-thiophene] (PFT-D) composite layer improved the device per-
formance (PCE from 7.8% to 8.2%) and the half-lives of PTB7-Th:PC71BM-based OSCs [286].
PFT-D molecular dipole screened the attraction between PEDOT and PSS chains; addition-
ally, the –SO3

− ions of PFT-D act as a conjugate base of PSS, improving current generation.
Poly(3-hexylthiophene)-b-poly(p-styrenesulfonate) (P3HT50-b-PSS23) block polymers were
incorporated between HTL PEDOT:PSS and the active-layer P3HT:PCBM [287]. The OSCs
with P3HT-b-PSS interfacial layer improved PCE by 12% due to increased Voc and FF that
compensate for the decreased Jsc caused by the blocked light irradiance to the P3HT. The
energy level matching was improved. HOMO level of P3HT-b-PSS (−4.68 eV) was higher
than P3HT of active layer, which facilitates the hole transport. In addition, P3HT-b-PSS
film had a smoother surface than PEDOT:PSS, enhancing the interfacial contact and thus
improving the FF of the device. Modification of the commonly used PEDOT:PSS with
metallic NPs contributes with some features such as an enhanced localized field and light
scattering by the localized surface-plasmon resonance (LSPR) that improves the absorption
of the active layer [288]. NPs also assist in the charge transport at the interface. NPs are
synthesized by different methods such as chemical reduction, the polyol method, and
ultrasonochemical synthesis [289]. Hao et al. reported mixed AuNPs (rod, bone-like, cube
and spheres shape) doped in PEDOT:PSS HTLs in OSCs based on PTB7:PC71BM [290]. The
addition of mixed AuNPs generated wide absorption spectra covering from the visible to
the near-infrared region and induced an increase of enhancement of internal field in the
active layer, resulting in improved absorption and enhanced device performance up to
9.26%. AuNPs also contributed to decrease the bulk resistance of PEDOT:PSS. Periodic Ag
nanodot (Ag ND) arrays were fabricated by laser-interference lithography (LIL) between
ITO and PEDOT:PSS layers in OSCs based on PTB7:PC70BM (see Figure 15) [291]. This
HTL showed increased Jsc of 23.26 mA/cm2, enhanced EQE induced by the plasmonic and
light-scattering effect, and improved PCE of 10.11%. LSPR band matched optimally with
the absorption of the photoactive layer, increasing its light-absorption.

Figure 15. Schematic representation of an OPV device with Ag NDs. Adapted with permission
from [291]. Copyright 2016, American Chemical Society.

AuNPs and AgNPs blended with PEDOT:PSS were used as HTLs in OSCs [292]. Both
PEDOT:PSS:NPs showed an enhanced device performance in comparison with pristine
PEDOT:PSS. An optimized PCE of 5.65% was obtained for PEDOT:PSS:AuNPs HTLs in
rrP3HT:PC71BM-based OSCs. Better device performances were obtained with NPs be-
cause of the surface-plasmon effect (at the visible region for AuNPs) that increased the
photoabsorption length and the trapping of scattering and incident light. Segmented silver
nanowires (AgNWs) were incorporated in PEDOT:PSS HTLs in OSCs with configuration
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ITO/PEDOT:PSS:AgNWs/P3HT:PC61BM/ZnO/Al [289]. These OSCs exhibited enhanced
device performance with a PCE of 3.3%, increased Jsc and FF due to LSPR, and optical-
scattering properties from the AgNWs. Sah et al. reported the fabrication of OSCs based on
PTB7-Th:PC71BM with bimetallic Ag-Au-Ag nanorods (NRs) in PEDOT:PSS HTLs [293].
These devices showed improved performances up to 7.36% owing to an increased FF and
Jsc. The enhancement was ascribed to an improved charge transport, broad absorption
region covering visible to the near-infrared region, light-scattering-induced absorption
enhancement, electric field enhancement, and improved EQE by the LSPR effect. Incorpo-
ration of copper, a cheaper and more abundant metal, as Cu-Au NPs in PEDOT:PSS for
OSC based on P3HT:PC61BM and PTB7-Th:PC71BM showed improved PCEs of 3.63% and
8.48%, respectively [294]. Cu-AuNPs:PEDOT:PSS presented an absorption enhancement
by LSPR and light-scattering effect. The improved PCE in the device was attributed to an
increased Jsc, higher hole mobility, and reduced Rs. However, the FF decreased compared
with pristine PEDOT:PSS HTLs, mainly due to an induced charge recombination by the
NP doping. Adedeji et al. employed copper sulfide NPs in PEDOT:PSS HTLs to fabricate
OSCs based on P3HT:PC61BM [295]. These devices showed an enhanced PCE of 4.51% (an
increase of 115% over the pristine PEDOT:PSS HTLs) and good stability, retaining up to
40% of their initial PCEs after 48 h. CuNPs exhibited surface-plasmon resonance absorption
near-infrared region and induced an electric field beneficial to exciton dissociation and
photon harvesting. The incorporation of nickel sulphide NPs in PEDOT:PSS layers exhib-
ited an enhanced device performance of 6.03% in OSC based on P3HT:PC61BM [288]. An
improved photogenerated current was attributed to the effective trapping of light through
scattering and improved charge collection. OSCs based on NiS NPs:PEDOT:PSS HTLs
showed reduced Rs, indicative of an improved conductivity at the interface, and improved
optical transparency enhancing the internal quantum efficiency. Furthermore, the device
showed higher hole mobility, and thus reduced carrier recombination and enhanced charge
transport. PCE enhancement was ascribed to the LSPR absorption (in the visible and
infrared region) and light-scattering process. ZnSTe quantum dots (QDs) incorporated into
PEDOT:PSS HTL showed an improved device performance in OSC based on P3HT:PC71BM
due to improved mobility and enhanced light absorption, attributed to surface-plasmon
resonance [296]. Zhang et al. reported OSCs based on PTB7-Th:PC71BM and PM6:IT-4F
with high PCEs of 9.11% and 12.81%, respectively, by the insertion of black phosphorous
quantum dots (BPQDs) on PEDOT:PSS [297]. BPQDs is a 2D p-type semiconductor, which,
inside the device, formed a cascade band structure between the anode and the active
layer. The valance band of BPQDs (−4.92 eV) was higher than the valance band of donor
polymers PTB7-Th (−5.24 eV) and PM6 (−5.5 eV), providing enough driving force for
the hole injection from the active layer to the BPQDs layer. The increased efficiency in
devices with BPQDs interfacial layer was attributed to an increased Jsc and FF due to
excellent hole mobility in BPQDs and better energy alignment in the device, indicating
improved charge extraction and exciton dissociation. Other metal NPs incorporated in
PEDOT:PSS involve Al micro-stars [298], Al NPs [299], and Au NPs, gold nanorods (Au
NRs) [300], and Au QDs [301]. Up-conversion NP process converts low-energy photons
into high-energy photons (in the absorption region of organic polymers) to enhance the
optical-to-electrical conversion performance [302]. Mei et al. incorporated sodium yttrium
fluoride (β-NaYF4):Er3+, Yb3+ up-conversion NPs into PEDOT:PSS HTLs in OSCs based
on P3HT:PC61BM, resulting in enhanced Jsc and PCE of 3.02% [303]. These results were
ascribed to light scattering and photoluminescence (PL) emission from up-conversion NPs.
Silver-zinc bimetallic NPs were incorporated between the PEDOT:PSS HTL and the pho-
toactive layer of P3HT:PCBM [304]. OSCs exhibited an improved PCE of 3.6%, which was
90% higher than the reference device. This effect was attributed to LSPR of the Ag:Zn NPs,
which enhanced the optical absorption and charge-carrier collection. Another modification
to PEDOT:PSS was reported by Michalska et al. using wet ultra-sonochemical synthesized
titanium dioxide TiO2 anatase decorated with Ag NPs [305]. TiO2/Ag solution was added
to PEDOT:PSS HTLs showing an improved PCE of 2.07%. Au NPs on PEDOT:PSS in
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vacuum-free OSCs improved the device performance resulting from the increased Jsc [306].
The absorption of the active layer and the device PCE were enhanced, especially by Au
nanorods’ presence. Many studies have been focused on improving the performance of
PEDOT:PSS HTL by addressing the acidic and hygroscopic nature of PEDOT:PSS that
affects the stability and efficiency of the photovoltaic devices. Incorporating metal ox-
ides (MO) can enhance the stability, efficiency, and electron-blocking properties of the
HTL. Among these MOs that have been incorporated in PEDOT:PSS are vanadium oxides
(V2O5), sol-gel synthesized VOx, continuous-spray pyrolyzed-synthesized molybdenum
oxide (MoO3), and tungsten oxide (WO) [307]. Spin-coated V2O5 NWs prepared by the
hydrothermal method on PEDOT:PSS HTL (see Figure 16a) showed improved Voc and FF
in OSCs based on P3HT:PCBM [308]. The PCE improved a 15.58% in comparison with
the pristine PEDOT:PSS reference cell. The LUMO level of V2O5 (2.4 eV) is higher than
P3HT LUMO, and thus better electron blocking properties than pristine PEDOT:PSS are
expected (see Figure 16b). Modified HTL had increased incident light paths by reflection
and refraction caused by V2O5 NWs.

Figure 16. (a) Schematic representation of polymer photovoltaic cell based on PEDOT:PSS/V2O5

HTL and (b) energy level alignment for the cell components. Adapted with permission from [308].
Copyright 2016, Elsevier.

Li et al. reported a PCE of 9.44% for OSCs with V2O5:PEDOT:PSS as HTL due to an
enhanced Jsc and FF, smaller Rs, and larger Rsh [309]. The incorporation of V2O5 offered an
effective path for exciton extraction and suppressed charge recombination, reflected by a
larger hole mobility and a higher conductivity. The composite HTL surface was uniform and
smooth, related to V2O5 NPs filling the pinholes in PEDOT:PSS. Furthermore, better wet-
ting and physical contact were obtained between the photoactive layer and the HTL as well
as enhanced crystallinity of the active layer. Molybdenum oxide (MoOx) NPs/PEDOT:PSS
HTLs were blade coated in inverted OSCs based on PTB7-Th:PC60BM, resulting in an
increased FF and enhanced PCE of 7.4% [310]. The modification of PEDOT:PSS with MoO3
mitigated the degradation of non-fullerene OSCs based on PM6:IT-4F by suppressing the
interfacial reaction between PEDOT:PSS and IT-4F [311]. MoO3-PEDOT:PSS hybrid HTL
improved the device’s operational stability, which was five times longer than reference
devices. The hybrid HTL also improved the hole mobility favoring the charge extraction.
Zinc oxide-doped single-carbon nanotubes (CNT) were incorporated in PEDOT:PSS as an
anode buffer layer (ZnO:CNT/PEDOT:PSS), showing excellent transmittance and a smooth
morphology [312]. P3HT:PCBM-based OSCs with an HTL containing 2.5% ZnO:CNT
showed an improved PCE of 4.1%, enhanced Jsc and FF, and reduced Rs. CNT provided sur-
face homogeneity, and ZnO prevented humidity uptake. The device parameters decreased
at a slower rate than PEDOT:PSS devices under a nitrogen environment. Zheng et al.
fabricated fullerene-free OSCs with tungsten oxide WOx NPs in PEDOT:PSS as HTL [313].
The system architecture ITO/WOx:PEDOT:PSS/PM6:IT-4F/PFN-Br/Al achieved a high
FF of 80.79% and enhanced PCE of 14.57%. A more balanced hole and electron mobil-
ity was obtained for WOx:PEDOT:PSS based of BHJ OSCs measured as a ratio µe/µh
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of 0.88, which contributed to increase the FF. The longer lifetime of carriers and faster
extract time of WOx:PEDOT:PSS also benefited the device parameters. WO3/PEDOT:PSS
bilayer was used as HTL in inverted SMD2: ITIC-Th-based OSCs [314]. An optimized
cell achieved a high PCE of 10.3%, with enhanced Jsc, Voc, and FF. The WO3/PEDOT:PSS
device presented increased Rsh and decreased Rs by a well-matched energy level alignment,
high hole mobility, a more balanced charge-carrier transport, and increased photosta-
bility. Furthermore, flexible inverted OSC modules were fabricated by slot-die coating
achieving a PCE of 5.25% and a power output of 419.6 mW. A layer of hydrogen molyb-
denum bronze (HxMoO3) with PEDOT:PSS layer was also used in all solution-processed
non-fullerene OSCs based on PM6:IDIC:Y6 [315]. Phosphomolybdic acid (PMA) in PE-
DOT:PSS layers were tested in different organic fullerene-based OSCs, showing good
performances [316]. GO, a two-dimensional carbon material, has also been investigated
to modified PEDOT:PSS as hole-transport materials in different OSCs. The Oleyamine-
functionalized GO/PEDOT:PSS layer on PBDB-T:ITIC [317], PEDOT:PSS treated with GO
layers on PTB7:PC71BM devices [318], on P3HT:PC60BM devices [319], on P3HT:PCBM
devices [320], on inverted P3HT:PCBM OSCs [321], on inverted P3HT:PC71BM OSCs [322],
and on reduced GO-germanium QDs modified PEDOT:PSS on P3HT:PCBM [323]. Raj et al.
reported the fabrication of PTB7:PC70BM-based OSCs with PEDOT:PSS:GO, resulting in
enhanced PCE of 7.68% [324]. The modified HTL showed a fine fiber-like structure that
improved the conductivity. GO showed to increase the device resistance degradation. GO
is generally prepared by variations of the Hummers method using graphite powder as the
starting material [325,326]. PEDOT:PSS:GO was also tested on P3HT:PC61BM-based OSCs,
showing an increased Jsc, FF, and a 14% higher PCE than a reference device [327]. GO in
the HTL reduced the HOMO-LUMO gap and the Rs, improving the hole mobility and the
energy level matching. A double-decked GO/PEDOT:PSS HTL in PCDTBT:PC71BM-based
OSCs was reported by Rafique et al. [328]. The modified HTL provided a better hole
extraction and transportation by a suitable WF of GO (4.9 eV) and PEDOT:PSS (5.1 eV) that
well-matched energy levels. This device showed an improved PCE of 4.28% ascribed to an
increased charge-carrier mobility, Jsc, Voc, and FF, and a reduced Rs. Besides, better stability
than PEDOT:PSS was reached, since GO served as a barrier that protected ITO corrosion
due to the acidic nature of PEDOT:PSS (see Figure 17). Similarly, improved photovoltaic
stability was achieved with GO/PEDOT:PSS HTLs in P3HT:PC60BM devices [329]. This
device showed an increased Rsh and a decreased Rs, which facilitate the hole transporta-
tion. The composite HTL was smooth and uniform, contributing to an improved device
performance with a PCE of 4.82%. Nitrogen-doped graphene quantum dots (nGQDs) were
blended with PEDOT:PSS HTLs in PTB7:PC71BM-based OSCs, resulting in an enhanced
PCE of 8.5% [330]. The modified HTL improved the charge-carrier transport, increased the
hole mobility, and suppressed charge recombination. The nitrogen doping led to a high
content of quaternary nitrogen, enhancing the electrical conductivity of GQDs. UV-ozone
(UVO)-treated GO/PEDOT:PSS bilayer in OSCs based on PCDTBT:PC71BM presented an
improved PCE of 5.24% [331]. An increased Jsc, Voc, and FF were obtained in the cells using
the modified HTL and improved ambient stability, retaining above 90% of initial PCE after
240 h. The enhanced conductivity was ascribed to the reduction of oxygen content in GO
after UVO treatment.
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Figure 17. Stability test of various OSCs over 250 h. Adapted with permission from [328].

Other modifications on PEDOT:PSS have also been reported with a graphene analog,
the two-dimensional transition metal dichalcogenides. For instance, hybrid PEDOT:PSS/WS2
was incorporated as HTL in OSCs [332]. PEDOT:PSS worked as an effective exfoliating
agent to the WS2 2D structure. The photovoltaic device based on P3HT:PC61BM and
PTB7-Th:PC71BM exhibited enhanced PCE of 3.07% and 7.24%, respectively, attributed to
increased Jsc and FF as well as to enhanced hole mobility and enhanced conductivity of
the PEDOT:PSS/WS2 layer. Besides, PEDOT:PSS/WS2-based OSCs had improved stability,
retaining 77.3% of initial PCE after 36 days. Koo et al. fabricated PTB7:PC71BM-based
OSCs with tungsten diselenide (WSe2)/PEDOT:PSS HTLs (see Figure 18a), showing an
enhanced PCE of 8.5% [333]. The composite HTL exhibited a homogeneous film formation.
WSe2 negative surface induced the segregation of PEDOT and PSS, which enhanced the
layer conductivity. Furthermore, photoluminescence peak intensity decreased, indicating
diminished recombination (see Figure 18b). Thus, PEDOT:PSS-WSe2 showed improved
hole-transport ability and a better charge extraction than the reference device. Oleyamine-
functionalized molybdenum disulfide MoS2 has also been reported in the modification of
PEDOT:PSS HTLs [334].

Figure 18. (a) Schematic representation of a WSe2-PEDOT:PSS HTL-based OSC and (b) PL spectra
measured from structure of glass/PEDOT:PSS and P-WSe2-based devices. Adapted with permission
from [333]. Copyright 2018, IOP Publishing Ltd.

Boronic acid functionalized multi-walled CNs (bf-MWCNTs)-doped PEDOT:PSS
HTLs showed excellent hole mobility and electrical conductivity [335]. The OSC with
PEDOT:PSS:bf-MWCNTs showed reduced Rs and increased Rsh, exhibiting excellent hole
collectivity. A 28% increased PCE for PCDTBT:PC71BM based OSC was attributed to an
enhanced Jsc and FF. PL intensity of HTL doped with bf-MWCNTs was reduced, indicating
an enhancement in charge transport from the active layer. The WF increased to 5.39 eV that
well-matched with the HOMO energy level of PCDTBT. Graphitic carbon nitrile (g-C3N4)
was used as a secondary dopant for PEDOT:PSS in OSCs based on PM6:Y6, leading to
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an improved PCE of 16.38% [336]. The g-C3N4:PEDOT:PSS HTL showed a higher con-
ductivity, an improved charge transport, and a suppressed charge recombination. This
modified HTL had increased hole mobility, leading to more balanced charge transport. The
g-C3N4 insulated the PSS moiety, so the conducting PEDOT chain was exposed. A two-
dimensional titanium carbide (Ti3C2Tx) bilayer was incorporated into PEDOT:PSS HTLs in
non-fullerene PBDB-T:ITIC and PM6:Y6 OSCs [337]. This bilayer enhanced the conductivity
of PEDOT:PSS by a reduced coulombic attraction between PEDOT and PSS, causing the
conformational transition of PEDOT from coil to linear structures. The HTL roughness
increased upon Ti3C2Tx incorporation, which enlarged the contact area between HTL and
the photoactive layer. The hole mobility increased because of the interconnected conducting
network between PEDOT and Ti3C2Tx. The PL peak was reduced, indicating improved
hole transmission. As a consequence, the PCE of devices improved to 11.02% and 14.55%
for PBDB-T:ITIC- and PM6:Y6-based OSCs, respectively. Moreover, PEDOT:PSS/Ti3C2Tx
HTLs enhanced the nitrogen atmosphere’s long-term stability, retaining 79.67% of the initial
PCE after 300 h.

4.4.2. Other Conjugated Polymers

Another approach aims to replace the use of PEDOT:PSS with different conjugated
polymers. The chemical structure of a series of conjugated polymers used as HTL for OSCs
are shown in Scheme 1.

Scheme 1. Chemical structure of some conjugated polymers used as HTLs.

A HTL nanocomposite based on fluorene derivatives, poly[(9,9-bis(3′-(N,N-
dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctyl)fluorene] and nickel oxide
(PFN/NiOx), showed a PCE of 6.2% in PBDTTBO-C8:PC71BM-based OSCs [338]. The
device performance improvement was related to the interaction between PFN and NiOx, p-
doping effect in NiOx, and good energy alignment. A blend of 5,6-difluorobenzothiadiazole
conjugated polymer and metal oxide (Cu2O/FBT-TH4) produced a PCE of 9.56% for OSCs
based on PffBT4T-2OD:PC71BM [339]. Better charge transfer properties and stability were
determined, maintaining 75% of the original PCE for up to 30 days. This result was at-
tributed to the hydrophobic character of the HTL. Poly(3,4-dimethoxythiophene) (PDMT)
deposited via oxidative chemical vapor deposition were also used as hole-transport mate-
rials in OSCs [340]. Awada et al. fabricated OSCs based on hydrophobic triethoxysilane-
terminated poly(3-hexylthiophene) (P3HT-Si) HTLs exhibiting a slightly enhanced device
stability [341]. Some other polymers and composites used as hole-transport layers include
P3HT:SWCNTs [342] and polyaniline/gold and silver NPs composites (Au10Ag10PANI) [343].
The interconnected network of grafted CNTs, polythiophenic agents, and conjugated
PANI bottlebrushes (CNT-g-PDDT:P3ThEt-g-PANI) were used as HTL in OSCs based on
PBDT-DTNT:PC61BM, showing smooth morphology, low sheet resistance, and a PCE of
5.65% [344]. A network of CNTs and polythiophene/polyaniline bottlebrushes (CNT:P3ThEt-
g-PANI) was tested as HTL in OSCs based on P3HT:PC71BM, reaching an improved PCE of
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5.30% [345]. Another approach involves the use of low acidic water-stable PSS-doped PANI
as HTL based on P3HT:ICBA OSCs [346]. The PANI:PSS layer presented a well-matched
WF, high conductivity, and transmittance around 90% that resulted in OSCs with PCE of
4.5%. Additionally, PANI:PSS HTL has also been tested for indoor photovoltaics [347,348].
The OSCs based on P3HT:ICBA showed a lower PCE than a device using PEDOT:PSS,
but possessed better stability over 1176 h, retaining 39% of its initial PCE. PANI was
also tested with GO as an acid-free composite HTL in OSCs based on P3HT:PCBM and
PCDTBT:PC71BM, resulting in optimized performance for the nanocomposite with a GO
loading of 7.3 wt% [349]. A hole-transporting bilayer of copper(I) thiocyanate and poly[(9,9-
dioctylfluorenyl-2,7-diyl)-alt-(4,4′-(N-(4-butylphenyl)))] (CuSCN/TFB) was tested in OSCs
based on non-fullerene PM6:Y6 and fullerene PTB7-Th:PC71BM by Dong et al. [350]. Better
photovoltaic performance with the CuSCN/TFB bilayer than with pristine CuSCN HTL
was related to enhanced Jsc and FF. The decreased roughness and increased contact angle of
the bilayer favored the interfacial contact of the HTL and the active layer, leading to better
energy matching and device performance (up to 15.10%). Furthermore, the CuSCN/TFB-
based device presented improved hole mobility, higher exciton dissociation efficiency,
and lower recombination loss, which contributed to its enhanced exciton dissociation and
charge transportation and extraction.

CPEs composed of conjugated backbone and side chains containing ionic groups are
attractive materials due to their intrinsic dual electronic and ionic conductivity, and good
solubility in polar solvents [351–356]. Some examples of the chemical structure of CPEs
used as HTLs are shown in Scheme 2.

Scheme 2. Chemical structure of some CPEs used as HTLs.

Poly[1,4-bis(4-sulfonatobutoxy)benzene-thiophene] (PhNa-1T) self-doped in a neu-
tral state achieved an increased WF of 5.21 eV, resulting in PCEs of 9.89% and 8.38%
for ITO/PhNa-1T/PTB7-Th:PC71BM/fullerene derivative (bis-C60)/Ag and ITO/PhNa-
1T/PTB7:PC71BM/TiO2/Al cells, respectively [357]. The enhanced device performance
was ascribed to improved interfacial properties, a high WF, and a smoother surface re-
sulting in a favorable contact, improved charge extraction, and an efficient hole collection.
PhNa-DTBT CPE, which is based on a weakly electron-donating 2-phenyl thiophene,
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an electron-acceptor, 2,1,3-benzothiadiazole, and sulfonate sodium salt as an ionic func-
tional group were used in PTB7-Th:PC71BM OSCs, reaching a PCE of 9.29% [358]. PhNa-
DTBT showed a high electrical conductivity, improved Jsc and FF, and high WF (5.39 eV).
The device also showed improved stability with a retained PCE of ca. 40% after 96 h.
A pH-neutral self-doped polymer based on phenyl and thienyl units, poly[2,6-(4,4-bis-
(propane-1-sulfonate sodium)-4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt-(4,4′-biphenyl)]
(PCP-Na), was used as HTL for PBDT-TS1:PC71BM-based OSCs [359]. PCP-Na had a suit-
able HOMO level, smooth surface, and a high electrical conductivity due to the presence
of polaronic states (radical cations). PCP-Na exhibited appreciable hole collection and
charge-transport properties. The photovoltaic device using PCP-Na showed a PCE of
9.89% that resulted mainly from an enhanced FF. Following the same line, pH neutral
poly[9,9-bis(4′-sulfonatobutyl)fluorene-alt-selenophene] (PFSe) was used as HTL in OSCs
with architecture ITO/PFSe/PTB7:PC71BM/PFN/Al, exhibiting a PCE of 7.2% [360]. The
increased Jsc and FF were ascribed to a strong dipole moment at the interface. A WF of
5.15 eV of PFSe assured a good ohmic contact and a better matching energy level. More-
over, the air stability of the cell was improved by the neutral nature of the HTL polymer.
Xu et al. reported a pH-neutral CPE, 3,4-dithia-7H-cyclopenta[a]pentalene and thienyl units
(PCPDT) used in OSCs based on PTB7-Th:PC71BM with a PCE of 9.3% [361]. Improved de-
vice performance by using PCPDT HTL was attributed mainly to a reduced leakage current
and Rs. A tuned WF of –4.87 eV, enhanced transmittance, and improved and homogeneous
mobility of HTL were related to the strong p-type self-doped nature of this HTL. More-
over, the hole layer showed improved interface compatibility, evidenced by the reduced
surface energy (30.7 mN m−1). The use of PCPDT-K HTL in OSC based on P3HT:PCBM
showed improved device performance, increased Jsc, reduced Rs, a smooth surface, and
better stability than a PEDOT:PSS reference device [362]. PCPDffPhSO3K, a neutral CPE
based on 3,4-dithia-7H-cyclopenta[a]pentalene and 1,4-difluorobenzene units, was used as
HTL for ITO/HTL/PTB7-Th:PC71BM/PFN/Al OSCs, resulting in PCE of 9.5% [363]. The
self-doping effect in PCPDffPhSO3K improved its conductivity. A WF around −5.18 eV
ensured a better energy level alignment, achieving a higher Voc, Jsc, and hole mobility.
Lee et al. utilized poly[9,9-bis(4′-sulfonatobutyl)fluorene-alt-thieno[3,2-b]thiophene] (PFtT-
D) HTLs showing a PCE of 8.3% for OSCs based on PTB7-Th:PC71BM [364]. The WF of
the modified electrode with PFtT-D was 5.19 eV, which resulted in superior ohmic contact
due to well-matched energy levels facilitating the hole transportation. The modification of
WF was attributed to the molecular dipole orientations. The device showed an improved
lifetime because of the neutral nature of CPE; the PCE slowly decreased with a half-life
of 153 h. PCPDTK0.50H0.50-TT, a neutral self-doped CPE, was used as HTL for the OSCs
based on PM6:Y6:PC71BM [365]. Potassium ions were exchanged to protons through ion-
exchange chromatography using acid-sulfonated polystyrene resin. PCPDTK0.50H0.50-TT
HTL had a higher WF and increased mobility, and it also exhibited a higher hole-extraction
efficiency. The device performance with this HTL was improved with a PCE of 16.3%. The
Voc increased due to the improved hole mobility, and the Jsc and FF were also improved,
ascribed to reduced carrier recombination and reduced bulk resistance. The device showed
improved stability, and the PCE was retained by a longer time than PEDOT:PSS-based
reference cells. OSCs with an area of 1.0 cm2 prepared by wire-bar coating achieved a PCE
greater than 10%, showing potential for large-area printing techniques (see Figure 19).
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Figure 19. (a) Wire-bar coating process and (b) AFM image of the PCPDTK0.50H0.50-TT film prepared
by the wire-bar coating process. Adapted with permission from [365]. Copyright 2021, American
Chemical Society.

4.5. Small Organic Molecules

As an alternative to conjugated polymers, small organic molecules can be used as
HTLs for photovoltaic applications [36]. Polymeric materials shown in the previous section
have several drawbacks e.g., complicated synthesis, costly purification processes, and
precise control of their molecular weight. In general, polymeric HTL materials used in
OSCs usually have molar mass over 10,000 g mol−1, which makes them expensive [366].
Moreover, the hole mobilities of polymers such as PTAA are sensitive to molecular weights,
polydispersity indices, and purities [367]. HTLs based on small organic molecules, com-
pared with inorganic and polymeric materials, present a variety of benefits such as simple
synthesis, structural versatility, high purity, and tunable energy levels [368]. Some examples
of the molecular structure of small molecules used as HTL are shown in Scheme 3.

Scheme 3. Chemical structure of some small organic molecules used as HTLs.

NDP9 doped N,N′-((diphenyl-N,N′-bis)9,9,-dimethyl-fluoren-2-yl)-benzidine (BF-DPB)
was used as a hole-transport material in OSCs based on zinc phtalocyanine (ZnPC):fullerene
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C60 [369]. Spin-coated BF-DPB HTLs over AgNWs electrodes exhibited a PCE of 4.4%. BF-
DPB smoothed the AgNWs topography. Cheng et al. fabricated NiOx/2,3,5,6-tetrafluoro-
7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) composite HTLs for the fabrication of OSCs
without pre-treatment of ITO nor post-treatment on the HTL [370]. The device performance
of one-step ethanol-processed NiOx:F4-TCNQ in P3HT:PC61BM-based OSCs was 15.8%
better than one-step PEDOT:PSS-based OSCs. NiOx:F4-TCNQ HTL was also used on PTB7-
Th:PC71BM-based OSCs, resulting in an enhanced PCE of 8.59%. A planar quinoid molecule,
2,2′,6,6′-tetraphenyl-dipyranylidene (DIPO-Ph4), was tested as an anodic interfacial layer
with PEDOT:PSS in P3HT:PCBM OSCs [371]. Vacuum-deposited DIPO-Ph4 (10 nm thick-
ness) on spin-coated PEDOT:PSS (5 nm thickness) increased OSCs’ current and enhanced
efficiency to 4.6%. DIPO-Ph4’s needle-like morphology increased the contact area between
the active layer and the anode with high hole conductivity. 1,3,4,5,6,7-Hexaphenyl-2-{3′-(9-
ethylcarbazolyl)}-isoindole (HPCzI) HTLs exhibited improved performance in comparison
with MoO3-based OSCs, reaching a PCE of 1.69% for CuPC:C60-based OSCs, due to larger
FF and Jsc [372]. N,N′-bis(1-naphthalenyl)N,N′-bis-phenyl-(1,1′-biphenyl)-4,4′-diamine
(NPB) was incorporated as HTL on inverted P3HT:PC71BM OSCs, resulting in a PCE of
2.63%, a Jsc of 9.49 mA cm−2, and low Rs [373]. These results suggested the formation of
an ohmic contact between the photoactive layer and anode, which contributed to the hole
extraction efficiency. Alternatively, the NPB layer was inserted between the MoO3 layer
and the photoactive layer in inverted OSCs based on P3HT:PC61BM [374]. The PCE was
enhanced from 3.20% to 3.94%, owing to the increased Jsc and reduced Rs by an improved
charge transportation and reduced recombination at the interface. MoO3 p-doped 4,4′-N,N′-
dicarbazole-biphenyl (CBP:MoO3) was also utilized as HTLs in inverted P3HT:PC61BM-
based OSCs [375]. A 3,6,11,14-Tetramethoxyphenylamine-dibenzo[g,p]chrysene (MeOPhN-
DBC) layer was incorporated between MoO3 and active-layer P3HT:PC61BM-inverted
OSCs, showing an enhanced PCE of 3.68%, attributed to improved Jsc and FF, and re-
duced leakage current [376]. Liu et al. reported a tetrathiafulvalene derivative with four
carboxyl groups (TTA) as an HTL in OSCs (see Figure 20a) [377]. This HTL displayed a
well-matched energy level (see Figure 20b) and an enhanced PCE of 9.09% in comparison
with a PEDOT:PSS-based OSC (see Figure 20c). The improved FF and JSC were related
to the smooth surface of the TTA layer, improved charge transfer and hole mobility, and
reduced charge recombination.

Figure 20. (a) Illustration of OSCs structure based on TTA, (b) energy level diagram of different
layers, and (c) J-V curves of devices with TTA and PEDOT:PSS as HTLs. Adapted with permission
from [377]. Copyright 2020, Elsevier.

Large-scale printing processes, like roll-to roll, require that the prepared small molecules
present good adhesion and compatibility between the anode and the active layer, high
carrier transport, good stability, and high solubility in non-pollutant solvents. Flexible
devices will additionally require having mechanical flexibility of the layer. Convenient
modification of certain functional groups allows the tuning of the electronic properties of
the material to match the work function and conductivity. The research activity in these
fields is very active, representing the main challenges to pave the road towards the wide
commercialization of the OSCs [78].
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Finally, Table 2 enlists a series of HTLs based on organic conjugated polymers and
small molecules. The anode configuration with its work function, deposition technique for
the HTL, active layer composition, and the OSCs performance parameters are provided as
well as the reference where the information was taken from.

Table 2. Performance parameters of some representative OSCs with different organic conjugated
polymers and small molecules as HTLs.

Anode Configuration
and WF (eV) Deposition Technique Active Layer VOC

(V)
JSC

(mA cm−2)
FF
(%)

PCE
(%) Ref.

PEDOT:PSS

ITO/PEDOT:PSS-DA (5.14) spin coating PM6:Y6 0.84 25.52 77.1 16.55 [273]
ITO/g-C3N4:PEDOT:PSS (4.89) spin coating PM6:Y6 0.84 26.71 73.0 16.38 [336]

ITO/PEDOT:PSS:TEMPO+Br- (4.95) spin coating PM6:Y6 0.82 27.18 72.6 16.10 [270]
ITO/PEDOT:PSS:a-In2Se3 (5.06) spin coating PM6:Y6 0.84 25.47 74.5 15.89 [272]

ITO/WOx:PEDOT:PSS (4.7) spin coating PM6:IT-4F 0.87 20.73 80.8 14.57 [313]

ITO/PEDOT:PSS/Ti3C2Tx (5.0) selectively
etching/spin coating PM6:Y6 0.83 25.63 68.4 14.55 [337]

ITO/PEDOT:PSS-MoO3 (5.22) spin coating PBDB-T-2F:IT-4F 0.86 21.71 70.6 13.19 [311]
ITO/PEDOT:PSS/BPQD (4.92) spin coating PM6:IT-4F 0.85 21.14 71.3 12.81 [297]

AgNWs/PEDOT:PSS/HxMoO3 (5.44) transfer printing PM6:IDIC:Y6 0.83 21.00 68.0 11.90 [315]
ITO/PEDOT:PSS:a-In2Se3 (5.06) spin coating PBDB-T:ITIC 0.91 17.31 71.1 11.22 [272]

ITO/PEDOT:PSS/Ti3C2Tx (5.0) selectively
etching/spin coating PBDB-T:ITIC 0.91 17.08 70.9 11.02 [337]

ITO/NiFD:PEDOT:PSS (5.01) spin coating PM6:PC71BM 0.98 13.82 79.4 10.76 [269]
WO3/PEDOT:PSS/Ag (5.27) spin coating SMD2:ITIC-Th 0.90 17.30 66.0 10.30 [314]

ITO/Ag ND/PEDOT:PSS LIL/spin coating PTB7:PC70BM 0.73 23.26 61.0 10.11 [291]
ITO/PEDOT:PSS-AuNRs spin coating PTB7-Th:PC71BM-Au NRs 0.80 17.90 68.8 9.89 [300]
ITO/V2O5: PEDOT:PSS spin coating PTB7-Th:PC71BM 0.80 16.83 70.1 9.44 [309]

ITO/PEDOT:PSS/TTF-py (5.29) spin coating PTB7-Th:PC71BM 0.79 17.19 70.6 9.37 [268]
ITO/PEDOT:PSS + Au NPs (5.4) spin coating PTB7:PC71BM 0.74 18.30 68.0 9.26 [290]
ITO/PEDOT:PSS/BPQD (4.92) spin coating PTB7-Th:PC71BM 0.80 16.40 69.4 9.11 [297]

ITO/PEDOT:PSS/p-TPCF (5.28) electrochemical cyclic
voltammetry PTB7-Th:PC71BM 0.80 16.98 66.2 8.99 [285]

ITO/GOs/PEDOT:PSS (4.55) spin coating PBDB-T:ITIC 0.90 15.10 65.7 8.93 [317]
PMA:PEDOT:PSS/Al (5.02) spin coating PTB7-Th:PC71BM 0.79 17.10 68.0 8.88 [316]
PMA:PEDOT:PSS/Al (5.02) spin coating PffBT4T-2OD:PC71BM 0.77 18.44 64.0 8.75 [316]

ITO/PEDOT:PSS/PTPCz (5.23) spin
coating/electrodeposition PTB7:PC71BM 0.74 16.23 71.1 8.54 [284]

ITO/PEDOT:PSS-WSe2 spin coating PTB7:PC71BM 0.78 16.60 65.5 8.50 [333]
ITO/PEDOT:PSS:Cu-Au NPs spin coating PTB7-Th:PC71BM 0.79 17.78 60.1 8.48 [294]

ITO/PEDOT:GSL (5.05) spin coating PTB7-Th:PC71BM 0.77 15.82 68.7 8.47 [259]

ITO/GO/PEDOT:PSS (4.9) chemical vapor
deposition/drop casting PTB7:PC71BM 0.75 16.10 69.5 8.40 [318]

ITO/PEDOT:PSS:FOS (4.90) spin coating PTB7:PC70BM 0.70 16.94 69.3 8.26 [263]
ITO/PEDOT:PSS+PFT-D (5.0) spin coating PTB7-Th:PC71BM 0.77 14.90 71.3 8.20 [286]

FTO/PMMA/PEDOT:PSS nanoimprinting/spin coating PTB7:PC70BM 0.73 16.30 68.2 8.12 [274]
ITO/PSS:PEDOT:PSS (4.80) spin coating PDCBT:PC71BM 0.83 12.44 77.2 7.97 [269]
ITO/PEDOT:PSS:GO (5.1) spin coating PTB7:PCBM 0.75 14.90 67.5 7.68 [324]

PEDOT:PSS+MoO3 NPs/Ag (5.0) spin coating/blade coated PTB7-Th:PC60BM 0.78 14.99 63.0 7.39 [310]
ITO/PEDOT:PSS:Ag-Au-Au NRs spin coating PTB7:PC71BM 0.73 16.87 60.0 7.36 [293]

ITO/PEDOT:PSS/WS2 spin coating PTB7-Th:PC71BM 0.79 15.67 58.6 7.24 [332]
ITO/PEDOT:PSS:Cu-Au NPs spin coating PTB7-Th:PC61BM 0.80 15.50 57.9 7.13 [294]

ITO/PEDOT:PSS:bf-MWCNTs (5.39) spin coating PCDTBT:PC71BM 0.88 12.51 63.1 6.95 [335]
ITO/PEDOT-S (5.2) spin coating P3TI:PC71BM 0.73 12.80 72.0 6.70 [265]

ITO/PEDOT:PSS-NiS spin coating P3HT:PC61BM 0.58 18.65 55.9 6.03 [288]
ITO/PEDOT:PSS + Au NPs (5.0) spin coating rrP3HT:PC71BM 0.58 16.10 61.0 5.65 [292]
ITO/PEDOT:PSS + Au NPs (5.0) spin coating rrP3HT:PC71BM 0.58 14.70 61.0 5.29 [292]

ITO/PEDOT:PSS:PSFP-DTBTP (5.14) spin coating PCDTBT:PC71BM 0.88 9.46 66.3 5.26 [275]
ITO/GO/PEDOT:PSS (4.9) spin coating PCDTBT:PC71BM 0.85 10.82 57.0 5.24 [331]
ITO/PEDOT:PSS:GO (5.52) spin casting PTB7:PC71BM 0.65 15.17 53.0 5.22 [327]

ITO/PEDOT:PSS-MoO3 (5.3) spray deposition PTB7:PC71BM 0.69 15.20 48.3 5.11 [307]
PMA:PEDOT:PSS/Ag NWs (5.02) doctor-blade coating PTB7-Th:PC71BM 0.78 11.28 57.0 5.01 [316]
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Table 2. Cont.

Anode Configuration
and WF (eV) Deposition Technique Active Layer VOC

(V)
JSC

(mA cm−2)
FF
(%)

PCE
(%) Ref.

Other conjugated polymers

ITO/PCPDTKH-TT (5.24) wire-bar coating PM6:Y6:PC71BM 0.85 25.10 75.9 16.30 [365]
ITO/CuSCN/TFB (5.32) spin coating PM6:Y6 0.85 24.45 72.7 15.10 [350]

ITO/PhNa-1T (5.21) spin coating PTB7-Th:PC71BM 0.79 16.98 71.1 9.89 [357]
ITO/PCP-Na (5.22) spin coating PBDT-TS1:PC71BM 0.80 17.46 70.6 9.89 [359]

ITO/Cu2O/FBT-TH4 (5.08) sputtered method PffBT4T-2OD:PC71BM 0.77 17.50 70.7 9.56 [339]
ITO/PCPDffPhSO3K (5.18) spin coating PTB7-Th:PC71BM 0.79 18.08 67.0 9.50 [363]

ITO/PCPDT-T (4.87) spin casting PTB7-Th:PC71BM 0.77 18.92 63.5 9.30 [361]
ITO/PhNa-DTBT (5.3) spin coating PTB7-Th:PC71BM 0.79 16.92 69.5 9.29 [358]

ITO/CuSCN/TFB (5.32) spin coating PTB7-Th:PC71BM 0.79 16.42 66.3 8.56 [350]
ITO/PhNa-1T (5.21) spin coating PTB7:PC71BM 0.75 16.17 68.6 8.38 [357]
ITO/PFtT-D (5.19) spin coated PTB7-Th:PC71BM 0.76 16.00 68.4 8.30 [364]

ITO/PFSe (5.1) spin casting PTB7:PC71BM 0.68 14.40 69.0 7.20 [360]
ITO/NiOx:PFN (5.34) spin casting PBDTTBO-C8:PC71BM 0.71 13.75 63.7 6.20 [338]

ITO/CNT-g-PDDT:P3ThEt-g-PANI spin coating PBDT-DTNT:PC61BM 0.71 12.84 62.0 5.65 [344]
ITO/CNt:P3ThEt-g-PANI spin coating P3HT:PC71BM 0.68 12.85 60.7 5.30 [345]

Small organic molecules

ITO/TTA (5.26) spin coating PTB7-Th:PC71BM 0.80 16.56 69.04 9.09 [377]
ITO/NiOx:F4-TCNQ (5.30) spin coating PTB7-Th:PC71BM 0.78 16.80 65.20 8.59 [370]

ITO/DIPO-Ph4/PEDOT:PSS (4.7) vacuum
deposition/spin coating P3HT:PC61BM/ 0.60 11.50 47.00 4.60 [371]

NPB/MoO3/Ag (5.4) thermal evaporation P3HT:PC61BM 0.60 10.04 63.00 3.94 [374]
MeOPhN-DBC/MoO3/Al (5.0) vacuum deposition P3HT:PC61BM 0.63 12.44 47.00 3.68 [376]

ITO/NiOx:F4-TCNQ (5.30) spin coating P3HT:PC61BM 0.59 9.89 61.60 3.59 [370]
NPB/Ag (5.4) vacuum deposition P3HT:PC71BM 0.57 9.49 48.90 2.63 [373]

ITO/BF-DPB:NDP9 (5.23) spin coating ZnPC:C60 0.51 7.50 55.00 2.10 [369]
Ag NWs/BF-DPB:NDP9 (5.23) spin coating ZnPC:C60 0.49 7.60 55.00 2.10 [369]

ITO/MoO3:HPCzI (5.3/5.1) thermal evaporation CuPC:C60 0.49 6.63 53.00 1.71 [372]
ITO/HPCzI (5.1) thermal evaporation CuPC:C60 0.49 6.22 53.00 1.62 [372]

5. Conclusions

In summary, HTLs are fundamental to assure the high performance and stability of
OSCs. Inorganic and nanocarbon materials including MoO3, WO3, V2O5, NiOx, CuOx,
CoOx, CuCrOx, CuSCN, MoS2, WS2, NiS, CuS and GO, QCDs, and CNTs have shown great
potential as HTLs in conventional and inverted OSCs. These hole-extracting materials can
form an ohmic contact between the active and electrodes depending on their optical and
electrical properties. Their high transparency enables them to absorb high light into the
active layer to afford the hole-electron pairs generation, and the tuning of the Fermi levels
with the donor allows the hole collection. Usually, the hole transport takes place in the HTL
valence band, but in n-type metals such as MoO3, it has been found that the conduction
band facilitates the hole transport. Thus, the type of hole-transport path will vary with the
WF and energy levels of the inorganic and nanocarbon materials as HTLs. Modification
in the particles’ size or addition of metal NPs results in the LSPR effect, which increases
the light absorption. Inorganic materials such as Mo and Ni were doped with V and Cu
to tune the WF and increase conductivity and transparency, resulting in a high Voc, FF,
and Jsc. Hybrid layers, such as MoS2:MoO3, improved the electron-blocking properties
and increased conductivity of the layer. Nanocarbon materials such as GO were doped
with F4TCNQ to induce a change in the WF by shifting the Fermi levels, resulting in an
enhanced hole transport. CNTs were functionalized with amino groups to increase the
charge-carrier properties and reduce Rs, improving FF and Jsc. HTLs can also be subjected to
ultraviolet ozone (UVO), annealing, and microwave-annealing post-treatments to increase
Voc, FF, and Jsc due to the reduction of oxygen defects in the surface morphology. The
most-used conjugated polymer is the PEDOT:PSS and its composites such as PEDOT:PSS
with NPs, MOs, and GO either in bilayer or composite monolayer. PANI was the second
choice of conducting polymers as HTLs. The different modification to PEDOT:PSS in
many cases increases the JSC, improves the conductivity, and decreases the recombination
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loss of the device. In general, the addition of metallic NPs to PEDOT:PSS enhances the
absorption ability of the photoactive layer, increases the conductivity, and improves the
charge carrier collection by increasing the device performance. The incorporation of metal
oxides mainly helps to (i) increase the stability of the device (e.g., MoO3) by mitigating
the degradation, (ii) serve as an electron blocking layer (e.g., V2O5), and (iii) suppress
the charge recombination. On the other hand, GO addition to PEDOT:PSS improves
the conductivity and increases the device resistance to degradation. Furthermore, CPEs
were also used as HTL for OSCs; in general, these materials were pH-neutral layers that
improved the stability of the devices and showed high electrical conductivity and good
interface compatibility. In the last decade, the standard HTL small molecule has been
spiro-OMeTAD; nevertheless, this review pointed out that research to optimize these
materials is growing in activity and importance. Important points like shorter and more
efficient chemical synthesis, access from cheaper starting materials, analysis of the active
layer (perovskite or organic) interactions with the HTL small molecules, as well as better
understanding of the charge transport process (carrier diffusion, recombination process)
makes this field very important for optimization of the solar cells.

Additionally, large-area deposition techniques are mandatory to facilitate the com-
mercialization of organic photovoltaics. Compared with the conventional spin-coating
technique, laser-assisted and electrospray techniques allow the control of the surface mor-
phology and thickness at low temperatures and short-time processing. The roll-to-roll
technique is also attractive for large industrial-scale manufacturing of metal oxides, such as
the inkjet printing of NiOx. Overall, inorganic and nanocarbon HTLs are very favorable
for OSCs, mainly because of their high stability, improved electrical properties, and trans-
parency in the visible range. Solution processing is a great advantage of using small organic
molecules as HTL. The continuous investigation of a vast number of new inorganic and
organic HTLs, which can assure high efficiency, high stability, low costs, facile preparation,
and improved film-forming properties over large areas, is essential for the future commer-
cialization of OSCs. Therefore, not only the chemical or electrochemical properties of the
prepared HTL materials are important to study, but also it is required to develop materials
that fulfill the technological requirements to apply them at large scales. The future in this
direction looks very promising.
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Abbreviations

Y6 (2,2′-((2Z,2Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]
thiadiazolo[3,4-e]thieno[2”,3”:4′,50]thieno[2′,3′:4,5]pyrrolo[3,2-g] thieno[2′,3′:4,5]
thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6- difluoro-3-oxo-2,3-
dihydro-1H-indene-2,1-diylidene))dimalononitrile)

O-IDTBR (5Z,5′Z)-5,5′-{[7,7′-(4,4,9,9-tetraoctyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b’]
dithiophene-2,7-diyl)bis(benzo[c][1,2,5]thiadiazole-7,4-diyl)]
bis(methanylylidene)}bis(3-ethyl-2-thioxothiazolidin-4-one)

PC71BM (6,6)-phenyl-C71-butyric acid methyl ester
HPCzI 1,3,4,5,6,7-hexaphenyl-2-{3′-(9-ethylcarbazolyl)}-isoindole
ICBA 1′,1”,4′,4”-Tetrahydro-di[1,4]methanonaphthaleno[1,2:2′,3′,56,60:2”,3”][5,6]

fullerene-C60
TEMPO 2,2,6,6-tetramethylpiperidine-1-oxoammonium
IDIC 2,2′-[(4,4,9,9-tetrahexyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b′]dithiophene-2,7-diyl)

bis[methylidyne(3-oxo-1H-indene-2,1(3H)-diylidene)]]bis-propanedinitrile
DIPO-Ph4 2,2′,6,6′-tetraphenyl-dipyranylidene
F4-TCNQ 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane
EGME 2-methoxyethanol
PTCDA 3,4,9,10-perylenetetracarboxylic dianhydride
IT-4F 3,9-bis(2-methylene-((3-(1,1-dicyanomethylene)-6,7-difluoro)-indanone))-5,5,11,

11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno
[1,2-b:5,6-b’]dithiophene

ITIC 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,
11-tetrakis(4-hexylphenyl)-dithieno-[2,3-d:2′,3′-d′]-s-indaceno
[1,2-b:5,6-b′]dithiophene

ITIC-Th 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,
11-tetrakis(5-hexylthienyl)-dithieno-[2,3-d:2′,3′-d′]-s-indaceno
[1,2-b:5,6-b′]dithiophene

CBP 4,4′-N,N′-dicarbazole-biphenyl
a-MWNTs Amino-functionalized multi-walled carbon nanotubes
AHM Ammonium heptamolybdate
AIL Anode interfacial layer
AFM Atomic force microscope
BPQDs Black phosphorous quantum dots
bf-MWCNTs Boronic acid functionalized multi-walled carbon nanotubes
BHJ Bulk heterojunction
CNT Carbon nanotubes
CTAB Cetyltrimethylammonium bromide
CoOx Cobalt oxide
CPEs Conjugated polyelectrolytes
CIGS Copper indium gallium diselenide
CuOx Copper oxide
CuSx Copper sulfide
MeOPhN-DBC Dibenzo[g,p]chrysene derivative, 3,6,11,14-tetramethoxyphenylamine-

dibenzo[g,p]chrysene
DMSO Dimethyl sulfoxide
DMF Dimethylformamide
DC Direct current
DA Dopamine
ETL Electron transport layer
EQE External quantum efficiency
FF Fill factor
GSL Grafted sulfonated-acetone-formaldehyde lignin
GO Graphene oxide
GQDs Graphene quantum dots
g-C3N4 Graphitic carbon nitrile
HOMO High occupied molecular orbital
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HTL Hole transport layer
HyMoO3-x Hydrogenated molybdenum oxide
ITO Indium tin oxide
Pin Input power
IPA Isopropanol
LIL Laser interference lithography
LSPR Localized surface plasmon resonance
LUMO Lowest unoccupied molecular orbital
Pmax Maximum power output
MO Metal oxides
MW Microwave
NPB N,N′-bis(1-naphthalenyl)N,N′-bis-phenyl-(1,1′-biphenyl)-4,4′-diamine
BF-DPB N,N’-((diphenyl-N,N’-bis)9,9,-dimethyl-fluoren-2-yl)-benzidine
NDs Nanodots
NPs Nanoparticles
NRs Nanorods
NWs Nanowires
NFD Nickel formate dihydrate
NiOx Nickel oxide
NiSx Nickel sulfide
nGQDs Nitrogen doped graphene quantum dots
Voc Open circuit voltage
OLEDs Organic light-emiting diodes
OSCs Organic solar cells
Pout Output power
PCBM Phenyl-C61-butyric acid methyl ester
PMA Phosphomolybdic acid
PL Photoluminescence
PV Photovoltaic
PC Phthalocyanine
PTB7 Poly [[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,

6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]]
PCPDT Poly 3,4-dithia-7H-cyclopenta[a]pentalene
FBT-TH4 Poly 5,6-difluorobenzothiadiazole
PDMT Poly(3,4-dimethoxythiophene)
PEDOT Poly(3,4-ethylenedioxythiophene)
PEDOT:PSS Poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate)
P3HT Poly(3-hexylthiophene)
P3HT50-b-PSS23 Poly(3-hexylthiophene)-b-poly(p-styrenesulfonate)
PEDOT-S Poly(4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl-methoxy)-1-

butanesulfonic acid)
PTPCz Poly(carbazolyl triphenylethylene) derivative
PDMS Poly(dimethylsiloxane)
PMMA Poly(methylmethacrylate)
PSS Poly(styrenesulfonate)
PM6 Poly[(2,6-(4,8-bis(5-(2-ethylhexyl)-4-fluorothiophen-2-yl)benzo

[1,2-b:4,5-b′]dithiophene))-co-(1,3-di(5-thiophene-2-yl)-5,7-bis
(2-ethylhexyl)-benzo[1,2-c:4,5-c′]dithiophene-4,8-dione))]

PBDB-T Poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene)-
co-(1,3-di(5-thiophene-2-yl)-5,7-bis(2-ethylhexyl)benzo[1,2-c:4,5-c′]dithiophene-
4,8-dione)]

PffBT4T-2OD Poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3′′′-di(2-octyldodecyl)-
2,2′;5′,2′′;5′′,2′′′-quaterthiophen-5,5′′′-diyl)]

PFN Poly[(9,9bis(3′-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,
7-(9,9dioctylfluorene)]

PSFP-DTBTP Poly[(9,9-bis(4-sulfonatobutyl sodium) fluorene-alt-phenylene)-ran-
(4,7-di-2-thienyl-2,1,3-benzothiadiazole-alt-phenylene)]

TFB Poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-(4,4′-(N-(4-butylphenyl)))]
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PNDIT-F3N Poly[[2,7-bis(2-ethylhexyl)-1,2,3,6,7,8-hexahydro-1,3,6,8-tetraoxobenzo[lmn]
[3,8]phenanthroline-4,9-diyl]-2,5-thiophenediyl[9,9-bis[3′((N,N-dimethyl)-
N-ethylammonium)]propyl]-9H-fluorene-2,7-diyl]-2,5-thiophenediyl]

PhNa-1T Poly[1,4-bis(4-sulfonatobutoxy)benzene-thiophene]
PCP-Na Poly[2,6-(4,4-bis-(propane-1-sulfonate sodium)-4H-cyclopenta[2,1-b;3,4-b′ ]

dithiophene)-alt-(4,4′-biphenyl)]
P3HTN Poly[3-(6′-N,N,N-trimethyl ammonium)-hexylthiophene] bromide
PTB7-Th Poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b′]dithiophene-2,

6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-
2-carboxylate-2-6-diyl)]

PBDT-TS1 Poly[4,8-bis(5-(octylthio)thiophen-2-yl)benzo[1,2-b;4,5-b′]dithiophene-2,
6-diyl–alt–(4-(2- ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-
2-carboxylate-2-6-diyl]

PFtT-D Poly[9,9-bis(4′-sulfonatobutyl)fluorene-alt-thieno[3,2-b]thiophene]
PFSe Poly[9,9-bis(4′-sulfonatobutyl)fluorene-alt-selenophene]
PFT-D Poly[9,9-bis(4′-sulfonatobutyl)fluorene-alt-thiophene]
PBDT-DTNT Poly[benzodithiophene-bis(decyltetradecyl-thien)naphthothiadiazole]
PCDTBT Poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5(4′,7′-di-2-thienyl-2′,1′,

3′-benzothiadiazole)]
PANI Polyaniline
PEG Polyethylene glycol
PSC Polymer solar cell
PMC Polynuclear metal-oxo clusters
p-TPCF Polytriphenylcarbazole fluoranthene
PCE Power conversion efficiency
QDs Quantum dots
rrP3HT Regioregular poly(3-hexylthiophene-2,5-diyl)
RMS Root meand square
SEM Scanning electron microscopy
Rs Series resistance
Jsc Short circuit current
Rsh Shunt resistance
SWCNTs Single-walled carbon nanotubes
SILAR Successive ionic layer adsorption and reaction
F4TCNQ Tetrafluorotetracyanoquino-dimethane
TTA Tetrathiafulvalene
TTF-py Tetrathiafulvalene pyridine derivative
P3HT-Si Triethoxysilane terminated poly(3-hexylthiophene)
WOx Tungsten oxide
WSx Tungsten sulfide
UVO Ultraviolet ozone
uSWNT Unzipped single-walled carbon nanotubes
VOx Vanadium oxide
VoPC Vanadylphthalocyanine
WF Work function
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