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Abstract

A variety of endocrine and metabolic signals regulate pituitary cell function acting through 
the hypothalamus-pituitary neuroendocrine axes or directly at the pituitary level. The 
underlying intracellular transduction mechanisms in pituitary cells are still debated. 
AMP-activated protein kinase (AMPK) functions as a cellular sensor of low energy stores 
in all mammalian cells and promotes adaptive changes in response to calorie restriction. 
It is also regarded as a target for therapy of proliferative disorders. Various hormones 
and drugs can promote tissue-specific activation or inhibition of AMPK by enhancing or 
inhibiting AMPK phosphorylation, respectively. This review explores the preclinical studies 
published in the last decade that investigate the role of AMP-activated protein kinase in 
the intracellular transduction pathways downstream of endocrine and metabolic signals 
or drugs affecting pituitary cell function, and its role as a target for drug therapy of 
pituitary proliferative disorders. The effects of the hypoglycemic agent metformin, which 
is an indirect AMPK activator, are discussed. The multiple effects of metformin on cell 
metabolism and cell signalling and ultimately on cell function may be either dependent 
or independent of AMPK. The in vitro effects of metformin may also help highlighting 
differences in metabolic requirements between pituitary adenomatous cells and  
normal cells.

Introduction

The pituitary gland is located at the base of the brain 
and consists of two distinct structures, the anterior 
pituitary or adenohypophysis and the posterior lobe or 
neurohypophysis. The activity of the anterior pituitary 
is characterized by finely regulated synthesis and release 
of peptide hormones from five distinct cells types: 
growth hormone (GH) from somatotrophs, prolactin 
(PRL) from lactotrophs, adrenocorticotropin (ACTH) 
from corticotrophs, thyrotropin (TSH) from thyrotrophs 
and follicle-stimulating hormone/luteinizing hormone 
(FSH/LH) from gonadotrophs. The pituitary hormones 
act on endocrine and non-endocrine target tissues 
involved in different physiological functions including 
somatic growth, reproduction, metabolism, stress-
related responses and homeostatic responses. It is well 

established that the hypothalamus has a primary role in 
the control of the anterior pituitary cell function which 
is ultimately mediated by hypothalamic neuropeptides 
(hypophysiotropic hormones) released into the capillary 
bed in the median eminence and transported directly to 
the pituitary cells via the hypophyseal portal vessels (1, 2). 
The hypothalamus can be regarded as point of integration 
of central and peripheral signals which contribute to the 
complex regulation of the neuroendocrine axes activity 
underlying the physiological secretory patterns of pituitary 
hormones as well as any physiopathological changes in 
pituitary function. Actually, there has long been evidence 
that some peripheral signals act also directly on pituitary 
cells (3, 4). In this regard, it has been recently highlighted 
the role played by metabolic factors, from endocrine 
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signals to metabolic substrates, in the direct regulation 
of different pituitary cell types like gonadotroph- and 
somatotroph cells (4, 5, 6, 7). Some of them take part in 
feedback regulatory loops between the anterior pituitary 
cells and their target tissues. The crosstalk between the 
pituitary and peripheral tissues controlling metabolic 
functions has suggested a new point of view with a focus 
on pituitary cells as metabolic sensors integrating central 
and peripheral signals in order to orchestrate homeostatic 
responses. Finally, it is worth remarking that the actual 
integration of multiple signals interacting with their 
own specific receptors expressed by a given pituitary cell  
type occurs at the level of the intracellular signal 
transduction pathways.

AMP-activated protein kinase (AMPK, official symbol 
PRKA) is expressed in all eukaryotic cells and has emerged 
as a key factor in regulating intermediary metabolism and 
energy homeostasis by acting as a simple sensor of low 
energy stores within cells and as a part of complex signal 
transduction networks mediating the effects of multiple 
signals in different tissues (8).

AMPK is expressed throughout the brain including 
areas that are involved in the control of food intake, 
energy expenditure and neuroendocrine function, such 
as the hypothalamus and the hindbrain. AMPK is also 
expressed in the anterior pituitary cells. More in detail, 
in the hypothalamus, AMPK is highly expressed in the 
arcuate, dorsomedial, paraventricular and ventromedial 
nuclei. It is thought to act as a nutrient (i.e. glucose) 
sensor and to mediate the regulatory effects of hormones 
(leptin, ghrelin, insulin, adiponectin, GLP-1) on energy 
homeostasis. In summary, hypothalamic AMPK has a 
role in integrating peripheral signals with neural circuits, 
and its activation is related to increased food intake and 
decreased thermogenesis as adaptive changes to calorie 
restriction (9, 10, 11). In the last 10 years, evidence has 
accumulated that AMPK plays also a role in the interplay 
between the activity of neuroendocrine axes and energy 
homeostasis at both hypothalamic and pituitary level. 
Within this context, the most compelling data regard the 
influence of energy status on gonadotroph axis activity 
and fertility via AMPK (5).

Apart from being a direct sensor of energy store within 
cells and a mediator of endogenous signals, including 
hormones and inflammatory factors, AMPK is also 
regulated by drugs currently approved for the treatment 
of different pathologies, newly developed compounds in 
drug discovery and natural compounds (i.e. resveratrol) 
from foods (12).

The purpose of this review is to provide an overview 
of our current knowledge on the role played by AMPK 
in the regulation of neuroendocrine axes activity as a 
downstream mediator of metabolic signals, hormones 
and drugs affecting pituitary cell function. As to drugs, the 
effects of the well-known hypoglycemic agent metformin 
on pituitary cell function will be discussed. Metformin 
is regarded as an indirect AMPK activator; however, its 
multiple effects on cell metabolism, cell signalling and 
ultimately on cell functions are not entirely mediated 
by AMPK (13). Finally, AMPK regulates cell viability and 
cell growth and is regarded as a drug discovery target 
for tumor therapy (14, 15). Metformin is currently 
being investigated for anti-tumor effects in endocrine 
malignancies (16). The last section of this review explores 
the results of preclinical studies aimed at investigating the 
effects of AMPK activation and the effects of metformin 
on pituitary tumor cells published in the last decade.

AMP-activated protein kinase (AMPK) 
regulation and activity

AMPK is expressed in all eukaryotic cells as a heterotrimeric 
protein. Under conditions that increase cellular AMP 
levels such as glucose deprivation and hypoxia, AMP 
binds to the γ subunit and allosterically activates the 
catalytic subunit to fivefold. AMP also facilitates the 
phosphorylation of threonine-172 in the activation loop 
within the alpha subunit by the upstream serine/threonine 
kinase-11 (STK11 or LKB1) and provides protection from 
dephosphorylation. Phosphorylated AMPK is 100-fold 
more active than the native protein. Actually, apart from 
the allosteric regulation, AMPK is involved in a kinase 
cascade (8, 12, 17). It has been shown that various growth 
factors and hormones can promote AMPK activation 
through its phosphorylation. Reportedly, apart from LKB1, 
calcium/calmodulin-dependent protein kinase (CAMKK), 
transforming growth factor-beta-activated kinase (TAK1) 
and ataxia telangiectasia mutated protein may function 
as AMPK kinases (9, 12).

Activated AMPK phosphorylates enzymes and 
regulatory proteins involved in metabolic pathways 
in peripheral tissues and CNS. In this way, AMPK 
downregulates anabolic pathways like fatty acid-, 
cholesterol-, glycogen- and protein synthesis and 
enhances catabolic pathways producing ATP in response 
to a negative energy balance (17, 18, 19, 20). The actions 
of AMPK on cell metabolism in multiple tissues makes 

This work is licensed under a Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 
International License.

https://doi.org/10.1530/EC-19-0482
https://ec.bioscientifica.com © 2020 The author

Published by Bioscientifica Ltd

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1530/EC-19-0482
https://ec.bioscientifica.com


G Tulipano AMPK, metformin and 
neuroendocrine axes

R169:2

it a regulator of systemic metabolism. At the same time, 
AMPK also plays a role in the regulation of cell growth 
and differentiation (15, 21, 22, 23, 24, 25). AMPK 
activation may cause opposite effects in different cell 
types. In detail, AMPK has the potential to counteract 
growth-stimulatory signalling mediated by the activation 
of mammalian target of rapamycin (mTOR) downstream 
of growth factor receptors in normal and tumor cells. On 
the other hand, it may also act as a metabolic survival 
factor in distinct tumor types (26). Furthermore, AMPK 
has been shown to affect the signalling pathway mediated 
by the cAMP-dependent protein kinase (PKA) activation 
and cAMP-responsive element-binding protein (CREB) 
phosphorylation in different cell types (12, 27). In 
hepatocytes, biguanides suppress CREB phosphorylation 
by decreasing the production of cAMP and their effect 
is mediated by AMPK (28, 29). On the other hand, 
in rat skeletal muscle cells, AMPK has been shown to 
phosphorylate transcription factors of the CREB family at 
the same site as PKA (30). In the CNS, genetic evidence 
suggests that AMPK is involved in the control of immediate 
early genes expression upon synaptic activation mediated 
by the PKA/CREB signalling pathway (31). As to pituitary 
cells, available data are limited to the effects of metformin 
in rat pituitary GH/PRL-secreting tumor cells. Metformin 
tended to cause a moderate increase in phospho-CREB 
levels without altering the adenylyl cyclase (AC) activity 
and the cell response to stimuli like forskolin or GHRH. 
These data suggest a PKA-independent enhancement of 
CREB phosphorylation by the biguanide (27).

Gonadotroph cell function

Body energy stores and metabolic status have a clear 
impact on an energy demanding function such as 
reproduction. Ensuring sufficient fuel storage and food 
availability is critical to face the changes related to the 
attainment of reproductive maturation and for the 
maintenance of fertility in adulthood. For these reasons, 
metabolic factors and endocrine signals related to 
systemic energy status (i.e. insulin, leptin, adiponectin, 
and ghrelin) exert a pivotal role in the control of the 
hypothalamic-pituitary-gonadal axis activity, acting at 
multiple levels (32). The hypothalamus has long been 
regarded as the main point of integration between 
signals involved in energy homeostasis and regulation of 
reproductive function. Gonadotropin-releasing hormone 
(GnRH) is synthetized mainly in the hypothalamic pre-
optic area and is the ultimate regulator of gonadotropin 

release from pituitary (32, 33). Kisspeptin is an upstream 
hypothalamic signal regulating GnRH release (34, 35, 36, 
37). Kisspeptin is the product of Kiss1 gene and plays a 
central role in the timing of puberty and in mediating 
the modulatory effects of numerous puberty-regulating 
signals. Kisspeptin neurons are located in the arcuate and 
in the anteroventral-periventricular nucleus and make 
direct contact with GnRH neurons. Kisspeptin neurons 
located in the arcuate nucleus are believed to play a 
crucial role in determining the pattern of GnRH release 
related to puberty onset and maintenance of reproductive 
function in adulthood (38, 39). A direct control of GnRH 
neurons and Kisspeptin neurons by endocrine signals 
which primarily cooperate to energy homeostasis has 
been questioned in recent years and evidence has been 
accumulated that their action is mediated by an upstream 
neuronal network involving hypothalamic and extra-
hypothalamic areas (32). Moreover, a direct role of 
pituitary gonadotroph cells as metabolic sensor has also 
been highlighted (5). Hence, the integration of signals 
received at different levels determines the influence of 
metabolic status on the hypothalamic-pituitary-gonadal 
axis activity and ultimately on puberty onset and the 
maintenance of fertility in adulthood. According with 
the purpose of this review, current knowledge about the 
role played by AMPK as an intracellular energy sensor and 
signal transducer at different levels in this hierarchical 
system underlying gonadotroph cell function will be now 
summarized.

At the hypothalamic level, kisspeptin neurons in 
the ARC were found to express AMPK, and the AMPK 
activation by chronic subnutrition in immature female 
rats was related to suppress Kiss1 expression. In the 
same model, overexpression of a constitutively active 
form of AMPK in the ARC partially delayed puberty 
onset and decreased LH levels. On the other hand, 
conditional ablation of the AMPKα1 subunit in the ARC 
prevented the delay in puberty onset caused by chronic 
malnutrition (40). These data suggest that hypothalamic 
AMPK signalling has an important role in mediating the 
effects of malnutrition on the control of puberty through 
a repressive AMPK-Kisspeptin pathway. Moreover, they 
suggest a putative target for pharmacological modulation 
of puberty timing in some physiopathological conditions. 
To this end, the effect of AMPK activation in Kisspeptin 
neurons may help to explain the effects of metformin, 
which is an indirect AMPK activator, observed in girls at 
risk for precocious puberty (41) as well as the endocrine 
and metabolic effects of metformin observed in girls with 
precocious pubarche (42).
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Neural networks underlying the interplay between 
food intake and gonadotroph axis function involve 
AMPK activity in different areas of CNS, including both 
hypothalamic nuclei and extra-hypothalamic areas. As 
to the second item, the pharmacological inhibition of 
AMPK activity in the hindbrain was shown to reverse 
the inhibition of GnRH expression and LH release caused 
by short-term food deprivation in ovariectomized rats 
which were given oestradiol to replicate proestrous stage 
(43). Hence, the authors concluded that food deprivation 
can restrain reproductive neuroendocrine outflow by 
activating hindbrain AMPK in the presence of circulating 
oestradiol levels consistent with proestrous. In other 
words, peak oestradiol levels trigger the LH surge and at 
the same time increase the sensitivity of the gonadotroph 
axis to the inhibitory effect of food deprivation which is 
mediated by hindbrain-derived stimuli linked to AMPK 
activation. In the same work, the pharmacological 
analysis also showed that the neural networks linking 
the hindbrain sensor to the GnRH neurons of the 
rostral pre-optic area involve nitric oxide (NO)-mediated  
signalling (43).

Over the last decade, some papers have highlighted 
the role of AMPK in mediating the effects of drugs and of 
mediators of energy homeostasis at the level of gonadotroph 
cells. Data have been obtained in rat or in mouse pituitary 
cells. In primary rat pituitary cultures, metformin had no 
effects on its own but it was able to reduce LH secretion in 
response to GnRH and FSH secretion in response to both 
GnRH and activin. Metformin was shown to induce the 
AMPK-activating phosphorylation and phosphorylation 
of AMPK downstream targets. The use of a selective AMPK 
inhibitor and the overexpression of a dominant negative 
isoform of AMPK clearly showed the involvement of 
AMPK activation in the previously mentioned action of 
metformin (44). In summary, although metformin acts 
at multiple sites that are involved in the regulation of 
gonadotropin secretion and fertility (i.e. possible targets 
at hypothalamic level have been previously discussed), 
metformin-induced activation of AMPK in gonadotroph 
cells may contribute to some pharmacological effects 
of metformin, as in the treatment of polycyctic ovarian 
syndrome (PCOS) (5). Incidentally, in the same work, 
the authors evidence a differential expression of distinct 
isoforms of the AMPK catalytic subunit (α subunit) in the 
five cell types of the anterior pituitary gland (44).

Metformin is believed to activate AMPK by affecting 
cell metabolism and causing a decrease of the ATP:AMP 
ratio with the outcome of allosteric binding of AMP to the 
AMPK regulatory subunit γ, which makes AMPK a better 

substrate for its upstream kinase LKB1 (12). Actually, the 
evidence that the indirect activation of AMPK in cultured 
pituitary gonadotroph cells by a drug can significantly 
alter gonadotropin release and the sensitivity to GnRH 
suggests also to consider AMPK as an intracellular target 
of hormonal signals mediating information about the 
systemic energy status at the anterior pituitary cells. 
Indeed, several hormones show tissue-specific effects on 
AMPK activity mediated by different mechanisms that 
generally involve the regulation of upstream kinases. 
In this regard, as to gonadotroph cells, even before the 
description of the effects of metformin on primary cells, 
adiponectin was shown to activate AMPK and to inhibit 
LH synthesis and release in a mouse cell line (L[β]T2 
gonadotropes) (45).

The direct effects of metformin on gonadotroph cell 
activity achieved further confirmations by more recent 
investigations in non-human primate pituitary cells  
in vitro. Actually, the comparison of the data obtained using 
primate cells with the data obtained using rodent cells 
seemingly highlights some species-related differences. In 
detail, metformin affected the basal FSH secretion from 
primate pituitary cells, but it was not able to reverse 
the stimulatory effect of GnRH and did not affect LH  
release (46).

Somatotroph cell function

The relationships between body composition and 
GH-secretory patterns is well established and a number 
of metabolic and endocrine factors have been suggested 
as being involved in the complex interplay between 
peripheral tissues like adipose tissue and skeletal muscle, 
nutrition and GH axis (3, 47, 48).

Two hypothalamic peptides are regarded as the main 
regulators of GH secretion from the anterior pituitary: 
the stimulatory action of growth-hormone-releasing 
hormone (GHRH) and the tonic inhibitory activity of 
somatostatin have been recognized to be responsible 
of generating a pulsatile pattern of GH secretion (48, 
49). In 1999, the endogenous ligand of the orphan 
G-protein-coupled receptor GHS-R1a was isolated and 
characterized. GHS-R1a had been first identified as the 
receptor for synthetic GH-secretagogues. Its endogenous 
ligand ghrelin is a 28-amino acid acylated peptide. It 
was initially isolated from the stomach and then found 
to be expressed in multiple organs and tissues, including 
the hypothalamus (50). Circulating levels of ghrelin 
are decreased by food intake and increased by food 
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deprivation (51, 52). Ghrelin circulates in two main 
forms, acylated ghrelin and unacylated ghrelin. Acylated 
ghrelin is able to increase GH secretion via a direct effect 
on pituitary somatotrophs and by a stimulatory action 
on GHRH release joint to a weak inhibitory activity on 
somatostatin neurons at the hypothalamus (53). Hence, 
it could cooperate to generate the secretory patterns of 
GH. Actually, it has been shown that ghrelin-knockout 
(KO) mouse has no change in size, growth rate, food 
intake, body composition and behaviour compared to 
WT littermates (54). Apart from a possible involvement 
in the control of the GH axis, there has been a focus on 
pleiotropic actions of the acylated and unacylated ghrelin 
forms and of some alternative products of the ghrelin 
gene (3). Cortistatin is a neuropeptide mainly expressed 
in the brain cortex. Cortistatin shows high homology 
with somatostatin and binds to all somatostatin receptor 
subtypes with high affinity. As expected, in vitro and in vivo 
studies revealed that the effects of cortistatin on the GH 
axis activity basically match the effects of somatostatin. 
Actually, the two peptides are not merely analogs, becuase 
cortistatin contains sequence elements which enable its 
binding to two distinct receptors, Mas-related gene 2 
receptor and ghrelin receptor GHS-R1a. In addition to 
a different tissue distribution pattern, the existence of 
distinct receptors suggests that some divergent effects of 
the two neuropeptides are possible. In this regard, the  
in vitro analysis evidenced a biphasic dose-dependent 
effect of cortistatin on GH secretion from pituitary cells. 
The actual relevance of cortistatin in the physiological 
control of somatotroph cell function with respect to 
somatostatin needs to be further investigated (55).

Multiple neurotransmitter pathways as well as a 
variety of hormones and metabolic factors regulate GH 
secretion by acting directly on the anterior pituitary 
and/or affecting the activity of GHRH and somatostatin 
neurons at the hypothalamus. Neuroendocrine control of 
the GH axis activity and the interplay with the control of 
the systemic energy status have been extensively reviewed 
elsewhere (3, 4, 47, 48, 56). Briefly, as to the second 
item, increased adiposity and overeating have been long 
related to reduced GH secretion. The factors which may 
be responsible for mediating this relationship include 
glucose, free fatty acid, insulin, ghrelin and adipokines (3). 
It is well known that an oral glucose load has a rapid and 
transient inhibitory effect on GH secretion, most likely 
mediated at the hypothalamic level. Indeed, glucose does 
not influence GH release from in vitro cultured pituitary 
cells (6, 47, 48). The acute suppression of GH secretion 
in overeating is likely related to hyperinsulinemia (57). 

High levels of insulin have also been demonstrated to 
reduce GH response to GHRH in healthy humans (58). 
The action of insulin is partially due to direct suppression 
of somatotroph cell function (59). Whether the effects 
of acutely elevated insulin levels might help to explain 
the longer term changes in GH release in conditions of 
increased adiposity is still to be ascertained. Free fatty 
acids (FFAs) also participate in the regulation of pituitary 
GH secretion. Indeed, increased FFA levels block GH 
release provoked by virtually all stimuli. A direct action 
of FFA on somatotroph cells has been suggested (3, 59). 
As to adipokines, leptin produced by adipocytes controls 
body weight by restraining food intake and enhancing 
energy expenditure at the hypothalamic level (60, 61). 
Its receptor is expressed in the arcuate and periventricular 
hypothalamic nuclei. In distinct experimental animal 
models, leptin has been associated with an increase of 
GH secretion. This effect has been linked to the central 
effects of leptin at the hypothalamic level (62, 63). 
Actually, also a direct effect on primary pituitary cells has 
been shown (7, 64). Up to now, it has not been possible 
to relate the neuroendocrine activity of leptin on GH 
axis to the changes in GH secretion observed in obesity. 
Indeed, simple forms of obesity lead to elevated leptin 
levels, and a central resistance to its anorectic effect has 
been postulated in obese humans (3, 65). Actually, in rats 
made obese by high-fat diet, the effect of leptin on GH 
mRNA expression in pituitary was found to be preserved 
(66). Moreover, in humans the GH response to GHRH was 
found to be related to the degree of adiposity and not to 
leptin circulating levels themselves (67). The interplay 
between adiponectin and GH is complex. Adiponectin 
acts to increase sensitivity of different multiple tissues 
to insulin, and insulin resistance is associated with 
decreased adiponectin levels (68). Adiponectin reduces 
GHRH-enhanced but not ghrelin-enhanced GH release 
from primary pituitary cells from primates (7). On the 
other hand, GH reduces adiponectin secretion from 
human adipose tissue in vitro, and GH hypersecretion is 
related to decreased adiponectin levels in humans and in 
experimental animal transgenic models (69). These data 
suggest that adiponectin could mediate the metabolic 
effects of GH on glucose control, as seen in acromegalic 
patients (3). Finally, among peripheral hormones, a 
brief review of the role played by glucocorticoids in 
the regulation of growth hormone secretion is needed. 
Glucocorticoids are essential for life and have important 
physiological effects on intermediate metabolism, fluid 
homeostasis and immune system functions. They are 
involved in basal homeostasis and stress-related responses. 
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Glucocorticoids are known to affect the GH axis activity 
at multiple levels, acting as gene transcription regulators. 
Glucocorticoids modulate GH secretion by acting at the 
hypothalamic and pituitary level and can also influence 
downstream effectors like insulin-like growth factor-1 
(IGF-1). For a long time, a model of biphasic dose-
dependent effects of glucocorticoid on the somatotrophic 
axis function has been suggested. Glucocorticoids are 
essential for differentiation of GH-secreting pituitary cells 
as well as for maintaining GH synthesis and secretion 
in the pituitary gland after birth. Actually, chronic 
glucocorticoid excess is well known to suppress GH release 
by altering the activity of both GHRH and somatostatin 
neurons (56).

The integration of multiple central and peripheral 
signals activating their own receptors at the hypothalamic 
level or directly at the pituitary level may involve a number 
of intracellular signalling pathways. In recent years, the 
role played by AMPK and by the PI3K-mTORC1 pathway 
in making pituitary somatotroph cells a metabolic sensor 
has been explored.

Within the hypothalamus, AMPK is highly expressed 
in the arcuate, dorsomedial, paraventricular and 
ventromedial nuclei and has clearly emerged as a nutrient 
and glucose sensor. AMPK activity has a role in tuning 
orexigenic signals during fasting and during refeeding 
and in mediating the regulatory effects of multiple 
peripheral hormones (GLP-1, oxyntomodulin, ghrelin, 
leptin, adiponectin and insulin) on food intake and 
energy expenditure. In summary, hypothalamic AMPK 
has a role in integrating peripheral signals with neural 
circuits, and its high activation is related to increased food 
intake and decreased thermogenesis as adaptive changes 
to calorie restriction whereas low activation is related to 
refeeding and increased energy expenditure (9, 10). To our 
knowledge, no data have been reported on a possible role 
of hypothalamic AMPK in regulating the activity of GHRH- 
and somatostatin neurons in the context of the interplay 
between GH axis and energy homeostasis. On the other 
hand, some years ago, our research group reported on 
AMPK activation and function in the anterior pituitary 
and its implications in the control of somatotroph cell 
activity. We showed that the AMP mimetic compound 
5-aminoimidazole-carboxamide ribonucleoside (AICAR) 
markedly stimulated the phosphorylation of AMPK in 
dispersed normal rat pituitary cells in vitro, in a time-
dependent manner. The activation of AMPK was related 
to a decrease of GH storage and GH secretion. Compound 
C, a selective AMPK inhibitor, enhanced GH secretion 
in response to GHRH. AICAR and somatostatin exerted 

an additive inhibitory effect on GHRH-stimulated GH 
release. We concluded that AMPK activity has role in the 
control of GH synthesis and secretion in rat pituitary 
cells. AMPK can be an intracellular transducer mediating 
the effects of circulating hormones or metabolic factors 
on GH-secreting cells (70).

Based on a more recent work addressing the direct 
effects of biguanides on the expression and secretion 
of all the anterior pituitary hormones in non-human 
primate pituitary cells in vitro, metformin significantly 
reduced GH expression and secretion and was active 
at micromolar concentrations (46), not so far from the 
circulating concentrations of metformin related to its 
therapeutic glucose-lowering effect in humans (16). 
Since metformin is an indirect AMPK activator, these data 
may further support the conclusions derived from the 
previously mentioned data in rat pituitary cells. Actually, 
it is worth remarking that metformin is believed to exert its 
pharmacological effects through multiple mechanisms in 
distinct tissues, including AMPK-dependent and AMPK-
independent actions (13). The effects of metformin on 
AMPK activation in pituitary cells were not investigated 
in primate cells and, at present, the only available data 
have been obtained using a rat GH/PRL-secreting tumor 
cell line. In these cells, as expected, metformin increased 
AMPK activity as shown by the analysis of AMPK 
phosphorylation and AMPK-substrate phosphorylation 
(27). In primate pituitary cells, the authors investigated 
the involvement of other intracellular signalling pathways 
in the metformin-induced decrease of GH secretion by 
using selective pharmacological inhibitors. The blockade 
of PI3K, mTOR and intracellular Ca2+ mobilization 
reversed the inhibitory effect of metformin on GH, FSH 
and ACTH secretion. On the other hand, the blockade 
of MAPK activity selectively affected the metformin 
action on the somatotroph function. The analysis with 
pharmacological blockers supported the conclusion that 
the activation of the PI3K-mTOR pathway played a role 
in mediating metformin action on hormone release in 
pituitary cells (46). This conclusion goes against an 
involvement of AMPK activation, as AMPK is largely seen 
as a functional antagonist of mTOR. On the other hand, 
since AMPK has been described to negatively modulate 
mTOR activity (15, 17, 25, 71, 72), it is also possible 
that the PI3K-mTOR pathway activation was necessary 
to observe an AMPK-mediated inhibitory action of 
metformin in pituitary cells. In summary, the analysis of 
phosphorylation cascades would help clarifying in-depth 
the activation of signalling routes following to the 
exposure of cells to metformin.
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The study by Vazquez-Borrego and coworkers also 
evidenced some significant effects of metformin on the 
mRNA levels of key receptors involved in the regulation 
of hormone secretion: in detail, metformin was seen to 
increase the expression of somatostatin receptors SST2 
and SST5, leptin receptor, insulin- and IGF-1 receptors 
in primate pituitary cells, whereas it did not alter GnRH 
receptor and GHRH receptor expression (46). It is worth 
remarking that insulin receptor and IGF-1 receptor 
are expected to activate the PI3K-mTOR pathway in 
response to their ligands (17, 73). By coupling the effects 
of metformin on receptor expression with the signalling 
routes involved in its action on hormone release, 
especially the PI3K-mTOR pathway, we might speculate 
that metformin is able to sensitize the GH-secretory cells 
to the inhibitory effect of insulin- and the IGF-1-mediated 
negative feedback on GH release. Actually, further studies 
are required to prove that an activation of insulin- or IGF-
1-receptors may really occur in isolated cultured pituitary 
cells, in the absence of exogenous ligands.

Metformin has long been used as an insulin-
sensitizing agent for the treatment of patients with 
type 2 diabetes (14, 74). Currently available data on the 
effects of metformin on somatotroph axis activity in 
vivo in humans mainly derive from studies in patients 
showing different pathological conditions. At present, 
clinical data do not evidence a prevailing inhibitory 
action of metformin on GH-secreting pituitary cells in 
vivo. Actually, the complexity related to the pathological 
conditions which may per se cause alterations of 
somatotroph function, to the pleiotropic effects of 
metformin in different tissues and to the duration of 
treatments, make it difficult to draw final conclusions 
about a possible direct effect of metformin on pituitary 
cells in vivo (75, 76). The data obtained by using in 
vitro cultured pituitary cells suggest that the targets of 
metformin in vivo include the anterior pituitary and, in 
detail, also the GH-secreting cells.

A final consideration concerns the strategies aimed 
at preventing or delaying multiple age-related diseases 
and conditions. According to a consensus related to 
the discovery and development of safe interventions 
to increase healthy lifespan published by experts in 
the biology and genetics of aging (77), the possible 
pharmacological inteventions believed to be most 
promising include:

– drugs that inhibit the mTOR-S6K pathway
– drugs that activate AMPK and specific sirtuins
– chronic metformin use

In such context, the effects of these interventions 
on the GH-IGF-1 axis activity are surely relevant and 
require further investigations. Indeed, the role of GH in 
mammalian aging is still actively explored and the age-
related decline of GH secretion is variously interpreted 
as one of causes of altered body composition and 
other negative symptoms of aging or as a mechanism 
of protection from cancer and age-related chronic  
diseases (78).

Factors regulating AMPK activity and metformin can 
affect the GH-IGF-1 axis activity at multiple levels, by 
interfering with target tissue response to GH and IGF-1 
and by altering pituitary cell function (6).

Corticotroph cells

Few studies have investigated the role of AMPK in the 
control of ACTH-secreting pituitary cells. In AtT20 mouse 
corticotroph cells, the AMP analogue AICAR was shown 
to enhance the expression of the ACTH precursor POMC. 
The effect of AICAR on POMC gene transcription was 
completely cancelled by the AMPK inhibitor compound 
C or by dominant negative AMPK. The overexpression 
of constitutively active AMPK mimicked the effect of 
AICAR. These data suggest that AMPK directly mediates 
the effects of starvation and subsequent energy depletion 
on the HPA axis activity at the pituitary level (79).

Adiponectin is regarded as a starvation hormone and, 
under fasting conditions, stimulates AMPK activity in CNS 
and peripheral tissues with the outcome of increased food 
intake and decreased energy expenditure. Adiponectin 
was shown to activate AMPK signalling in AtT20 cells and 
to increase basal ACTH release in the same cells as well 
as in primary pituitary cell cultures, without altering the 
cell response to CRH. Although the relationship between 
the AMPK activation and the effect on ACTH secretion 
was not deeply investigated and confirmed, the study 
suggests a role of AMPK in mediating also the action of 
hormones on corticotroph cells in the context of energy 
homeostasis (80). Actually, it is necessary to remark some 
discrepancies between currently available studies. The 
direct AMPK activation by AICAR increased the expression 
of the ACTH precursor, POMC, whereas adiponectin 
did not alter gene transcription. The RT-PCR analysis 
revealed the expression of adiponectin receptors R1 and 
R2 in AtT20 cells but they were not localized in ACTH-
secreting cells in human pituitary (81). Hence, species-
related differences in the effects of adiponectin may be 
expected. Finally, the drug metformin is believed to cause 
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some fasting-mimicking modifications of metabolism 
in different tissues and is an indirect AMPK activator. 
Metformin was shown to induce quite opposite effects on 
corticotroph activity as compared with adiponectin and 
the direct AMPK activator AICAR. In non-human primate 
cell cultures, metformin reduced basal ACTH secretion 
without affecting the response to ghrelin and reduced 
the expression of POMC (46). The multiple actions of 
metformin which include AMPK-independent actions, 
in addition to possible species-related differences, may 
account for these discrepancies. Nevertheless, we might 
conclude that direct effects of hormonal and metabolic 
signals mediating an energy depletion condition on 
pituitary corticotroph cell function are still controversial.

To our knowledge, no data are currently available on 
the role of AMPK in the control of TSH-secreting and PRL-
secreting pituitary cell functions. As to metformin, the 
drug did not affect both functions in primate pituitary 
cell cultures (46). There is increasing interest in its effects 
on PRL release from prolactinoma cells, in the attempt to 
improve pharmacological treatment options for this kind 
of tumors (82, 83).

Effects of AMPK activators and effects of 
metformin on pituitary adenoma cells

For years, AMPK has been considered a possible 
therapeutic target in different kinds of neoplasia, since it 
is involved in the regulation of cell metabolism and cell 
survival in normal and in tumor cells and is known to 
negatively regulate intracellular signalling downstream 
of growth factor receptors (12, 15, 17, 21, 22, 25). The 
potential of metformin as an anticancer agent has been 
documented in diabetic patients, since the treatment with 
metformin has been related to a lower cancer incidence 
compared to alternative anti-diabetic drugs (16, 84, 85). 
Metformin is a biguanide and a well-known, first-choice 
drug for type 2 diabetic patients. Actually, it has been 
recognized to exert pleiotropic effects, including a direct 
antiproliferative activity in some tumors. Metformin is an 
indirect AMPK activator but it exerts its effects on cellular 
bioenergetics and intracellular signalling pathways 
through both AMPK-dependent and AMPK-independent 
mechanisms (13). It has been generally accepted that 
metformin primarily alters cellular bioenergetics, but a 
clear relationship between its primary action within cells 
and its systemic effects has not been clearly established 
yet (Fig. 1). Metformin needs to be transported into 
cells by transporters for cationic compound like organic 

cation transporters (OCTs). Hence, its accumulation and 
its effects within cells are dependent on the expression 
levels of these transporters at the cell surface. Metformin 
is believed to indirectly activate AMP-activated protein 
kinase (AMPK) through increases in the (AMP):(ADP)  
ratio (13).

In hepatocytes and tumor cells, metformin can induce 
energetic stress (86, 87) by acting directly on mitochondria 
to inhibit the complex I-dependent respiration. In detail, 
metformin can suppress the energy transduction by 
selectively inducing a state in complex-I where redox 
and proton transfer domains are no longer efficiently 
coupled (88). The relevance of the inhibitory activity of 
metformin on the complex I-dependent respiration is still 
controversial because metformin did not really affect the 
cellular energy charge as expressed by the ATP:ADP ratio 
in some cell types (87, 89). In fact, metformin was shown 
to increase the energy formation in skeletal muscle cells 
and this finding was interpreted as consistent with its well-
known stimulatory effect on fatty acid oxidation (89). 
Moreover, the authors showed that metformin increased 
free AMP and ADP concentrations without affecting the 
ATP content and drew the conclusion that metformin 
can act as an AMP-deaminase inhibitor in skeletal  
muscle cells.

Mitochondrial glycerophosphate dehydrogenase 
(mGPDH) is a metformin target responsible for the 
gluconeogenesis inhibition in hepatocytes. mGPDH is a 
respiratory chain dehydrogenase, and its inhibition blocks 
the glycerophosphate shuttle, causing accumulation of 
cytosolic NADH and preventing glycerol and lactate from 
contributing to gluconeogenesis. Indeed, by inhibiting 
mGPDH, metformin elicited a significant increase in the 
cytosolic redox state and a decrease of the mitochondrial 
redox state in liver (87). mGPDH has also been shown 
to regulate thyroid cancer cell growth and metabolism. 
The overexpression of mGPDH was related to an increase 
of growth rate and oxidative phosphorylation and to 
higher sensitivity of thyroid cancer cell lines to the 
antiproliferative effects of metformin (90).

Finally, metformin indirectly targets different 
intracellular signalling pathways regulating protein 
synthesis, cell growth and differentiation, cell cycle 
progression and cell death. AMPK activation plays a 
central role in the effects of metformin on cell signalling 
but also AMPK-independent effects have been shown (12, 
13, 16, 91, 92). In the last decade, preclinical studies have 
accumulated that report on the possible role of metformin 
as an adjuvant agent in the medical treatment of pituitary 
adenomas (16).
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Pituitary adenomas are usually benign intracranial 
tumors that can be classified as functional (secretory) 
or non-functional tumors and categorized based on 
their mass (micro- or macroadenomas) and the specific 
pituitary hormone that they release. Most common 
pituitary adenomas include non-functioning adenomas, 
prolactinomas, GH-secreting- and ACTH-secreting 
tumors. The treatment of pituitary adenomas is surgical 
treatment and/or medical treatment, depending on 
the type of tumor, to reduce tumor mass and to inhibit 
hormone hypersecretion (93, 94, 95). Novel drug options 
may be helpful to improve the efficacy of medical therapy 
for recurring invasive macroadenomas and for tumor 
showing partial or total resistance to current approved 
treatments (96).

Our research group investigated the effects of the 
AMP analogue AICAR on GH-secreting pituitary tumor  

cells in vitro. The activation of AMPK reduced the growth 
and decreased the viability of rat pituitary tumor cells 
(GH1 and GH3 cell lines) and inhibited the mTOR-p70S6 
kinase pathway (70, 72). Actually, primary cell cultures 
from a number of human GH-secreting pituitary adenomas 
revealed to be less sensitive to the treatment with AICAR 
compared with rat cell lines, and in that a limited number 
of tumors showed a modest decrease of cell viability  
and/or GH release and could be considered as responsive 
to AICAR (71). It is worth remarking that AICAR activated 
AMPK signalling in rat pituitary adenoma cells and 
human adenoma cells, including the adenomas that were 
classified as not responsive to AICAR. In conclusion, these 
data suggest to further explore factors that make some 
GH-secreting tumor cells responsive to an AMPK activator. 
These factors may include proliferation rate, activation 
of mTOR pathway downstream of cell surface growth  

Figure 1
Actions of metformin in eukaryotic cells. Metformin needs to be transported into cells by transporters for cationic compound like organic cation 
transporters (OCTs). Then, according to reports, metformin has the potential to affect cell metabolism and cell signalling (13, 14). In fact, multiple 
activities have been described in normal and tumor cells. Metformin can induce energetic stress by inhibiting complex I (13) and mitochondrial 
glycerophosphate dehydrogenase (mGPDH) (87, 90). Metformin-mediated inhibition of mitochondrial respiration leads to oxidative stress which in turn 
can enhance the activity of the transcription factor ATF3, as observed in rat pituitary tumor cells (91). At the same time, the decrease of ATP levels can 
lead to the activation of AMP-activated protein kinase signalling (AMPK). AMPK activation is believed to mediate some stimulatory or inhibitory effects of 
metformin on different signalling pathways downstream of cell-surface receptors which, in turn, regulate cell growth and differentiation, programmed 
cell death, protein synthesis in normal- and tumor cells (12, 13, 15), including pituitary tumor cells (27). In skeletal muscle cells, metformin can activate 
AMPK through the inhibition of AMP deaminase, in the absence of significant changes in ATP levels (89). AMPK-independent effects of metformin on cell 
signalling have been also shown. The underlying mechanisms of action have not been fully described. In pituitary tumor cells, metformin inhibited STAT3 
signalling (91). In normal primate pituitary cells, the effects of metformin on pituitary hormone secretion were found to be dependent on PI3K-mTOR 
pathway activation. Morover, the drug was able to increase the expression of G-protein-coupled receptors (GPCRs) (i.e. somatostatin receptors) and 
tyrosine-kinase receptors (TRKs) (i.e. insulin and IGF-1 receptors) in the same cells (46). See related text paragraph for details.
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factor receptors, basal AMPK activity and differences in 
cellular bioenergetics.

Multiple studies have examined the effects of 
metformin on growth and viability of pituitary adenoma 
cells in vitro. Metformin decreased cell proliferation 
and cell viability in AtT20 cells (ACTH-secreting mouse 
corticotroph cell line) (97), GH3- and GH1 cells (GH/PRL-
secreting and GH-secreting cells, respectively) (27, 91). 
Moreover, metformin tended to suppress the release of GH 
and ACTH from GH3 cells and AtT20 cells, respectively 
(91, 97). As to the underlying cell signalling pathways, 
metformin activated AMPK in both AtT20 cells and GH3 
cells (27, 97). In AtT20 cells, the drug inhibited the IGF-1R/
AKT/mTOR pathway. In GH3 cells, metformin was able to 
suppress the mTOR/p70S6 Kinase pathway. In this regard, 
it selectively modulated the signalling downstream of 
EGF receptor. Indeed, metformin reduced the p70S6 
Kinase-mediated phosphorylation of S6 ribosomal protein 
without affecting ERK1/2 phosphorylation induced by 
EGF, at the same time (27). In a distinct study, an AMPK-
independent mechanism of action of metformin in GH3 
cells has been also suggested. The growth inhibitory 
effect was associated with increased activity of ATF3, a 
transcription factor induced by stress conditions (i.e. 
oxidative stress), and STAT3 inhibition (91).

Some issues need to be highlighted in the results of the 
previously discussed studies. AICAR-mediated activation 
of AMPK has been shown to increase the expression of 
the ACTH precursor, POMC in AtT20 cells (79). These data 
argue against an involvement of AMPK in the inhibitory 
action of metformin on ACTH production in the same 
cells. Furthermore, in contrast to AICAR, metformin did 
not induce apoptosis of GH3 cells when used in the same 
experimental conditions (27). We might conclude that 
the action of metformin is complex and does not entirely 
match the activity of a specific AMPK activator. Finally, 
it is worth adding that, in fact, a proapoptotic ATF3-
mediated effect of metformin was shown in GH3 cells 
(91). Some differences in the experimental conditions 
may at least partially account for the discrepancy between 
the two cited studies, that is, the duration of treatments.

The results of the studies examining the effects 
of metformin on human pituitary adenoma cells are 
more controversial and still limited. An and coworkers 
showed that metformin significantly suppressed 
cellular proliferation and GH secretion in primary 
human GH-secreting adenoma cells (91). Seven out of 
eight tumors were sensitive to the drug. More recently, 
Vazquez-Borrego and coworkers reported on the effects 
of three distinct biguanides on different types of  

pituitary tumors. Metformin treatment was shown to 
inhibit cell viability in human ACTH-secreting adenomas 
and non-functioning adenomas but not in GH-secreting 
and PRL-secreting tumors in vitro. Moreover, metformin 
did not affect ACTH, GH and prolactin secretion, 
although a higher concentration was used (10 mM) 
compared with the previous cited study. Combined 
treatments with metformin and a somatostatin analogue 
were not more effective than somatostatin analogue 
monotherapy (92). In the same study, phenformin, 
which is not used clinically due to higher risk of lactic 
acidosis, was more effective than metformin and reduced 
cell viability in all pituitary adenomas. Moreover, it 
tended to decrease GH secretion and PRL secretion, not 
ACTH secretion. Finally, a preclinical study and case 
reports (two patients) have suggested that a combined 
treatment with metformin and bromocriptine may be 
effective at controlling hormone secretion and tumor 
growth in patients with prolactinomas resistant to 
bromocriptine (82). The authors also analyzed AMPK 
activation in surgical specimens of bromocriptine (BC)-
resistant- and BC-sensitive adenomas from patients 
treated for 3 months with the dopamine agonist. 
AMPK phosphorylation was high in specimens from 
BC-sensitive tumors and significantly suppressed in 
BC-resistant tumors. According to the authors, these 
data support an involvement of AMPK in regulating 
tumor growth and tumor cell response to the dopamine 
agonist (98). Actually, it is not possible to draw a clear 
conclusion. The different levels of AMPK activation may 
be the outcome of an uncontrolled hyperprolactinemia 
in patients with tumors resistant to the medical therapy 
compared with patients responsive to the drug in the 
months before surgery.

In conclusion, metformin have showed anti-tumor 
activity in different in vitro pituitary tumor models. 
This activity is mediated by both AMPK-dependent and 
AMPK-independent mechanisms. As to the translational 
relevance of the preclinical studies, there are some 
limitations (16).

Controversial results have been reported when human 
primary cells have been used. Taking also the effects on 
rat tumor cell lines into account, we may suggest that the 
proliferation rate could play a main role in determining 
the tumor cell response to the drug.

Metformin has revealed to be effective in vitro at 
concentrations ranging from 10(-5) to 10(-4) M. Based on 
the plasma levels of metformin in patients using the drug 
to treat type 2 diabetes, these concentrations are surely 
supra-therapeutic and could be toxic.
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Final remarks

AMPK has long been considered a drug target for the 
treatment of a variety of diseases due to its role of master 
energy sensor at cellular level and its well-recognized 
involvement in the regulation of a wide range of metabolic 
processes. Actually, the regulation of whole-body energy 
balance is complex and AMPK is not the only energy 
sensor working within cells. To this end, we may cite silent 
mating type information regulation 2 homolog 1 (SIRT1). 
SIRT1 is a NAD-dependent deacetylase regulating gene 
expression and protein activity. SIRT1 is a nutrient/redox 
sensor and has been recognized to exert an important role 
in energy balance both in the CNS and in peripheral tissues 
(99). Further complexity ensues from AMPK structure. 
AMPK is a heterotrimeric enzyme assembled in at least 12 
isoforms from variable combinations of its subunits. These 
isoforms may differ with respect to specific activity for 
distinct substrates, sensitivity to dephosphorylation and 
activation by distinct endogenous- or synthetic ligands 
(11, 12). Based on these premises and the availability 
of recently developed activators targeting a different 
part of the AMPK molecule (12), extending preclinical 
investigations to the effects of these compounds could 
be helpful to ascertain the actual relevance of AMPK in 
the interplay between the activity of neuroendocrine 
axes and energy homeostasis at the hypothalamic and 
pituitary levels. AMPK inhibitory compounds would also 
be required to this purpose but the selectivity of currently 
available molecules is questionable.

Finally, as it has been done in different kind of tumors, 
it may be helpful to investigate the primary effects of 
metformin on cellular bioenergetics in pituitary tumor 
cells. The use of metformin may contribute to elucidate 
differences, if any, in metabolic requirements between 
pituitary adenomatous cells and normal cells.
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